The present state-of-the-art article is devoted to the analysis of new trends and recent results carried out during the last 10years in the field of fractional calculus application to dynamic problems of solid mechanics. This review involves the papers dealing with study of dynamic behavior of linear and nonlinear 1DOF systems, systems with two and more DOFs, as well as linear and nonlinear systems with an infinite number of degrees of freedom: vibrations of rods, beams, plates, shells, suspension combined systems, and multilayered systems. Impact response of viscoelastic rods and plates is considered as well. The results obtained in the field are critically estimated in the light of the present view of the place and role of the fractional calculus in engineering problems and practice. This articles reviews 337 papers and involves 27 figures.

1.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 1997, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
Appl. Mech. Rev.
0003-6900,
50
(
1
), pp.
15
67
.
2.
Mainardi
,
F.
, 1997, “
Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics
,”
Fractals and Fractional Calculus in Continuum Mechanics
(
CISM Courses and Lectures No. 378
),
A.
Carpinteri
and
F.
Mainardi
, eds.,
Springer
,
Wien, NY
, pp.
291
348
.
3.
Gaul
,
L.
, 1999, “
The Influence of Damping on Waves and Vibrations
,”
Mech. Syst. Signal Process.
0888-3270,
13
(
1
), pp.
1
30
.
4.
Shimizu
,
N.
, and
Zhang
,
W.
, 1999, “
Fractional Calculus Approach to Dynamic Problems of Viscoelastic Materials
,”
JSME Int. J., Ser. C
1340-8062,
42
(
4
), pp.
825
837
.
5.
French
,
M.
, and
Rogers
,
J.
, 2001, “
A Survey of Fractional Calculus for Structural Dynamics Applications
,”
IMAC-IX: A Conference on Structural Dynamics
, Kissimmee, FL, Feb. 5–8, Vol.
1
, pp.
305
309
.
6.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2004, “
Analysis of the Viscoelastic Rod Dynamics via Models Involving Fractional Derivatives or Operators of Two Different Orders
,”
Shock Vib. Dig.
0583-1024,
36
(
1
), pp.
3
26
.
7.
Xu
,
M.
, and
Tan
,
W.
, 2006, “
Intermediate Processes and Critical Phenomena: Theory, Method and Progress of Fractional Operators and Their Applications to Modern Mechanics
,”
Sci. China, Ser. G
1672-1799,
49
(
3
), pp.
257
272
.
8.
Mainardi
,
F.
, and
Gorenflo
,
R.
, 2007, “
Time-Fractional Derivatives in Relaxation Processes: A Tutorial Survey
,”
Fractional Calculus Appl. Anal.
1311-0454,
10
(
3
), pp.
269
308
.
9.
Podlubny
,
I.
, 1998,
Fractional Differential Equations
,
Academic
,
London
.
10.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
, 2006,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam
.
11.
Gorenflo
,
R.
, 1997, “
Fractional Calculus: Some Numerical Methods
,”
Fractals and Fractional Calculus in Continuum Mechanics
(
CISM Courses and Lectures No. 378
),
A.
Carpinteri
and
F.
Mainardi
, eds.,
Springer
,
Wien
, pp.
277
290
.
12.
Gaul
,
L.
, and
Schanz
,
M.
, 1999, “
A Comparative Study of Three Boundary Element Approaches to Calculate the Transient Response of Viscoelastic Solids With Unbounded Domains
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
179
, pp.
111
123
.
13.
Schmidt
,
A.
, and
Gaul
,
L.
, 2002, “
Finite Element Formulation of Viscoelastic Constitutive Equations Using Fractional Time Derivatives
,”
Nonlinear Dyn.
0924-090X,
29
(
1
), pp.
37
55
.
14.
Chen
,
Y.
,
Vinagre
,
B. M.
, and
Podlubny
,
I.
, 2004, “
Continued Fractional Expansion Approaches to Discretizing Fractional Order Derivatives—An Expository Review
,”
Nonlinear Dyn.
0924-090X,
38
, pp.
155
170
.
15.
Diethelm
,
K.
,
Ford
,
N. J.
,
Freed
,
A. D.
, and
Luchko
,
Yu.
, 2005, “
Algorithms for the Fractional Calculus: A Selection of Numerical Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
, pp.
743
773
.
16.
Goloviznin
,
V. M.
, and
Korotkin
,
I. A.
, 2006, “
Numerical Methods for Some One-Dimensional Equations With Fractional Derivatives
,”
Diff. Eq.
0012-2661,
42
(
7
), pp.
967
973
.
17.
Agrawal
,
O. P.
, and
Kumar
,
P.
, 2007, “
Comparison of Five Numerical Schemes for Fractional Differential Equations
,”
Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering
,
J.
Sabatier
,
O.
Agrawal
, and
J. A. T.
Machado
, eds.,
Springer
,
Netherlands
, Pt. 1, pp.
43
60
.
18.
Yuan
,
L.
, and
Agrawal
,
O. P.
, 2002, “
A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
2
), pp.
321
324
.
19.
Kumar
,
P.
, and
Agrawal
,
O. P.
, 2006, “
An Approximate Method for Numerical Solution of Fractional Differential Equations
,”
Signal Process.
0165-1684,
86
, pp.
2602
2610
.
20.
Agrawal
,
O. P.
, 2008, “
A General Finite Element Formulation for Fractional Variational Problems
,”
J. Math. Anal. Appl.
0022-247X,
337
, pp.
1
12
.
21.
Bagley
,
R. L.
, and
Torvik
,
P. J.
, 1983, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
0001-1452,
21
(
5
), pp.
741
748
.
22.
Bagley
,
R. L.
, and
Torvik
,
P. J.
, 1985, “
Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures
,”
AIAA J.
0001-1452,
23
(
6
), pp.
918
925
.
23.
Bagley
,
R. L.
, and
Calico
,
R. A.
, 1991, “
Fractional Order State Equations for the Control of Viscoelastically Damped Structures
,”
J. Guid. Control Dyn.
0731-5090,
14
(
2
), pp.
304
311
.
24.
Gaudrealt
,
M.
, and
Bagley
,
R. L.
, 1989, “
Improved Solution Techniques for the Eigenstructure of Fractional Order Systems
,”
Proceedings of the Damping’89
, Vol.
1
, pp.
DAC
-1–DAC-
19
.
25.
Bagley
,
R. L.
,
Swinney
,
D. V.
, and
Griffin
,
K. E.
, 1993, “
Fractional Order Calculus Model of the Generalized Theodorsen Function
,”
J. Aircr.
0021-8669,
30
(
6
), pp.
1003
1005
.
26.
Ciskowski
,
R. D.
,
Sonnad
,
V.
, and
Xie
,
K. J.
, 1991, “
Parallel Implementation on the ICAP/3090 of a BEM Formulation for Fractional Operator Modeled Viscoelastodynamic Structure
,”
Eng. Anal. Boundary Elem.
0955-7997,
8
, pp.
252
257
.
27.
Xie
,
K. J.
,
Ciskowski
,
R. D.
, and
Royster
,
L. H.
, 1988, “
Investigation of Wave Propagation in Viscoelastic Media Modeled by Fractional Derivative Using the Boundary Element Method
,”
Boundary Element Method in Applied Mechanics
,
M.
Tanaka
and
T. A.
Cruse
eds.,
Pergamon
,
Oxford
, pp.
523
531
.
28.
Xie
,
K. J.
,
Royster
,
L. H.
, and
Ciskowski
,
R. D.
, 1989, “
A Boundary Element Method Formulation for Fractional Operator Modeled Viscoelastodynamic Structures
,”
Advances in Boundary Elements
, Vol.
3
,
C. A.
Brebbia
and
J. J.
Connor
, eds.,
Springer-Verlag
,
Berlin
, pp.
55
64
.
29.
Cortés
,
F.
, and
Elejabarrieta
,
M. J.
, 2006, “
An Approximate Numerical Method for the Complex Eigenproblem in Systems Characterised by a Structural Damping Matrix
,”
J. Sound Vib.
0022-460X,
296
, pp.
166
182
.
30.
Cortés
,
F.
, and
Elejabarrieta
,
M. J.
, 2007, “
Finite Element Formulations for Transient Dynamic Analysis in Structural Systems With Viscoelastic Treatments Containing Fractional Derivative Models
,”
Int. J. Numer. Methods Eng.
0029-5981,
69
, pp.
2173
2195
.
31.
Cortés
,
F.
, and
Elejabarrieta
,
M. J.
, 2007, “
Homogenised Finite Element for Transient Dynamic Analysis of Unconstrained Layer Damping Beams Involving Fractional Derivative Models
,”
Comput. Mech.
0178-7675,
40
, pp.
313
324
.
32.
Cortés
,
F.
, and
Elejabarrieta
,
M. J.
, 2008, “
Structural Vibration of Flexural Beams With Thick Unconstrained Layer Damping
,”
Int. J. Solids Struct.
0020-7683,
45
, pp.
5805
5813
.
33.
Eldred
,
L. B.
,
Baker
,
W. P.
, and
Palazotto
,
A. N.
, 1995, “
Kelvin-Voigt vs Fractional Derivative Model as Constitutive Relations for Viscoelastic Materials
,”
AIAA J.
0001-1452,
33
(
3
), pp.
547
550
.
34.
Palazotto
,
A. N.
, and
Birman
,
V.
, 1995, “
Environmental and Viscoelastic Effects on Stresses in Adhesive Joints
,”
J. Aerosp. Eng.
0893-1321,
8
(
2
), pp.
107
118
.
35.
Eldred
,
L. B.
,
Baker
,
W. P.
, and
Palazotto
,
A. N.
, 1996, “
Numerical Application of Fractional Derivative Model Constitutive Relations for Viscoelastic Materials
,”
Comput. Struct.
0045-7949,
60
(
6
), pp.
875
882
.
36.
Enelund
,
M.
, and
Josefson
,
B. L.
, 1997, “
Time-Domain Finite Element Analysis of Viscoelastic Structures With Fractional Derivatives Constitutive Relations
,”
AIAA J.
0001-1452,
35
(
10
), pp.
1630
1637
.
37.
Enelund
,
M.
,
Fenander
,
A.
, and
Olsson
,
P.
, 1997, “
Fractional Integral Formulation of Constitutive Equations of Viscoelasticity
,”
AIAA J.
0001-1452,
35
(
8
), pp.
1356
1362
.
38.
Enelund
,
M.
, and
Lesieutre
,
G. A.
, 1999, “
Time Domain Modeling of Damping Using Anelastic Displacement Fields and Fractional Calculus
,”
Int. J. Solids Struct.
0020-7683,
36
(
29
), pp.
4447
4472
.
39.
Enelund
,
M.
,
Mähler
,
L.
,
Runesson
,
K.
, and
Josefson
,
B. L.
, 1999, “
Formulation and Integration of the Standard Linear Viscoelastic Solid With Fractional Order Rate Laws
,”
Int. J. Solids Struct.
0020-7683,
36
(
16
), pp.
2417
2442
.
40.
Enelund
,
M.
, and
Olsson
,
P.
, 1999, “
Damping Described by Fading Memory—Analysis and Application to Fractional Derivative Models
,”
Int. J. Solids Struct.
0020-7683,
36
(
7
), pp.
939
970
.
41.
Adolfsson
,
K.
,
Enelund
,
M.
, and
Larsson
,
S.
, 2003, “
Adaptive Discretization of an Integro-Differential Equation With a Weakly Singular Convolution Kernel
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
5285
5304
.
42.
Adolfsson
,
K.
,
Enelund
,
M.
, and
Larsson
,
S.
, 2004, “
Adaptive Discretization of Fractional Order Viscoelasticity Using Sparse Time History
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
4567
4590
.
43.
Adolfsson
,
K.
,
Enelund
,
M.
, and
Larsson
,
S.
, 2008, “
Space-Time Discretization of an Integro-Differential Equation Modeling Quasi-Static Fractional-Order Viscoelasticity
,”
J. Vib. Control
1077-5463,
14
,(
9–10
), pp.
1631
1649
.
44.
Escobedo-Torres
,
J.
, and
Ricles
,
J. M.
, 1998, “
The Fractional Order Elastic-Viscoelastic Equations of Motion: Formulation and Solution Methods
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
9
(
7
), pp.
489
502
.
45.
Galucio
,
A. C.
,
Dëu
,
J.-F.
, and
Ohayon
,
R.
, 2004, “
Finite Element Formulation of Viscoelastic Sandwich Beams Using Fractional Derivative Operators
,”
Comput. Mech.
0178-7675,
33
, pp.
282
291
.
46.
Galucio
,
A. C.
,
Dëu
,
J.-F.
, and
Ohayon
,
R.
, 2005, “
A Fractional Derivative Viscoelastic Model for Hybrid Active-Passive Damping Treatments in Time Domain—Application to Sandwich Beams
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
(
1
), pp.
33
45
.
47.
Galucio
,
A. C.
,
Dëu
,
J.-F.
,
Mengue
,
S.
, and
Dubois
,
F.
, 2006, “
An Adaptation of the Gear Scheme for Fractional Derivatives
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
6073
6085
.
48.
Galucio
,
A. C.
,
Dëu
,
J.-F.
, and
Ohayon
,
R.
, 2007, “
Hybrid Active-Passive Damping Treatment of Sandwich Beams in Nonlinear Dynamics
,”
J. Vib. Control
1077-5463,
13
(
7
), pp.
851
881
.
49.
Dëu
,
J.-F.
,
Galucio
,
A. C.
, and
Ohayon
,
R.
, 2008, “
Dynamic Responses of Flexible-Link Mechanisms With Passive/Active Damping Treatment
,”
Comput. Struct.
0045-7949,
86
(
3–5
), pp.
258
265
.
50.
Galucio
,
A. C.
,
Dëu
,
J.-F.
, and
Dubois
,
F.
, 2008, “
The Gα-scheme for Approximation of Fractional Derivatives: Application to the Dynamics of Dissipative Systems
,”
J. Vib. Control
1077-5463,
14
(
9–10
), pp.
1597
1605
.
51.
Gaul
,
L.
,
Klein
,
P.
, and
Kempfle
,
S.
, 1991, “
Damping Description Involving Fractional Operators
,”
Mech. Syst. Signal Process.
0888-3270,
5
(
2
), pp.
81
88
.
52.
Gaul
,
L.
, and
Schanz
,
M.
, 1994, “
Dynamics of Viscoelastic Solids Treated by Boundary Element Approaches in Time Domain
,”
Eur. J. Mech. A/Solids
0997-7538,
13
(
4
), pp.
43
59
.
53.
Schanz
,
M.
, 1999, “
A Boundary Element Formulation in Time Domain for Viscoelastic Solids
,”
Commun. Numer. Methods Eng.
1069-8299,
15
, pp.
799
809
.
54.
Schmidt
,
A.
, and
Gaul
,
L.
, 2003, “
Implementation von Stoffgesetzen mit fractionalen Ableitungen in die Finite Elemente Methode
,”
ZAMM
0044-2267,
83
(
1
), pp.
26
37
.
55.
Schmidt
,
A.
, and
Gaul
,
L.
, 2006, “
On a Critique of a Numerical Scheme for the Calculation of Fractionally Damped Systems
,”
Mech. Res. Commun.
0093-6413,
33
(
1
), pp.
99
107
.
56.
Schmidt
,
A.
, and
Gaul
,
L.
, 2006, “
On the Numerical Evaluation of Fractional Derivatives in Multi-Degree-of-Freedom Systems
,”
Signal Process.
0165-1684,
86
, pp.
2592
2601
.
57.
Giovagnoni
,
M.
, and
Berti
,
G.
, 1992, “
A Fractional Derivative Model for Single-Link Mechanism Vibration
,”
Meccanica
0025-6455,
27
(
2
), pp.
131
138
.
58.
Horr
,
A. M.
, and
Schmidt
,
L. C.
, 1995, “
Dynamic Response of a Damped Large Space Structure: a New Fractional-Spectral Approach
,”
Int. J. Space Struct.
0956-0599,
10
(
2
), pp.
113
120
.
59.
Horr
,
A. M.
, and
Schmidt
,
L. C.
, 1996, “
A Fractional-Spectral Method for Vibration of Damped Space Structures
,”
Eng. Struct.
0141-0296,
18
(
12
), pp.
947
956
.
60.
Horr
,
A. M.
, and
Schmidt
,
L. C.
, 1996, “
Frequency Domain Dynamic Analysis of Large Space Structures With Added Elastomeric Dampers
,”
Int. J. Space Struct.
0956-0599,
11
(
3
), pp.
279
289
.
61.
Horr
,
A. M.
, and
Schmidt
,
L. C.
, 1997, “
Complex Fractional-Spectral Method for Space Curved Struts: Theory and Application
,”
Int. J. Space Struct.
0956-0599,
12
(
2
), pp.
59
67
.
62.
Horr
,
A. M.
, and
Schmidt
,
L. C.
, 1999, “
Dynamic Analysis of Large Shell Structures: Complex Damped Spectral Element Method
,”
Int. J. Space Struct.
0956-0599,
14
(
4
), pp.
241
255
.
63.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
, 2004, “
Control of Damping Oscillations by Fractional Differential Operator With Time-Dependent Order
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
5585
5595
.
64.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
, 2001, “
Iteration Method for Equation of Viscoelastic Motion With Fractional Differential Operator of Damping
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
37–38
), pp.
5027
5036
.
65.
Lee
,
D. H.
, and
Hwang
,
W. S.
, 2004, “
Layout Optimization of Unconstrained Viscoelastic Layer on Beams Using Fractional Derivative Model
,”
AIAA J.
0001-1452,
42
(
10
), pp.
2167
2170
.
66.
Lee
,
D. H.
, 2008, “
Optimal Placement of Constrained-Layer Damping for Reduction of Interior Noise
,”
AIAA J.
0001-1452,
46
(
1
), pp.
75
83
.
67.
Li
,
G. G.
,
Zhu
,
Z. Y.
, and
Cheng
,
C. J.
, 2001, “
Dynamic Stability of Viscoelastic Column With Fractional Derivative Constitutive Relation
,”
Appl. Math. Mech.
0253-4827,
22
(
3
), pp.
294
303
.
68.
Li
,
G. G.
, 2002, “
Dynamic Behaviors of Timoshenko Beam With Fractional Derivative Constitutive Relation
,”
Int. J. Nonlinear Sci. Numer. Simul.
1565-1339,
3
(
1
), pp.
67
73
.
69.
Zhu
,
Z. Y.
,
Li
,
G. G.
, and
Cheng
,
C. J.
, 2002, “
Quasi-Static and Dynamical Analysis for Viscoelastic Timoshenko Beam With Fractional Derivative Constitutive Relation
,”
Appl. Math. Mech.
0253-4827,
23
(
1
), pp.
1
12
.
70.
Li
,
G. G.
,
Zhu
,
Z. Y.
, and
Cheng
,
C. J.
, 2003, “
Application of Galerkin Method to Dynamical Behavior of Viscoelastic Timoshenko Beam With Finite Deformation
,”
Mech. Time-Depend. Mater.
1385-2000,
7
, pp.
175
188
.
71.
Zhu
,
Z. Y.
,
Li
,
G. G.
, and
Cheng
,
C. J.
, 2003, “
A Numerical Method for Fractional Integral With Applications
,”
Appl. Math. Mech.
0253-4827,
24
(
4
), pp.
373
384
.
72.
Maia
,
N. M. M.
,
Silva
,
J. M. M.
, and
Ribeiro
,
A. M. R.
, 1998, “
On a General Model for Damping
,”
J. Sound Vib.
0022-460X,
218
(
5
), pp.
749
767
.
73.
Morgenthaler
,
D. R.
, 1991, “
Practical Design and Analysis of Systems With Fractional Derivative Materials and Active Controls
,”
Proceedings of the Damping’91
, Vol.
1
, Feb. 13–15,
San Diego, CA
, pp.
BCA
-1–BCA-
28
.
74.
Padovan
,
J.
, 1987, “
Computational Algorithms for FE Formulations Involving Fractional Operators
,”
Comput. Mech.
0178-7675,
2
, pp.
271
287
.
75.
Padovan
,
J.
, 1987, “
Numerical Analysis of Discrete Fractional Integrodifferential Structural Dampers
,”
Finite Elem. Anal. Design
0168-874X,
3
, pp.
297
314
.
76.
Padovan
,
J.
, 1987, “
Finite Element Analysis of Steady and Transiently Moving/Rolling Nonlinear Viscoelastic Structure—I. Theory
,”
Comput. Struct.
0045-7949,
37
(
2
), pp.
249
257
.
77.
Padovan
,
J.
,
Chung
,
S. W.
, and
Guo
,
Y. H.
, 1987, “
Asymptotic Steady State Behavior of Fractionally Damped Systems
,”
J. Franklin Inst.
0016-0032,
324
, pp.
491
511
.
78.
Padovan
,
J.
, and
Guo
,
Y. H.
, 1988, “
General Response of Viscoelastic Systems Modeled by Fractional Operators
,”
J. Franklin Inst.
0016-0032,
325
, pp.
247
275
.
79.
Padovan
,
J.
, and
Sawicki
,
J. T.
, 1997, “
Diophantine Type Fractional Derivative Representation of Structural Hysteresis—Part I: Formulation
,”
Comput. Mech.
0178-7675,
19
(
5
), pp.
335
340
.
80.
Sawicki
,
J. T.
, and
Padovan
,
J.
, 1997, “
Diophantine Type Fractional Derivative Representation of Structural Hysteresis—Part II: Fitting
,”
Comput. Mech.
0178-7675,
19
(
5
), pp.
341
355
.
81.
Padovan
,
J.
, and
Sawicki
,
J. T.
, 1998, “
Diophantinized Fractional Representations for Nonlinear Elastomeric Media
,”
Comput. Struct.
0045-7949,
66
(
5
), pp.
613
626
.
82.
Padovan
,
J.
, and
Sawicki
,
J. T.
, 1998, “
Nonlinear Vibrations of Fractionally Damped Systems
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
321
336
.
83.
Sawicki
,
J. T.
, and
Padovan
,
J.
, 1999, “
Frequency Driven Phasic Shifting and Elastic-Hysteretic Partitioning Properties of Fractional Mechanical System Representation Schemes
,”
J. Franklin Inst.
0016-0032,
336
(
3
), pp.
423
433
.
84.
Piedboeuf
,
J. C.
, and
Hurteau
,
R.
, 1991, “
Modelling and Analysis of a Two-Degree-of-Freedom Robot With a Flexible Forearm
,”
Can. J. Electr. Comput. Eng.
0840-8688,
16
(
4
), pp.
127
130
.
85.
Potvin
,
M. J.
,
Jeswiet
,
J.
, and
Piedboeuf
,
J. C.
, 1995, “
Time Response of a Polymer Beam Modeled With a Fractional Voigt-Kelvin Damping
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
19
(
1
), pp.
13
24
.
86.
Potvin
,
M. J.
,
Piedboeuf
,
J. C.
, and
Nemes
,
J. A.
, 1998, “
Comparison of Viscoelastic Models in Simulating the Transient Response of a Slewing Polymer Arm
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
(
3
), pp.
340
345
.
87.
Potvin
,
M. J.
,
Nemes
,
J. A.
, and
Piedboeuf
,
J. C.
, 1998, “
Implementation of Fractional Order Viscoelasticity Model in a Commercial Finite Element Package
,”
Proceedings of the 1998 CanSmart Workshop “Smart Materials and Structures,”
Canadian Space Agency
,
St-Hubert, QC, Canada
, pp.
11
20
.
88.
Piedboeuf
,
J. C.
,
Pagé
,
L. L.
,
Tremblay
,
I.
, and
Potvin
,
M. J.
, 1999, “
Efficient Simulation of a Multilayer Viscoelastic Beam Using an Equivalent Homogeneous Beam
,”
Proceedings of the 1999 EEE International Conference on Robotics Automation
,
Detroit, MI
, May, pp.
1188
1193
.
89.
Trinks
,
C.
, and
Ruge
,
P.
, 2002, “
Treatment of Dynamic Systems With Fractional Derivatives Without Evaluating Memory-Integrals
,”
Comput. Mech.
0178-7675,
29
, pp.
471
476
.
90.
Ruge
,
P.
, and
Trinks
,
C.
, 2003, “
Representation of Radiation Damping by Fractional Time Derivatives
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
32
, pp.
1091
1116
.
91.
Ruge
,
P.
, and
Trinks
,
C.
, 2004, “
Consistent Modelling of Infinite Beams by Fractional Dynamics
,”
Nonlinear Dyn.
0924-090X,
38
(
1–4
), pp.
267
284
.
92.
Ruge
,
P.
,
Zulkifli
,
E.
, and
Birk
,
C.
, 2006, “
Symmetric Matrix-Valued Frequency to Time Transformation for Bounded Domains Applied to Infinite Beams
,”
Comput. Struct.
0045-7949,
84
, pp.
1815
1826
.
93.
Ruge
,
P.
, and
Birk
,
C.
, 2007, “
A Comparison of Infinite Timoshenko and Euler-Bernoulli Beam Models on Winkler Foundation in the Frequency and Time-Domains
,”
J. Sound Vib.
0022-460X,
304
, pp.
932
947
.
94.
Zhang
,
W.
, and
Shimizu
,
N.
, 1998, “
Numerical Algorithm for Dynamic Problems Involving Fractional Operators
,”
JSME Int. J., Ser. C
1340-8062,
41
(
3
), pp.
364
370
.
95.
Zhang
,
W.
, and
Shimizu
,
N.
, 2001, “
FE Formulation for the Viscoelastic Body Modeled by Fractional Constitutive Law
,”
Acta Mech. Sin.
0459-1879,
17
(
4
), pp.
354
365
.
96.
Fukunaga
,
M.
, and
Shimizu
,
N.
, 2004, “
Analytical and Numerical Solutions for Fractional Viscoelastic Equations
,”
JSME Int. J., Ser. C
1340-8062,
47
(
1
), pp.
251
259
.
97.
Fukunaga
,
M.
, and
Shimizu
,
N.
, 2004, “
Role of Prehistories in the Initial Value Problems of Fractional Viscoelastic Equations
,”
Nonlinear Dyn.
0924-090X,
38
, pp.
207
220
.
98.
Nasuno
,
H.
, and
Shimizu
,
N.
, 2006, “
Numerical Integration Algorithm for Nonlinear Fractional Differential Equation
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
0387-5024,
72
(
10
), pp.
3193
3200
.
99.
Nasuno
,
H.
,
Shimizu
,
N.
, and
Yasuno
,
T.
, 2006, “
Geometrical Nonlinear Statical and Dynamical Models of Fractional Derivative Viscoelastic Body
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
0387-5024,
72
(
4
), pp.
1041
1048
.
100.
Nasuno
,
H.
, and
Shimizu
,
N.
, 2008, “
Power Time Numerical Integration Algorithm for Nonlinear Fractional Differential Equations
,”
J. Vib. Control
1077-5463,
14
(
9–10
), pp.
1313
1332
.
101.
Singh
,
S. J.
, and
Chatterjee
,
A.
, 2006, “
Galerkin Projections and Finite Elements for Fractional Order Derivatives
,”
Nonlinear Dyn.
0924-090X,
45
, pp.
183
206
.
102.
Suarez
,
L. E.
, and
Shokooh
,
A.
, 1995, “
Response of Systems With Damping Materials Modeled Using Fractional Calculus
,”
Appl. Mech. Rev.
0003-6900,
48
(
11
), pp.
S118
S126
.
103.
Suarez
,
L. E.
,
Shokooh
,
A.
, and
Arroyo
,
J.
, 1997, “
Finite Element Analysis of Beams With Constrained Damping Treatment Modeled via Fractional Derivatives
,”
Appl. Mech. Rev.
0003-6900,
50
(
11
), pp.
S216
S224
.
104.
Shokooh
,
A.
, and
Suarez
,
L.
, 1999, “
A Comparison of Numerical Methods Applied to a Fractional Model of Damping Materials
,”
J. Vib. Control
1077-5463,
5
(
3
), pp.
331
354
.
105.
Tsai
,
C. S.
, 1993, “
Innovative Design of Viscoelastic Dampers for Seismic Mitigation
,”
Nucl. Eng. Des.
0029-5493,
139
(
2
), pp.
165
182
.
106.
Tsai
,
C. S.
, and
Lee
,
H. H.
, 1993, “
Seismic Mitigation of Bridges by Using Viscoelastic Dampers
,”
Comput. Struct.
0045-7949,
48
(
4
),
719
727
.
107.
Tsai
,
C. S.
, and
Lee
,
H. H.
, 1993, “
Application of Viscoelastic Dampers to High-Rise Buildings
,”
J. Struct. Eng.
0733-9445,
119
(
4
), pp.
1222
1233
.
108.
Tsai
,
C. S.
, 1994, “
Temperature Effect of Viscoelastic Dampers During Earthquakes
,”
J. Struct. Eng.
0733-9445,
120
(
2
), pp.
394
409
.
109.
Lee
,
H. H.
, and
Tsai
,
C.-S.
, 1994, “
Analytical Model of Viscoelastic Dampers for Seismic Mitigation of Structures
,”
Comput. Struct.
0045-7949,
50
(
1
), pp.
111
121
.
110.
Li
,
W. Q.
, and
Tsai
,
C.-S.
, 1994, “
Seismic Mitigation of Structures by Using Viscoelastic Dampers
,”
Nucl. Eng. Des.
0029-5493,
147
(
3
), pp.
263
274
.
111.
Koh
,
C. G.
, and
Kelly
,
J. M.
, 1990, “
Application of Fractional Derivatives to Seismic Analysis of Base-Isolated Models
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
19
(
2
), pp.
229
241
.
112.
Makris
,
N.
, and
Constantinou
,
M. C.
, 1991, “
Fractional-Derivative Maxwell Model for Viscous Dampers
,”
J. Struct. Eng.
0733-9445,
117
(
9
), pp.
2708
2724
.
113.
Hwang
,
J. S.
, and
Ku
,
S. W.
, 1997, “
Analytical Modeling of High Damping Rubber Bearings
,”
J. Struct. Eng.
0733-9445,
123
(
8
), pp.
1029
1036
.
114.
Aprile
,
A.
,
Inaudi
,
J. A.
, and
Kelly
,
J. M.
, 1997, “
Evolutionary Model of Viscoelastic Dampers for Structural Applications
,”
J. Eng. Mech.
0733-9399,
123
(
6
), pp.
551
560
.
115.
Munshi
,
J. A.
, 1997, “
Effect of Viscoelastic Dampers on Hysteretic Response of Reinforced Concrete Elements
,”
Eng. Struct.
0141-0296,
19
(
11
), pp.
921
935
.
116.
Hwang
,
J. S.
, and
Wang
,
J. C.
, 1998, “
Seismic Response Prediction of HDR Bearings Using Fractional Derivative Maxwell Model
,”
Eng. Struct.
0141-0296,
20
(
9
), pp.
849
856
.
117.
Hwang
,
J. S.
, and
Hsu
,
T. Y.
, 2001, “
A Fractional Derivative Model to Include Effect of Ambient Temperature on HDR Bearings
,”
Eng. Struct.
0141-0296,
23
(
5
), pp.
484
490
.
118.
Gusella
,
V.
, and
Terenzi
,
G.
, 1997, “
Fluid Viscous Device Modeling by Fractional Derivatives
,”
Struct. Eng. Mech.
1225-4568,
5
(
2
), pp.
177
191
.
119.
Sjöberg
,
M.
, and
Kari
,
L.
, 2002, “
Non-Linear Behavior of a Rubber Isolator System Using Fractional Derivatives
,”
Veh. Syst. Dyn.
0042-3114,
37
(
3
), pp.
217
236
.
120.
Sjöberg
,
M.
, and
Kari
,
L.
, 2003, “
Nonlinear Isolator Dynamics at Finite Deformations: An Effective Hyperelastic, Fractional Derivative, Generalized Friction Model
,”
Nonlinear Dyn.
0924-090X,
33
, pp.
323
336
.
121.
Makris
,
N.
, and
Constantinou
,
M. C.
, 1993, “
Models of Viscoelasticity With Complex-Order Derivatives
,”
J. Eng. Mech.
0733-9399,
119
(
7
), pp.
1453
1464
.
122.
Makris
,
N.
,
Dargush
,
G. F.
, and
Constantinou
,
M. C.
, 1995, “
Damping Analysis of Viscoelastic-Fluid Dampers
,”
J. Eng. Mech.
0733-9399,
121
(
10
), pp.
1114
1121
.
123.
Baker
,
W. P.
,
Eldred
,
L. B.
, and
Palazotto
,
A. N.
, 1996, “
Viscoelastic Material Response With a Fractional-Derivative Constitutive Model
,”
AIAA J.
0001-1452,
34
(
3
), pp.
596
600
.
124.
Cosson
,
P.
, and
Michon
,
J. C.
, 1996, “
Identification for a Non-Integer Order Model of the Mechanical Behaviour of an Elastomer
,”
Chaos, Solitons Fractals
0960-0779,
7
(
11
), pp.
1807
1824
.
125.
Papoulia
,
K.-D.
, and
Kelly
,
J. M.
, 1997, “
Visco-Hyperelastic Model for Filled Rubbers Used in Vibration Isolation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
119
(
3
), pp.
292
297
.
126.
Ye
,
K.
,
Li
,
L.
, and
Tang
,
J.
, 2003, “
Stochastic Seismic Response of Structures With Added Viscoelastic Dampers Modeled by Fractional Derivative
,”
Earthquake Eng. Eng. Vib.
1671-3664,
2
(
1
), pp.
133
139
.
127.
Jia
,
J.-H.
,
Shen
,
X.-Y.
, and
Hua
,
H.-X.
, 2007, “
Viscoelastic Behavior Analysis and Application of the Fractional Derivative Maxwell Model
,”
J. Vib. Control
1077-5463,
13
(
4
), pp.
385
401
.
128.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2001, “
Analysis of Dynamic Behaviour of Viscoelastic Rods Whose Rheological Models Contain Fractional Derivatives of Two Different Orders
,”
ZAMM
0044-2267,
81
(
6
), pp.
363
376
.
129.
Agrawal
,
O. P.
, 2004, “
Analytical Solution for Stochastic Response of a Fractionally Damped Beam
,”
ASME J. Vibr. Acoust.
0739-3717,
126
(
3
), pp.
561
566
.
130.
Schäfer
,
I.
, and
Kempfle
,
S.
, 2004, “
Impulse Responses of Fractional Damped Systems
,”
Nonlinear Dyn.
0924-090X,
38
, pp.
61
68
.
131.
Li
,
Z.
, and
Xu
,
B. Y.
, 2001, “
Finite Element Method for Viscoelastic Fractional Derivative Model
,”
Chin. J. Eng. Mech.
1000-4750,
18
(
3
), pp.
40
44
.
132.
Zelenev
,
V. M.
,
Meshkov
,
S. I.
, and
Rossikhin
,
Yu. A.
, 1970, “
Damped Vibrations of Hereditary-Elastic Systems With Weakly Singular Kernels
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
11
, pp.
290
293
.
133.
Meshkov
,
S. I.
,
Pachevskaya
,
G. N.
,
Postnikov
,
V. S.
, and
Rossikhin
,
Yu. A.
, 1971, “
Integral Representation of ∍γ-Functions and Their Application to Problems in Linear Viscoelasticity
,”
Int. J. Eng. Sci.
0020-7225,
9
, pp.
387
398
.
134.
Gorenflo
,
R.
, and
Mainardi
,
F.
, 1997, “
Fractional Calculus: Integral and Differential Equations of Fractional Order
,”
Fractals and Fractional Calculus in Continuum Mechanics
, (
CISM Courses and Lectures No. 378
),
A.
Carpinteri
and
F.
Mainardi
, eds.
Springer
,
Wien
, pp.
223
276
.
135.
Beyer
,
H.
, and
Kempfle
,
S.
, 1995, “
Definition of Physically Consistent Damping Laws With Fractional Derivatives
,”
ZAMM
0044-2267,
75
(
8
), pp.
623
635
.
136.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 1997, “
Application of Fractional Derivatives to the Analysis of Damped Vibrations of Viscoelastic Single Mass Systems
,”
Acta Mech.
0001-5970,
120
(
1–4
), pp.
109
125
.
137.
Kempfle
,
S.
,
Schäfer
,
I.
, and
Beyer
,
H.
, 2002, “
Fractional Calculus via Functional Calculus: Theory and Applications
,”
Nonlinear Dyn.
0924-090X,
29
(
1
), pp.
99
127
.
138.
Nolte
,
B.
,
Kempfle
,
S.
, and
Schäfer
,
I.
, 2003, “
Does a Real Material Behave Fractionally? Applications of Fractional Differential Operators to the Damped Structure Borne Sound in Viscoelastic Solids
,”
J. Comput. Acoust.
0218-396X,
11
(
3
), pp.
451
489
.
139.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 1997, “
Application of Fractional Operators to the Analysis of Damped Vibrations of Viscoelastic Single-Mass Systems
,”
J. Sound Vib.
0022-460X,
199
(
4
), pp.
567
586
.
140.
Zhang
,
W.
, and
Shimizu
,
N.
, 1999, “
Damping Properties of the Viscoelastic Material Described by Fractional Kelvin-Voigt Model
,”
JSME Int. J., Ser. C
1340-8062,
42
(
1
), pp.
1
9
.
141.
Liebst
,
B. S.
, and
Torvik
,
P. J.
, 1996, “
Asymptotic Approximations for Systems Incorporating Fractional Derivative Damping
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
118
(
3
), pp.
572
579
.
142.
Zelenev
,
V. M.
,
Meshkov
,
S. I.
, and
Rossikhin
,
Yu. A.
, 1970, “
Effect of the ∍γ-Function Singularity Parameter on Damped Vibrations of Elastic Systems With Aftereffect
,”
Mech. Solids
0025-6544,
5
(
3
), pp.
92
94
.
143.
Wilszynski
,
A. P.
, 2004, “
Modeling the Viscoelastic Properties of Polymeric Resins
,”
Mech. Compos. Mater.
0191-5665,
40
(
5
), pp.
453
560
.
144.
Bagley
,
R. L.
, and
Torvik
,
P. J.
, 1979, “
A Generalized Derivative Model for an Elastomer Damper
,”
Shock and Vibration Bulletin
,
49
(
2
), pp.
135
143
.
145.
Shimizu
,
N.
, and
Iijima
,
M.
, 1997, “
Impulse Reponses of Viscoelastic Oscillator
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
0387-5024,
64
(
624
), pp.
2903
2907
.
146.
Agrawal
,
O. P.
, 2001, “
Stochastic Analysis of Dynamic Systems Containing Fractional Derivatives
,”
J. Sound Vib.
0022-460X,
247
(
5
), pp.
927
938
.
147.
Sakakibara
,
S.
, 1997, “
Properties of Vibration With Fractional Derivative Damping of Order 1∕2
,”
JSME Int. J., Ser. C
1340-8062,
40
(
3
), pp.
393
399
.
148.
Agrawal
,
O. P.
, 2002, “
Stochastic Analysis of a 1-D System With Fractional Damping of Order 1∕2
,”
ASME J. Vibr. Acoust.
0739-3717,
123
(
3
), pp.
454
460
.
149.
Rabotnov
,
Yu. N.
, 1948, “
Equilibrium of an Elastic Medium With After-Effect
,”
Prikl. Mat. Mekh.
0032-8235,
12
(
1
), pp.
53
62
.
150.
Rabotnov
,
Yu. N.
, 1977,
Elements of Hereditary Solid Mechanics
,
Nauka
, Moscow (English translation by Mir Publishers, Moscow, 1980).
151.
Cooke
,
J. A.
, and
Keltie
,
R. F.
, 1987, “
Determination of the Impulse Response of a Viscoelastic Beam Using a Fractional Derivative Constitutive Model
,”
ASME Des. Engineering Division Publications
,
DE-5
, pp.
137
141
.
152.
Fenander
,
A.
, 1996, “
Modal Synthesis When Modeling Damping by Use of Fractional Derivatives
,”
AIAA J.
0001-1452,
34
(
5
), pp.
1051
1058
.
153.
Shimizu
,
N.
,
Owada
,
H.
, and
Iijima
,
M.
, 1997, “
Forced Harmonic Vibration of Viscoelastic Oscillator
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
0387-5024,
63
(
608
), pp.
1068
1073
.
154.
Chang
,
T.-S.
, and
Singh
,
M. P.
, 2002, “
Seismic Analysis of Structures With a Fractional Derivative Model of Viscoelastic Dampers
,”
Earthquake Eng. Eng. Vib.
1671-3664,
1
(
2
), pp.
251
260
.
155.
Sorrentino
,
S.
, and
Fasana
,
A.
, 2007, “
Finite Element Analysis of Vibrating Linear Systems With Fractional Derivative Viscoelastic Models
,”
J. Sound Vib.
0022-460X,
299
, pp.
839
853
.
156.
Kuroda
,
M.
, 2008, “
Formulation of a State Equation Including Fractional-Order State Vectors
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
, pp.
021201
.
157.
Suarez
,
L. E.
, and
Shokooh
,
A.
, 1997, “
An Eigenvector Expansion Method for the Solution of Motion Containing Fractional Derivatives
,”
ASME J. Appl. Mech.
0021-8936,
64
(
3
), pp.
629
635
.
158.
Torvik
,
P. J.
, and
Bagley
,
R. L.
, 1984, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
0021-8936,
51
, pp.
294
298
.
159.
Saha Ray
,
S.
, and
Bera
,
R. K.
, 2005, “
Analytical Solution of the Bagley-Torvik Equation by Adomian Decomposition Method
,”
Appl. Math. Comput.
0096-3003,
168
, pp.
398
410
.
160.
Diethelm
,
K.
, and
Ford
,
N. J.
, 2002, “
Numerical Solution of the Bagley-Torvik Equation
,”
BIT
0006-3835 Numerical Mathematics,
42
(
3
), pp.
490
507
.
161.
Saha Ray
,
S.
,
Poddar
,
B. P.
, and
Bera
,
R. K.
, 2005, “
Analytical Approximate Solution of a Dynamic System Containing Fractional Derivative of Order One-Half by Adomian Decomposition Method
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
290
295
.
162.
Saha Ray
,
S.
,
Chaudhuri
,
K. S.
, and
Bera
,
R. K.
, 2006, “
Analytical Approximate Solution of Nonlinear Dynamic System Containing Fractional Derivative by Modified Decomposition Method
,”
Appl. Math. Comput.
0096-3003,
182
, pp.
544
552
.
163.
Hu
,
Y.
, Luo, Y, and
Lu
,
Z.
, 2008, “
Analytical Solution of the Linear Fractional Differential Equation by Adomian Decomposition Method
,”
J. Comput. Appl. Math.
0377-0427,
215
, pp.
220
229
.
164.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2001, “
A New Method for Solving Dynamic Problems of Fractional Derivative Viscoelasticity
,”
Int. J. Eng. Sci.
0020-7225,
39
, pp.
149
176
.
165.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2001, “
Analysis of Rheological Equations Involving More Than One Fractional Parameters by the Use of the Simplest Mechanical Systems Based on These Equations
,”
Mech. Time-Depend. Mater.
1385-2000,
5
, pp.
131
175
.
166.
Friedrich
,
Chr.
, 1991, “
Relaxation and Retardation Functions of the Maxwell Model With Fractional Derivatives
,”
Rheol. Acta
0035-4511,
30
(
2
), pp.
151
158
.
167.
Friedrich
,
C.
, and
Braun
,
H.
, 1992, “
Generalized Cole-Cole Behavior and Its Rheological Relevance
,”
Rheol. Acta
0035-4511,
31
(
4
), pp.
309
322
.
168.
Alcoutlabi
,
M.
, and
Martinez-Vega
,
J. J.
, 1998, “
Application of Fractional Calculus to Viscoelastic Behaviour Modelling and to the Physical Ageing Phenomenon in Glassy Amorphous Polymers
,”
Polymer
0032-3861,
39
(
25
), pp.
6269
6277
.
169.
Havriliak
,
S.
, and
Negami
,
S.
, 1967, “
A Complex Plane Representation of Dielectric and Mechanical Relaxation Processes in Some Polymers
,”
Polymer
0032-3861,
8
(
2
), pp.
161
210
.
170.
Havriliak
,
S.
, and
Negami
,
S.
, 1969, “
On the Equivalence of Dielectric and Mechanical Dispersions in Some Polymers; e.g. Poly (n-Octyl Methacrylate)
,”
Polymer
0032-3861,
10
(
10
), pp.
859
872
.
171.
Bagley
,
R. L.
, and
Torvik
,
P. J.
, 1986, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
0148-6055,
30
(
1
), pp.
133
155
.
172.
Cupial
,
P.
, 1996, “
Some Approaches to the Analysis of Nonproportionally Damped Viscoelastic Structures
,”
Proceedings of the International Symposium on Dynamics of Continua
,
D.
Besdo
and
R.
Bogacz
, eds., Sept. 9–13,
Physikzentrum Bad Honnef
, pp.
93
102
.
173.
Soula
,
M.
,
Vinh
,
T.
, and
Chevalier
,
Y.
, 1997, “
Transient Responses of Polymers and Elastomers Deduced from Harmonic Responses
,”
J. Sound Vib.
0022-460X,
205
(
2
), pp.
185
203
.
174.
Welch
,
S. W. J.
,
Rorrer
,
R. A. L.
, and
Duren
,
R. G.
, 1999, “
Application of Time-Based Fractional Calculus Method to Viscoelastic Creep and Stress Relaxation of Materials
,”
Mech. Time-Depend. Mater.
1385-2000,
3
(
3
), pp.
279
303
.
175.
Hernández-Jiménez
,
A.
,
Vinagre-Jara
,
B.
, and
Hernández-Santiago
,
J.
, 2002, “
Relaxation Modulus in the Fitting of Polycarbonate and Poly(Vinyl Chloride) Viscoelastic Polymers by a Fractional Maxwell Model
,”
Colloid Polym. Sci.
0303-402X,
280
, pp.
485
489
.
176.
Hernández-Jiménez
,
A.
,
Hernández-Santiago
,
J.
,
Macias-García
,
A.
, and
Sánchez-González
,
J.
, 2002, “
Relaxation Modulus in PMMA and PTFE Fitting by Fractional Maxwell Model
,”
Polym. Test.
0142-9418,
21
, pp.
325
331
.
177.
Friedrich
,
Chr.
, 1993, “
Mechanical Stress Relaxation in Polymers: Fractional Integral Model Versus Fractional Differential Model
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
46
, pp.
307
314
.
178.
Glöckle
,
W. G.
, and
Nonnenmacher
,
T. F.
, 1994, “
Fractional Relaxation and the Time-Temperature Superposition Principle
,”
Rheol. Acta
0035-4511,
33
(
4
), pp.
337
343
.
179.
Lion
,
A.
, 2001, “
Thermomechanically Consistent Formulations of the Standard Linear Solid Using Fractional Derivatives
,”
Arch. Mech.
0373-2029,
53
(
3
), pp.
253
273
.
180.
Pritz
,
T.
, 2003, “
Five-Parameter Fractional Derivative Model for Polymeric Damping Materials
,”
J. Sound Vib.
0022-460X,
265
, pp.
935
952
.
181.
Lu
,
Y. C.
, 2006, “
Fractional Derivative Viscoelastic Model for Frequency-Dependent Complex Moduli of Automotive Elastomers
,”
International Journal Mechanics and Materials in Design
,
3
, pp.
329
336
.
182.
Kari
,
L.
, 2003, “
On the Dynamic Stiffness of Preloaded Vibration Isolators in the Audible Frequency Range: Modeling and Experiments
,”
J. Acoust. Soc. Am.
0001-4966,
113
(
4
), pp.
1909
1921
.
183.
Hartmann
,
B.
,
Lee
,
G. F.
, and
Lee
,
J. D.
, 1994, “
Loss Factor Height and Width Limits for Polymer Relaxations
,”
J. Acoust. Soc. Am.
0001-4966,
95
(
1
), pp.
226
-–
233
.
184.
Havriliak
,
S.
, Jr.
, and
Havriliak
,
S. J.
, 1994, “
Results From an Unbiased Analysis of Nearly 1000 Sets of Relaxation Data
,”
J. Non-Cryst. Solids
0022-3093,
172–174
, pp.
297
310
.
185.
Havriliak
,
S.
, Jr.
, and
Havriliak
,
S. J.
, 1996, “
Comparison of the Havriliak-Negami and Stretched Exponential Function
,”
Polymer
0032-3861,
37
(
18
), pp.
4107
4110
.
186.
Garsia-Franco
,
C. A.
, and
Mead
,
D. W.
, 1999, “
Rheological and Molecular Characterization of Linear Backbone Flexible Polymers With the Cole-Cole Model Relaxation Spectrum
,”
Rheol. Acta
0035-4511,
38
, pp.
34
47
.
187.
Beda
,
T.
, and
Chevalier
,
V.
, 2004, “
New Methods for Identifying Rheological Parameter for Fractional Derivative Modeling of Viscoelastic Behavior
,”
Mech. Time-Depend. Mater.
1385-2000,
8
, pp.
105
118
.
188.
Beda
,
T.
, and
Chevalier
,
V.
, 2004, “
Identification of Viscoelastic Fractional Complex Modulus
,”
AIAA J.
0001-1452,
42
, pp.
1450
1456
.
189.
Bossemeyer
,
G. H.
, 2001, “
Evaluation Technique for Dynamic Moduli
,”
Mech. Time-Depend. Mater.
1385-2000,
5
, pp.
273
291
.
190.
Schiessel
,
H.
,
Metzler
,
R.
,
Blumen
,
A.
, and
Nonnenmacher
,
T. F.
, 1995, “
Generalized Viscoelastic Models: Their Fractional Equations With Solutions
,”
J. Phys. A
0305-4470,
28
, pp.
6567
6584
.
191.
Liu
,
J. G.
, and
Xu
,
M. Y.
, 2006, “
Higher-Order Fractional Constitutive Equations of Viscoelastic Materials Involving Three Different Parameters and Their Relaxation and Creep Functions
,”
Mech. Time-Depend. Mater.
1385-2000,
10
, pp.
263
279
.
192.
Heymans
,
N.
, 1996, “
Hierarchical Models for Viscoelasticity: Dynamic Behaviour of the Linear Range
,”
Rheol. Acta
0035-4511,
35
(
5
), pp.
508
519
.
193.
Heymans
,
N.
, and
Bauwens
,
J.-C.
, 1994, “
Fractal Rheological Models and Fractional Differential Equations for Viscoelastic Behavior
,”
Rheol. Acta
0035-4511,
33
, pp.
210
219
.
194.
Heymans
,
N.
, 2003, “
Constitutive Equations for Polymer Viscoelasticity Derived From Hierarchical Models in Cases of Failure of Time-Temperature Superposition
,”
Signal Process.
0165-1684,
83
(
11
), pp.
2345
2357
.
195.
Drozdov
,
A. D.
, 1997, “
Fractional Differential Models in Finite Viscoelasticity
,”
Acta Mech.
0001-5970,
124
(
1–4
), pp.
155
180
.
196.
Wang
,
J.
,
Zhou
,
Y.
, and
Gao
,
H.
, 2003, “
Computation of the Laplace Inverse Transform by Application of the Wavelet Theory
,”
Commun. Numer. Methods Eng.
1069-8299,
19
, pp.
959
975
.
197.
Jones
,
D. I. G.
, 2001,
Handbook of Viscoelastic Vibration Damping
,
Wiley
,
New York
.
198.
Kempfle
,
S.
, 1998, “
Causality Criteria for Solutions of Linear Fractional Differential Equations
,”
Fractional Calculus Appl. Anal.
1311-0454,
1
(
4
), pp.
351
364
.
199.
Meilanov
,
R. P.
, and
Yanpolov
,
M. S.
, 2002, “
Features of the Phase Trajectory of a Fractal Oscillator
,”
Tech. Phys. Lett.
1063-7850,
28
(
1
), pp.
30
32
.
200.
Achar
,
B. N. N.
,
Hanneken
,
J. W.
,
Enck
,
T.
, and
Clarke
,
T.
, 2001, “
Dynamics of the Fractional Oscillator
,”
Physica A
0378-4371,
297
, pp.
361
367
.
201.
Achar
,
B. N. N.
,
Hanneken
,
J. W.
, and
Clarke
,
T.
, 2002, “
Response Characteristics of a Fractional Oscillator
,”
Physica A
0378-4371,
309
, pp.
275
288
.
202.
Achar
,
B. N. N.
,
Hanneken
,
J. W.
, and
Clarke
,
T.
, 2004, “
Damping Characteristics of a Fractional Oscillator
,”
Physica A
0378-4371,
339
, pp.
311
319
.
203.
Tofighi
,
A.
, 2003, “
The Intrinsic Damping of the Fractional Oscillator
,”
Physica A
0378-4371,
329
, pp.
29
34
.
204.
Stanislavsky
,
A. A.
, 2004, “
Fractional Oscillator
,”
Phys. Rev. E
1063-651X,
70
, p.
051103
.
205.
Zaslavsky
,
G. M.
,
Stanislavsky
,
A. A.
, and
Edelman
,
M.
, 2006, “
Chaotic and Pseudochaotic Attractors of Perturbed Fractional Oscillator
,”
Chaos
1054-1500,
16
, p.
013102
.
206.
Caputo
,
M.
, 1974, “
Vibrations of an Infinite Viscoelastic Layer With a Dissipative Memory
,”
J. Acoust. Soc. Am.
0001-4966,
56
, pp.
897
904
.
207.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2000, “
Analysis of Nonlinear Vibrations of a Two-Degree-of-Freedom Mechanical System With Damping Modelled by a Fractional Derivative
,”
J. Eng. Math.
0022-0833,
37
, pp.
343
362
.
208.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2009, “
New Approach for the Analysis of Damped Vibrations of Fractional Oscillators
,”
Shock Vib.
1070-9622,
16
, pp.
365
387
.
209.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
, 1988,
Fractional Integrals and Derivatives: Theory and Applications
(in Russian),
Nauka i Tekhnika
, Minsk (English translation by Gordon and Breach Science Publ., Amsterdam, 1993).
210.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 1997, “
Application of Fractional Derivatives for the Analysis of Nonlinear Damped Vibrations of Suspension Bridges
,”
Proceedings of the 1997 International Symposium on Nonlinear Theory and Its Applications
,
Honolulu, HI
, Nov. 29–Dec, 2, Vol.
1
, pp.
541
544
.
211.
Rossikhin
,
Yu. A.
,
Shitikova
,
M. V.
, and
Shcheglova
,
T. A.
, 2009, “
Forced Vibrations of a Nonlinear Oscillator With Weak Fractional Damping
,”
J. Mech. Mater. Struct
, accepted.
212.
Rabotnov
,
Yu. N.
, 1966,
Creep of Structural Elements
,
Nauka
,
Moscow
(English translation by North-Holland, Amsterdam, 1969).
213.
Klasztorny
,
M.
, and
Wilszynski
,
A. P.
, 2000, “
Constitutive Equations of Viscoelasticity and Estimation of Viscoelastic Parameters of Fibrous Polymeric Composites
,”
J. Compos. Mater.
0021-9983,
34
(
19
), pp.
1624
1639
.
214.
Wilszynski
,
A. P.
, and
Klasztorny
,
M.
, 2000, “
Determination of Complex Compliances of Fibrous Polymeric Composites
,”
J. Compos. Mater.
0021-9983,
34
(
1
), pp.
2
26
.
215.
Klasztorny
,
M.
, 2004, “
Constitutive Modelling of Resins in the Compliance Domain
,”
Mech. Compos. Mater.
0191-5665,
40
(
4
), pp.
349
358
.
216.
Klasztorny
,
M.
, 2004, “
Constitutive Modelling of Resins in the Stiffness Domain
,”
Mech. Compos. Mater.
0191-5665,
40
(
5
), pp.
443
452
.
217.
Alcoutlabi
,
M.
, and
Martínez-Vega
,
J. J.
, 2003, “
Modeling of the Viscoelastic Behavior of Amorphous Polymers by the Differential and Integration Fractional Method: The Relaxation Spectrum H(τ)
,”
Polymer
0032-3861,
44
, pp.
7199
7208
.
218.
Reyes-Mello
,
E.
,
Martínez-Vega
,
J.
,
Guerrero-Salazar
,
C.
, and
Ortiz-Méndez
,
U.
, 2004, “
On the Modeling of the Dynamic-Elastic Modulus for Polymer Materials Under Isochronal Conditions
,”
J. Appl. Polym. Sci.
0021-8995,
94
, pp.
657
670
.
219.
Reyes-Mello
,
M. E.
,
Martínez-Vega
,
J. J.
,
Guerrero-Salazar
,
C. A.
, and
Ortiz-Méndez
,
U.
, 2006, “
Mechanical and Dielectric Relaxation Phenomena of Poly(ethylene-2,6-Napthalene Dicarboxylate) by Fractional Calculus Approach
,”
J. Appl. Polym. Sci.
0021-8995,
102
, pp.
3354
3368
.
220.
Ferry
,
J. D.
, 1961,
Viscoelastic Properties of Polymers
,
Wiley
,
New York
.
221.
Zener
,
C.
, 1948,
Elasticity and Anelasticity of Metals
,
The University of Chicago Press
,
Chicago, IL
.
222.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2007, “
Comparative Analysis of Viscoelastic Models Involving Fractional Derivatives of Different Orders
,”
Fractional Calculus Appl. Anal.
1311-0454,
10
(
2
), pp.
111
121
.
223.
Koeller
,
R. C.
, 1986, “
Polynomial Operators, Stieltjes Convolution, and Fractional Calculus in Hereditary Mechanics
,”
Acta Mech.
0001-5970,
58
(
3–4
), pp.
251
264
.
224.
Koeller
,
R. C.
, 2007, “
Toward an Equation of State for Solid Materials With Memory by Use of the Half-Order Derivatives
,”
Acta Mech.
0001-5970,
191
, pp.
125
133
.
225.
Koeller
,
R. C.
, 1984, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
0021-8936,
51
(
2
), pp.
299
307
.
226.
Tobolsky
,
A. V.
, and
Catsiff
,
E.
, 1956, “
Elastoviscous Properties of Polyisobutylene (and Other Amorphous Polymers) From Stress-Relaxation Studies: Summary of Results
,”
J. Polym. Sci.
0022-3832,
19
, pp.
111
121
.
227.
Rossikhin
,
Yu. A.
,
Shitikova
,
M. V.
, and
Shcheglova
,
T. A.
, 2008, “
Generalized Rabotnov-Koeller’s Model in the Analysis of Free Vibrations of a Viscoelastic Oscillator
,”
CD Proceedings of the Third IFAC Workshop on Fractional Differentiation and Its Applications
,
Ankara, Turkey
, Nov. 5–7.
228.
Rossikhin
,
Yu. A.
,
Shitikova
,
M. V.
, and
Shcheglova
,
T. A.
, 2009, “
Analysis of Free Vibrations of a Viscoelastic Oscillator via the Models Involving Several Fractional Parameters and Relaxation/Retardation Times
,”
Comput. Math. Appl.
0898-1221, to be published (DOI: 10.1016/j.camwa.2009.08.014).
229.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2008, “
Free Damped Vibrations of a Viscoelastic Oscillator Based on Rabotnov’s Model
,”
Mech. Time-Depend. Mater.
1385-2000,
12
(
2
), pp.
129
149
.
230.
Rossikhin
,
Yu. A.
,
Shitikova
,
M. V.
, and
Shcheglova
,
T.
, 2008, “
Control of Dynamic Response of a Fractional Oscillator Based via Rheological Parameters Variation
,”
Proceedings of the Fourth European Conference of Structural Control
,
D.
Indeitsev
, ed.,
St. Petersburg, Russia
, Sept. 8–12.
231.
Abdel-Ghaffar
,
A. M.
, and
Scanlan
,
R. H.
, 1985, “
Ambient Vibration Studies of Golden Gate Bridge. I: Suspended Structure
,”
J. Eng. Mech.
0733-9399,
111
(
4
), pp.
463
482
.
232.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 1998, “
Application of Fractional Calculus for Analysis of Nonlinear Damped Vibrations of Suspension Bridges
,”
J. Eng. Mech.
0733-9399,
124
(
9
), pp.
1029
1036
.
233.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2008, “
Nonlinear Free Damped Vibrations of Suspension Bridges With Uncertain Fractional Damping
,”
JESA: Journal européen des systèmes automatisés
,
42
(
6–8
), pp.
879
894
.
234.
Schäfer
,
I.
, 2000, “
Beschreibung der Dämpfung in Stäben mittels fraktionaler Zeitableitungen
,”
ZAMM
0044-2267,
80
(
5
), pp.
356
360
.
235.
Kempfle
,
S.
, and
Schäfer
,
I.
, 1999, “
Functional Calculus Method Versus Riemann-Liouville Approach
,”
Fractional Calculus Appl. Anal.
1311-0454,
2
(
4
), pp.
415
427
.
236.
Deng
,
R.
,
Davies
,
P.
, and
Bajaj
,
A. K.
, 2003, “
Flexible Polyurethan Foam Modelling and Identification of Viscoelastic Parameters for Automotive Seating Applications
,”
J. Sound Vib.
0022-460X,
262
, pp.
391
417
.
237.
Nayfeh
,
A. H.
, 1973,
Perturbation Methods
,
Wiley
,
New York
.
238.
Wahi
,
P.
, and
Chatterjee
,
A.
, 2004, “
Averaging Oscillators With Small Fractional Damping and Delayed Terms
,”
Nonlinear Dyn.
0924-090X,
38
, pp.
3
22
.
239.
Oldham
,
K. B.
, and
Spanier
,
J.
, 1974,
The Fractional Calculus
,
Academic
,
New York
.
240.
Barbosa
,
R. S.
,
Machado
,
J. A. T.
,
Vinagre
,
B. M.
, and
Calderon
,
A. J.
, 2007, “
Analysis of the Van der Pol Oscillator Containing Derivatives of the Fractional Order
,”
J. Vib. Control
1077-5463,
13
(
9–10
), p.
1291
1301
.
241.
Chen
,
J. H.
, and
Chen
,
W. C.
, 2008, “
Chaotic Dynamics of the Fractionally Damped Van der Pol Equation
,”
Chaos, Solitons Fractals
0960-0779,
35
, pp.
168
198
.
242.
Tarasov
,
V. E.
, and
Zaslavsky
,
G. M.
, 2006, “
Dynamics With Low-Level Fractionality
,”
Physica A
0378-4371,
368
, pp.
399
415
.
243.
Arena
,
P.
,
Caponetto
,
R.
,
Fortuna
,
L.
, and
Porto
,
D.
, 2000,
Nonlinear Noninteger Order Circuits and Systems: An Introduction
,
World Scientific
,
Singapore
.
244.
Fa
,
K. S.
, 2005, “
A Falling Body Problem Through the Air in View of the Fractional Derivative Approach
,”
Physica A
0378-4371,
350
, pp.
199
206
.
245.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2003, “
Free Damped Nonlinear Vibrations of a Viscoelastic Plate Under Two-to-One Internal Resonance
,”
Mater. Sci. Forum
0255-5476,
440–441
, pp.
29
36
.
246.
Seredynska
,
M.
, and
Hanyga
,
A.
, 2005, “
Nonlinear Differential Equations With Fractional Damping With Applications to the 1dof and 2dof Pendulum
,”
Acta Mech.
0001-5970,
176
, pp.
169
183
.
247.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2006, “
Analysis of Free Non-Linear Vibrations of a Viscoelastic Plate Under the Conditions of Different Internal Resonances
,”
Int. J. Non-Linear Mech.
0020-7462,
41
(
2
), pp.
313
325
.
248.
Rossikhin
,
Yu. A.
,
Shitikova
,
M. V.
, and
Yakovenko
,
A. A.
, 2008, “
Influence of Fractional Calculus Model Parameters on Nonlinear Forced Vibrations of Suspension Bridges
,”
Proceedings of the Tenth Pan American Congress of Applied Mechanics
Jan. 7–11,
Cancun, Mexico
, pp.
207
210
.
249.
Liao
,
S.-K.
, and
Zhang
,
W.
, 2007, “
Dynamics of Nonlinear Fractional Differential Oscillator
,”
Journal of Vibration Engineering
,
20
(
5
), pp.
459
467
.
250.
He
,
J.-H.
, 1998, “
Approximate Analytical Solution for Seepage Flow With Fractional Derivatives in Porous Media
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
167
, pp.
57
68
.
251.
Seredynska
,
M.
, and
Hanyga
,
A.
, 2000, “
Nonlinear Hamiltonian Equations With Fractional Damping
,”
J. Math. Phys.
0022-2488,
41
(
4
), pp.
2135
2156
.
252.
Gao
,
X.
, and
Yu
,
J.
, 2005, “
Chaos in the Fractional Order Periodically Forced Complex Duffing’s Oscillators
,”
Chaos, Solitons Fractals
0960-0779,
24
, pp.
1097
1104
.
253.
Sheu
,
L. J.
,
Chen
,
H. K.
,
Chen
,
J. H.
, and
Tam
,
L. M.
, 2007, “
Chaotic Dynamics of the Fractionally Damped Duffing Equation
,”
Chaos, Solitons Fractals
0960-0779,
32
, pp.
1459
1468
.
254.
Chen
,
L. C.
, and
Zhu
,
W. Q.
, 2009, “
Stochastic Averaging of Strongly Nonlinear Oscillators With Small Fractional Derivative Damping Under Combined Harmonic and White Noise Excitations
,”
Nonlinear Dyn.
0924-090X,
56
(
3
), pp.
231
241
.
255.
Chen
,
L. C.
, and
Zhu
,
W. Q.
, 2009, “
Stochastic Stability of Duffing Oscillator With Fractional Derivative Damping Under Combined Harmonic and White Noise Parametric Excitations
,”
Acta Mech.
0001-5970,
207
(
1–2
), pp.
109
120
.
256.
Chen
,
L. C.
, and
Zhu
,
W. Q.
, 2009, “
The First Passage Failure of SDOF Strongly Nonlinear Stochastic System With Fractional Derivative Damping
,”
J. Vib. Control
1077-5463,
15
(
8
), pp.
1247
1266
.
257.
Huang
,
Z. L.
, and
Jin
,
X. L.
, 2009, “
Response and Stability of a SDOF Strongly Nonlinear Stochastic System With Light Damping Modeled by a Fractional Derivative
,”
J. Sound Vib.
0022-460X,
319
, pp.
1121
1135
.
258.
Atanackovic
,
T. M.
, and
Stankovic
,
B.
, 2008, “
On a Numerical Scheme for Solving Differential Equations of Fractional Order
,”
Mech. Res. Commun.
0093-6413,
35
, pp.
429
438
.
259.
Mickens
,
R. E.
,
Oyedeji
,
K. O.
, and
Rucker
,
S. A.
, 2003, “
Analysis of the Simple Harmonic Oscillator With Fractional Damping
,”
J. Sound Vib.
0022-460X,
268
, pp.
839
842
.
260.
Mickens
,
R. E.
, 2003, “
Fractional van der Pol Equations
,”
J. Sound Vib.
0022-460X,
259
, pp.
457
460
.
261.
Ramos
,
J. I.
, 2007, “
Piecewise-Linearized Methods for Oscillators With Fractional Power Nonlinearities
,”
J. Sound Vib.
0022-460X,
300
, pp.
502
521
.
262.
Terenzi
,
G.
, 1999, “
Dynamics of SDOF Systems With Nonlinear Viscous Damping
,”
J. Eng. Mech.
0733-9399,
125
, pp.
956
963
.
263.
Borowiec
,
M.
,
Litak
,
G.
, and
Syta
,
A.
, 2007, “
Vibration of the Duffing Oscillator: Effect of Fractional Damping
,”
Shock Vib.
1070-9622,
14
, pp.
29
36
.
264.
Litak
,
G.
,
Borowiec
,
M.
, and
Syta
,
A.
, 2007, “
Vibration of Generalized Double Well Oscillators
,”
ZAMM
0044-2267,
87
, pp.
590
602
.
265.
Rossikhin
,
Yu. A.
,
Shitikova
,
M. V.
, and
Shcheglova
,
T. A.
, 2008, “
Nonlinear Dynamics of a Fractionally Damped Oscillator
,”
Proceedings of the Tenth Pan American Congress of Applied Mechanics
, Jan. 7–11,
Cancun, Mexico
, pp.
223
226
.
266.
Qian
,
D.
, and
Hansen
,
J. S.
, 1995, “
Substructure Synthesis Method for Frequency Response of Viscoelastic Structures
,”
AIAA J.
0001-1452,
33
(
3
), pp.
520
527
.
267.
Wilson
,
A.
,
Enelund
,
M.
, and
Josefson
,
B. L.
, 1998, “
Dynamic Substructuring of Viscoelastic Structures With Fractional Derivatives Constitutive Relations
,”
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 39th, and AIAA/ASME/AHS Adaptive Structures Forum
,
Long Beach, CA
, Apr. 20–23, Collection of Technical Papers, Pt. 2 (A98-25092 06–39), pp.
1405
1414
.
268.
Alvelid
,
M.
, and
Enelund
,
M.
, 2007, “
Modelling of Constrained Thin Rubber Layer With Emphasis on Damping
,”
J. Sound Vib.
0022-460X,
300
, pp.
662
675
.
269.
Tan
,
X. M.
, and
Ko
,
J. M.
, 2004, “
Vibration Control of Long-Span Beams: Experimental and Analytical Study of Beam Structures Incorporated With Connection Dampers
,”
J. Vib. Control
1077-5463,
10
, pp.
707
730
.
270.
Bronowicki
,
A. J.
, 2006, “
Vibration Isolator for Large Space Telescopes
,”
J. Spacecr. Rockets
0022-4650,
43
(
1
), pp.
45
53
.
271.
Catania
,
G.
,
Sorrentino
,
S.
, and
Fasana
,
A.
, 2008, “
Condensation Technique for Finite Element Dynamic Analysis Using Fractional Derivative Viscoelastic Models
,”
J. Vib. Control
1077-5463,
14
(
9–10
), pp.
1573
1586
.
272.
Okada
,
R.
,
Nakata
,
N.
,
Spencer
,
B. F.
,
Kasai
,
K.
, and
Kim
,
S. B.
, 2006, “
Rational Polynomial Approximation Modelling for Analysis of Structures With VE Dampers
,”
J. Earthquake Eng.
1363-2469,
10
(
1
), pp.
97
125
.
273.
Horr
,
A. M.
, 2004, “
Nonlinear Spectral Dynamic Analysis of Guyed Towers. Part I: Theory
,”
Can. J. Civ. Eng.
0315-1468,
31
(
6
), pp.
1051
1060
.
274.
Horr
,
A. M.
,
Yibulayin
,
A.
, and
Disney
,
P.
, 2004, “
Nonlinear Spectral Dynamic Analysis of Guyed Towers. Part II: Manitoba Towers Case Study
,”
Can. J. Civ. Eng.
0315-1468,
31
(
6
), pp.
1061
1076
.
275.
Horr
,
A. M.
, and
Safi
,
M.
, 2002, “
Full Dynamic Analysis of Large Concrete Cooling Towers: Soil-Structure Interaction
,”
Int. J. Space Struct.
0956-0599,
17
(
4
), pp.
301
312
.
276.
Rüdinger
,
F.
, 2006, “
Tuned Mass Damper With Fractional Derivative Damping
,”
Eng. Struct.
0141-0296,
28
, pp.
1774
1779
.
277.
Gusella
,
V.
, and
Terenzi
,
G.
, 2001, “
Time-Dependent Analysis of Structures With Dampers Modelled by Fractional Derivatives
,”
Advances in Earthquake Engineering
,
9
, pp.
251
260
.
278.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 1999, “
Vibrations of a Hereditarily Elastic Two-Degree-of-Freedom Mechanical System Whose Heredity Properties Are Described by Fractional Derivatives
,”
Applied Mechanics in the Americas, Proceedings of the 6th Pan American Congress on Applied Mechanics
, Vol.
8
, pp.
1409
1412
.
279.
Hedrih (Stevanovic)
,
K.
, 2006, “
Modes of Homogeneous Chain Dynamics
,”
Signal Process.
0165-1684,
86
(
10
), pp.
2678
2702
.
280.
Haupt
,
P.
,
Lion
,
A.
, and
Backhaus
,
E.
, 2000, “
On the Dynamic Behaviour of Polymers Under Finite Strains: Constitutive Modelling and Identification of Parameters
,”
Int. J. Solids Struct.
0020-7683,
37
(
26
), pp.
3633
3646
.
281.
Haupt
,
P.
, and
Lion
,
A.
, 2002, “
On Finite Linear Viscoelasticity of Incompressible Isotropic Materials
,”
Acta Mech.
0001-5970,
159
, pp.
87
124
.
282.
Lion
,
A.
, and
Kardelky
,
C.
, 2004, “
The Payne Effect in Finite Viscoelasticity: Constitutive Modelling Based on Fractional Derivatives and Intrinsic Time Scales
,”
Int. J. Plast.
0749-6419,
20
, pp.
1313
1345
.
283.
Kari
,
L.
, 2003, “
A Nonlinear Dynamic Stiffness Model of a Vibration Isolator at Finite Deformations
,”
Mater. Sci. Forum
0255-5476,
440–441
, pp.
475
480
.
284.
Adolfsson
,
K.
, and
Enelund
,
M.
, 2003, “
Fractional Derivative Viscoelasticity at Large Deformations
,”
Nonlinear Dyn.
0924-090X,
33
(
3
), pp.
301
321
.
285.
Adolfsson
,
K.
, 2004, “
Nonlinear Fractional Order Viscoelsticity at Large Strains
,”
Nonlinear Dyn.
0924-090X,
38
, pp.
233
246
.
286.
Ramrakhyani
,
D. S.
,
Lesieutre
,
G. A.
, and
Smith
,
E. C.
, 2004, “
Modeling of Elastomeric Materials Using Nonlinear Fractional Derivative and Continuously Yielding Friction Elements
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3929
3948
.
287.
Deng
,
R.
,
Davies
,
P.
, and
Bajaj
,
A. K.
, 2006, “
A Nonlinear Fractional Derivative Model for Large Uni-Axial Deformation Behavior of Polyurethane Foam
,”
Signal Process.
0165-1684,
86
, pp.
2728
2743
.
288.
Weaver
,
W.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
, 1990,
Vibration Problems in Engineering
, 5th ed.,
Wiley
,
New York
.
289.
Gonsovkii
,
V. L.
, and
Rossikhin
,
Yu. A.
, 1973, “
Stress Waves in a Viscoelastic Medium With a Singular Hereditary Kernel
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
14
(
4
), pp.
595
597
.
290.
Belov
,
M. A.
, and
Bogdanovich
,
A. E.
, 1976, “
Numerical Inversion of Laplace Transform by the Method of Asymptotic Extension of the Interval in Dynamic Viscoelasticity Problems
,”
Mech. Compos. Mater.
0191-5665,
12
(
5
), pp.
762
768
.
291.
Shestopal
,
V. O.
, and
Goss
,
P. C.
, 1984, “
The Estimation of Column Creep Buckling Durability From the Initial Stages of Creep
,”
Acta Mech.
0001-5970,
52
, pp.
269
275
.
292.
Skaar
,
S. B.
,
Michel
,
A. N.
, and
Miller
,
R. K.
, 1988, “
Stability of Viscoelastic Control Systems
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
4
), pp.
348
357
.
293.
Schäfer
,
I.
, and
Seifert
,
H.-J.
, 2002, “
Description of the Impulse Response in Rods by Fractional Derivatives
,”
Z. Angew. Math. Mech.
0044-2267,
82
(
6
), pp.
423
427
.
294.
Hedrih (Stevanovic)
,
K.
, and
Filipovski
,
A.
, 2002, “
Longitudinal Creep Vibrations of a Fractional Derivative Order Rheological Rod With Variable Cross Section
,”
Facta Universitatis, Series: Mathematics, Automatic Control and Robotics
,
3
(
12
), pp.
327
349
.
295.
Lazopoulos
,
K. A.
, 2006, “
Non-Local Continuum Mechanics and Fractional Calculus
,”
Mech. Res. Commun.
0093-6413,
33
, pp.
753
757
.
296.
Makroglou
,
A.
,
Miller
,
R. K.
, and
Skaar
,
S.
, 1994, “
Computational Results for a Feedback Control for a Rotating Viscoelastic Beam
,”
J. Guid. Control Dyn.
0731-5090,
17
(
1
), pp.
84
90
.
297.
Baclic
,
B. S.
, and
Atanackovic
,
T. M.
, 2000, “
Stability and Creep of a Fractional Derivative Order Viscoelastic Rod
,”
Bulletin Cl Sci Nat Sci Math
,
25
, pp.
115
131
.
298.
Stankovic
,
B.
, and
Atanackovic
,
T. M.
, 2001, “
On a Model of a Viscoelastic Rod
,”
Fractional Calculus Appl. Anal.
1311-0454,
4
, pp.
501
522
.
299.
Atanackovic
,
T. M.
, and
Stankovic
,
B.
, 2002, “
Dynamics of a Viscoelastic Rod Made of Fractional Derivative Type
,”
ZAMM
0044-2267,
82
(
6
), pp.
377
386
.
300.
Stankovic
,
B.
, and
Atanackovic
,
T. M.
, 2002, “
Dynamics of a Rod Made of Generalized Kelvin-Voigt Visco-Elastic Material
,”
J. Math. Anal. Appl.
0022-247X,
268
(
2
), pp.
550
563
.
301.
Stankovic
,
B.
, 2002, “
A System of Partial Differential Equations With Fractional Derivatives
,”
Matematički Vesnik
,
54
(
3–4
), pp.
187
194
.
302.
Atanackovic
,
T. M.
, 2003, “
On a Distributed Derivative Model of a Viscoelastic Body
,”
C. R. Mec.
1631-0721,
331
(
10
), pp.
687
692
.
303.
Atanackovic
,
T. M.
, and
Stankovic
,
B.
, 2004, “
On a System of Differential Equations With Fractional Derivatives Arising in Rod Theory
,”
J. Phys. A
0305-4470,
37
, pp.
1241
1250
.
304.
Atanackovic
,
T. M.
, and
Stankovic
,
B.
, 2004, “
Stability of an Elastic Rod on a Fractional Derivative Type of Foundation
,”
J. Sound Vib.
0022-460X,
277
, pp.
149
161
.
305.
Stankovic
,
B.
, and
Atanackovic
,
T. M.
, 2004, “
On a Viscoelastic Rod With Constitutive Equation Containing Fractional Derivatives of Two Different Orders
,”
Math. Mech. Solids
1081-2865,
9
(
6
), pp.
629
656
.
306.
Atanackovic
,
T. M.
, and
Stankovic
,
B.
, 2006, “
Distribution-Valued Functions and Their Applications
,”
Integral Transforms Spec. Funct.
1065-2469,
17
(
2–3
), pp.
115
118
.
307.
Hedrih (Stevanovic)
,
K.
, 2006, “
The Transversal Creeping Vibrations of a Fractional Derivative Order Constitutive Relation of Nonhomogeneous Beam
,”
Math. Probl. Eng.
1024-123X,
2006
, pp.
1
18
.
308.
Liang
,
Z. F.
, and
Tang
,
X. Y.
, 2007, “
Analytical Solution of Fractionally Damped Beam by Adomian Decomposition Method
,”
Appl. Math. Mech.
0253-4827,
28
(
2
), pp.
219
228
.
309.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
, 2008, “
Dynamic Viscoelastic Rod Stability Modeling by Fractional Differential Operator
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
014502
.
310.
Belyaev
,
A. K.
, and
Beliaev
,
N. A.
, 2008, “
On Some Simple Mechanical Systems Governed by Differential Equations with Fractional Derivatives
,”
Proceedings of the Sixth EUROMECH Nonlinear Dynamics Conference
,
St. Petersburg, Russia
, Jun. 30–Jul. 4.
311.
Astaf’ev
,
V. I.
, and
Meshkov
,
S. I.
, 1970, “
Forced Oscillations of a Semi-Infinite Bar Made from a Nonlinear Hereditarily Material
,”
Mech. Solids
0025-6544,
5
(
4
), pp.
81
86
.
312.
Suvorova
,
Yu. V.
, and
Osokin
,
A. E.
, 1978, “
Propagation of One-Dimensional Waves through a Nonlinear Aftereffect Medium
,”
Mech. Solids
0025-6544,
14
(
3
), pp.
343
347
.
313.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2006, “
Analysis of Damped Vibrations of Linear Viscoelastic Plates With Damping Modeled With Fractional Derivatives
,”
Signal Process.
0165-1684,
86
, pp.
2703
2711
.
314.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
, 2008, “
Response of Viscoelastic Plate to Impact
,”
ASME J. Vibr. Acoust.
0739-3717,
130
, pp.
011010
.
315.
Hedrih (Stevanovic)
,
K.
, 2008, “
Dynamics of Coupled Systems
,”
Nonlinear Analysis: Hybrid Systems
,
2
, pp.
310
334
.
316.
Hedrih (Stevanovic)
,
K.
, 2008, “
Vibration Modes of an Axially Moving Double Belt System with Creep Layer
,”
J. Vib. Control
1077-5463,
14
(
9–10
), pp.
1333
1347
.
317.
Rossikhin
,
Yu. A.
,
Shitikova
,
M. V.
, and
Ovsjannikova
,
E. I.
, 2002, “
Fractional Derivative Analysis of Free Damped Vibrations of a Circular Cylindrical Shell
,”
Proceedings of the Fifth International Conference on Vibration Problems ICOVP-2001
,
IMASH
Moscow
, Oct. 8–10, pp.
378
381
.
318.
Phillips
,
J. W.
, and
Calvit
,
H. H.
, 1967, “
Impact of a Rigid Sphere on a Viscoelastic Plate
,”
ASME J. Appl. Mech.
0021-8936,
34
(
4
), pp.
873
878
.
319.
Hunter
,
S. C.
, 1960, “
The Hertz Problem for a Rigid Spherical Indenter and a Viscoelastic Half Space
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
219
234
.
320.
Zener
,
C.
, 1941, “
The Intrinsic Inelasticity of Large Plates
,”
Phys. Rev.
0031-899X,
59
, pp.
669
673
.
321.
Hammel
,
J.
, 1976, “
Aircraft Impact on a Spherical Shell
,”
Nucl. Eng. Des.
0029-5493,
37
, pp.
205
223
.
322.
Timoshenko
,
S. P.
, 1913, “
Zur Frage nach der Wirkung eines Stosses auf einen Balken
,”
Z. Angew. Math. Phys.
0044-2275,
62
(
1–4
), pp.
198
209
.
323.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2007, “
Transient Response of Thin Bodies Subjected to Impact: Wave Approach
,”
Shock Vib. Dig.
0583-1024,
39
(
4
), pp.
273
309
.
324.
Conway
,
H. D.
, and
Lee
,
H. C.
, 1970, “
Impact of an Indenter on a Large Plate.
,”
ASME J. Appl. Mech.
0021-8936,
37
, pp.
234
235
.
325.
Qian
,
Y.
, and
Swanson
,
S. R.
, 1990, “
A Comparison of Solution Techniques for Impact Response of Composite Plates
,”
Compos. Struct.
0263-8223,
14
, pp.
177
192
.
326.
Christoforou
,
A. P.
, and
Swanson
,
S. R.
, 1991, “
Analysis of Impact Response in Composite Plates
,”
Int. J. Solids Struct.
0020-7683,
27
, pp.
161
170
.
327.
Christoforou
,
A. P.
, and
Yigit
,
A. S.
, 1998, “
Effect of Flexibility on Low Velocity Impact Response
,”
J. Sound Vib.
0022-460X,
217
, pp.
563
578
.
328.
Gonsovkii
,
V. L.
,
Meshkov
,
S. I.
, and
Rossikhin
,
Yu. A.
, 1972, “
Impact of a Viscoelastic Rod onto a Rigid Target
,”
Sov. Appl. Mech.
0038-5298,
8
(
10
), pp.
1109
1113
.
329.
Ingman
,
D.
,
Suzdalnitsky
,
J.
, and
Zeifman
,
M.
, 2000, “
Constitutive Dynamic-Order Model for Nonlinear Contact Phenomena
,”
ASME J. Appl. Mech.
0021-8936,
67
(
2
), pp.
383
390
.
330.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
, 2005, “
Application of Differential Operator With Servo-Order Function in Model of Viscoelastic Deformation Process
,”
J. Eng. Mech.
0733-9399,
131
(
7
), pp.
763
767
.
331.
Atanackovic
,
T. M.
, and
Spasic
,
D. T.
, 2004, “
On Viscoelastic Compliant Contact-Impact Models
,”
ASME J. Appl. Mech.
0021-8936,
71
(
1
), pp.
134
138
.
332.
Atanackovic
,
T. M.
,
Oparnica
,
L.
, and
Pilipovic
,
S.
, 2006, “
On a Model of Viscoelastic Rod in Unilateral Contact With a Rigid Wall
,”
IMA J. Appl. Math.
0272-4960,
71
, pp.
1
13
.
333.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2008, “
Fractional-Derivative Viscoelastic Model of the Shock Interaction of a Rigid Body With a Plate
,”
J. Eng. Math.
0022-0833,
60
, pp.
101
113
.
334.
Abdel-Ghaffar
,
A. M.
, and
Rubin
,
L. I.
, 1983, “
Nonlinear Free Vibration of Suspension Bridge: Theory and Application
,”
J. Eng. Mech.
0733-9399,
109
(
1
), p.
313
345
.
335.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 1995, “
Effect of Viscosity on the Vibrational Processes in a Combined Suspension System
,”
Mech. Solids
0025-6544,
30
(
1
), pp.
157
166
.
336.
Neto
,
A. A. B.
, and
Rosa
,
E.
, 2008, “
Parametric Uncertainty Analysis Considering Metrological Aspects in the Structural Simulation in Viscoelastic Materials
,”
Latin American Journal of Solids and Structures
,
5
, pp.
75
95
.
337.
Rossikhin
,
Yu. A.
, 2010, “
Reflections on Two Parallel Ways in the Progress of Fractional Calculus in Mechanics of Solids
,”
Appl. Mech. Rev.
0003-6900,
63
(
1
), p.
010701
.
You do not currently have access to this content.