Modern military operations, technology-driven war tactics, and current on-street weapons and ammunition necessitate the development of advanced ballistic protection body armor systems that are damage-resistant, flexible, lightweight, and of great energy absorbing capacity. A number of studies related to new concepts and designs of body armor materials (including those derived from or inspired by nature) have been conducted in the past two decades to meet the new demands. Ballistic fabrics, ceramics, and laminated composites are among the leading materials used in modern body armor designs, and nano-particle and natural fiber filled composites are candidate materials for new-generation body armor systems. Properties and ballistic resistance mechanisms of such materials have been extensively investigated. Based on a comprehensive and critical review of the advances and findings resulting from these investigations, a comparative study on design, protection mechanisms, and performance evaluation of various types of anti-ballistic body armor is presented in this paper. Body armor systems made from different materials and exhibiting distinct ballistic energy absorption mechanisms are discussed, and key factors that influence the ballistic performance and energy absorbing mechanisms of the body armor systems are identified.

1.
Starley
,
D.
, 1999, “
Determining the Technological Origins of Iron and Steel
,”
J. Archeol. Sci.
,
26
, pp.
1127
1133
.
2.
Scales
,
R. H.
, 2006, “
Clausewitz and World War IV
,” Armed Forces J., retrieved Feb. 11, 2008, http://www.armedforcesjournal.com/2006/07/1866019http://www.armedforcesjournal.com/2006/07/1866019.
3.
NIJ
, 2001, “
Selection and Application Guide to Personal Body Armor
,” NIJ Guide 100–01, U.S. Department of Justice.
4.
Barauskas
,
R.
, and
Abraitiene
,
A.
, 2007, “
Computational Analysis of Impact of a Bullet Against the Multilayer Fabrics in LS-DYNA
,”
Int. J. Impact Eng.
0734-743X,
34
, pp.
1286
1305
.
5.
Colakoglu
,
M.
,
Soykasap
,
O.
, and
Özek
,
T.
, 2007, “
Experimental and Numerical Investigations on the Ballistic Performance of Polymer Matrix Composites Used in Armor Design
,”
Appl. Compos. Mater.
0929-189X,
14
, pp.
47
58
.
6.
Gao
,
X. -L.
, and
Mall
,
S.
, 2000, “
A Two-Dimensional Rule-of-Mixtures Micromechanics Model for Woven Fabric Composites
,”
J. Compos. Technol. Res.
0884-6804,
22
, pp.
60
70
.
7.
Barauskas
,
R.
, 2005, “
Combining Mezzo- and Macro-Mechanical Approaches in a Computational Model of a Ballistic Impact Upon Textile Targets
,”
Proceedings of the Fifth WSEAS International Conference on Simulation, Modeling and Optimization
, Corfu, Greece, Aug. 17–19, pp.
427
432
.
8.
Tan
,
V. B. C.
,
Tay
,
T. E.
, and
Teo
,
W. K.
, 2005, “
Strengthening Fabric Armour With Silica Colloidal Suspensions
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
1561
1576
.
9.
Zeng
,
X. S.
,
Shim
,
V. P. W.
, and
Tan
,
V. B. C.
, 2005, “
Influence of Boundary Conditions on the Ballistic Performance of High-Strength Fabric Targets
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
631
642
.
10.
Nadler
,
B.
, and
Steigmann
,
D. J.
, 2003, “
A Model for Frictional Slip in Woven Fabrics
,”
C. R. Mec.
1631-0721,
331
, pp.
794
804
.
11.
Duan
,
Y.
,
Keefe
,
M.
,
Bogetti
,
T. A.
, and
Cheeseman
,
B. A.
, 2005, “
Modeling the Role of Friction During Ballistic Impact of a High-Strength Plain-Weave Fabric
,”
Compos. Struct.
0263-8223,
68
, pp.
331
337
.
12.
Duan
,
Y.
,
Keefe
,
M.
,
Bogetti
,
T. A.
,
Cheeseman
,
B. A.
, and
Powers
,
B.
, 2006, “
A Numerical Investigation of the Influence of Friction on Energy Absorption by a High-Strength Fabric Subjected to Ballistic Impact
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
1299
1312
.
13.
Zeng
,
X. S.
,
Tan
,
V. B. C.
, and
Shim
,
V. P. W.
, 2006, “
Modeling Inter-Yarn Friction in Woven Fabric Armour
,”
Int. J. Numer. Methods Eng.
0029-5981,
66
, pp.
1309
1330
.
14.
Cheeseman
,
B. A.
, and
Bogetti
,
T. A.
, 2003, “
Ballistic Impact Into Fabric and Compliant Composite Laminates
,”
Compos. Struct.
0263-8223,
61
, pp.
161
173
.
15.
Ulven
,
C.
,
Vaidya
,
U. K.
, and
Hosur
,
M. V.
, 2003, “
Effect of Projectile Shape During Ballistic Perforation of VARTM Carbon/Epoxy Composite Panels
,”
Compos. Struct.
0263-8223,
61
, pp.
143
150
.
16.
Briscoe
,
B. J.
, and
Motamedi
,
F.
, 1992, “
The Ballistic Impact Characteristics of Aramid Fabrics: The Influence of Interface Friction
,”
Wear
0043-1648,
158
, pp.
229
247
.
17.
Boubaker
,
B. B.
,
Haussy
,
B.
, and
Ganghoffer
,
J. -F.
, 2007, “
Consideration of the Yarn–Yarn Interactions in Meso/Macro Discrete Model of Fabric Part II: Woven Fabric Under Uniaxial and Biaxial Extension
,”
Mech. Res. Commun.
0093-6413,
34
, pp.
371
378
.
18.
Lim
,
C. T.
,
Shim
,
V. P. W.
, and
Ng
,
Y. H.
, 2003, “
Finite-Element Modeling of the Ballistic Impact of Fabric Armor
,”
Int. J. Impact Eng.
0734-743X,
28
, pp.
13
31
.
19.
Shim
,
V. P. W.
,
Lim
,
C. T.
, and
Foo
,
K. J.
, 2001, “
Dynamic Mechanical Properties of Fabric Armor
,”
Int. J. Impact Eng.
0734-743X,
25
, pp.
1
15
.
20.
Gehring
,
G. G.
, Jr.
, 2000, “
Blunt Trauma Reduction Fabric for Body Armor
,” U.S. Patent No. 6,103,641, Aug. 15.
21.
Magat
,
E. E.
, 1980, “
Fibres From Extended Chain Aromatic Polyamides
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
294
, pp.
463
472
.
22.
Lee
,
Y. S.
,
Wetzel
,
E. D.
, and
Wagner
,
N. J.
, 2003, “
The Ballistic Impact Characteristics of Kevlar Woven Fabrics Impregnated With Colloidal Shear Thickening Fluid
,”
J. Mater. Sci.
0022-2461,
38
, pp.
2825
2833
.
23.
NIST
, 2001, “
Ballistic Resistance of Personal Body Armor (Revision A)
,” NIJ Standard–0101.04, coordinated by for NIJ, U.S. Department of Justice.
24.
1997, V50 Ballistic Test for Armor, MIL-STD-662F Standard, Department of Defense Test Method Standard.
25.
Holmes
,
G. A.
,
Rice
,
K.
, and
Snyder
,
C. R.
, 2006, “
Ballistic Fibers: A Review of the Thermal, Ultraviolet and Hydrolytic Stability of the Benzoxazole Ring Structure
,”
J. Mater. Sci.
0022-2461,
41
, pp.
4105
4116
.
26.
Chin
,
J.
,
Forster
,
A.
,
Clerici
,
C.
,
Sung
,
L.
,
Oudina
,
M.
, and
Rice
,
K.
, 2007, “
Temperature and Humidity Aging of Poly(P-Phenylene-2,6-Benzobisoxazole) Fibers: Chemical and Physical Characterization
,”
Polym. Degrad. Stab.
0141-3910,
92
, pp.
1234
1246
.
27.
Tamargo-Martinez
,
K.
,
Villar-Rodil
,
S.
,
Paredes
,
J. I.
,
Montes-Moran
,
M. A.
,
Martinez-Alonso
,
A.
, and
Tascon
,
J. M. D.
, 2004, “
Thermal Decomposition of Poly(P-Phenylene Benzobisoxazole) Fibres: Monitoring the Chemical and Nanostructural Changes by Raman Spectroscopy and Scanning Probe Microscopy
,”
Polym. Degrad. Stab.
0141-3910,
86
, pp.
263
268
.
28.
Bourbigot
,
S.
,
Flambard
,
X.
, and
Poutch
,
F.
, 2001, “
Study of the Thermal Degradation of High Performance Fibres—Application to Polybenzazole and P-Aramid Fibres
,”
Polym. Degrad. Stab.
0141-3910,
74
, pp.
283
290
.
29.
Cervenka
,
A. J.
,
Young
,
R. J.
, and
Kueseng
,
K.
, 2005, “
Micromechanical Phenomena During Hygrothermal Ageing of Model Composites Investigated by Raman Spectroscopy. Part II: Comparison of the Behaviour of PBO and M5 Fibres Compared With Twaron
,”
Composites, Part A
1359-835X,
36
, pp.
1020
1026
.
30.
Said
,
M. A.
,
Dingwall
,
B.
,
Gupta
,
A.
,
Seyam
,
A. M.
,
Mock
,
G.
, and
Theyson
,
T.
, 2006, “
Investigation of Ultra Violet (UV) Resistance for High Strength Fibers
,”
Adv. Space Res.
0273-1177,
37
, pp.
2052
2058
.
31.
Wilhelm
,
M.
, and
Bir
,
C.
, 2008, “
Injuries to Law Enforcement Officers: The Backface Signature Injury
,”
Forensic Sci. Int.
0379-0738,
174
, pp.
6
11
.
32.
Deng
,
M.
,
Latour
,
R. A.
,
Drews
,
M. J.
, and
Shalaby
,
S. W.
, 1996, “
Effects of Gamma Irradiation, Irradiation Environment, and Postirradiation Aging on Thermal and Tensile Properties of Ultrahigh Molecular Weight Polyethylene Fibers
,”
J. Appl. Polym. Sci.
0021-8995,
61
, pp.
2075
2084
.
33.
dos Santos Alves
,
A. L.
,
Cassiano Nascimento
,
L. F.
, and
Miguez Suarez
,
J. C.
, 2005, “
Influence of Weathering and Gamma Irradiation on the Mechanical and Ballistic Behavior of UHMWPE Composite Armor
,”
Polym. Test.
0142-9418,
24
, pp.
104
113
.
34.
Bender
,
J.
, and
Wagner
,
N. J.
, 1996, “
Reversible Shear Thickening in Monodisperse and Bidisperse Colloidal Dispersions
,”
J. Rheol.
0148-6055,
40
, pp.
899
916
.
35.
Lee
,
Y. S.
, and
Wagner
,
N. J.
, 2003, “
Dynamic Properties of Shear Thickening Colloidal Suspensions
,”
Rheol. Acta
0035-4511,
42
, pp.
199
208
.
36.
Ahmad
,
M. R.
,
Wan Yunus
,
W. A.
,
Salleh
,
J.
, and
Samsuri
,
A.
, 2007, “
Performance of Natural Rubber Coated Fabrics Under Ballistic Impact
,”
Malaysian Polymer Journal
,
24
, pp.
39
51
.
37.
Walker
,
J. D.
, 2001, “
Ballistic Limit of Fabrics With Resin
,”
Proceedings of the 19th International Symposium on Ballistics
,
I. R.
Crewther
, ed.,
RUAG Land Systems
,
Thun, Switzerland
, Vol.
3
, pp.
1409
1414
.
38.
Cunniff
,
P. M.
, 1999, “
Decoupled Response of Textile Body Armor
,”
Proceedings of the 18th International Symposium of Ballistics
,
W. G.
Reinecke
, ed.,
CRC
,
Boca Raton, FL
, Vol.
1
, pp.
814
821
.
39.
Egres
,
R. G.
, Jr.
,
Decker
,
M. J.
,
Halbach
,
C. J.
,
Lee
,
Y. S.
,
Kirkwood
,
J. E.
,
Kirkwood
,
K. M.
,
Wagner
,
N. J.
, and
Wetzel
,
E. D.
, 2004, “
Stab Resistance of Shear Thickening Fluid (STF)–Kevlar Composites for Body Armor Applications
,”
Proceedings of the 24th Army Science Conference
, Orlando, FL, Nov. 29–Dec. 2.
40.
Roylance
,
D.
,
Chammas
,
P.
,
Ting
,
J.
,
Chi
,
H.
, and
Scott
,
B.
, 1995, “
Numerical Modeling of Fabric Impact
,”
Proceedings of the National Meeting of the American Society of Mechanical Engineers
, San Francisco, CA, Oct.
41.
Lee
,
B. L.
,
Walsh
,
T. F.
,
Won
,
S. T.
,
Patts
,
H. M.
,
Song
,
J. W.
, and
Mayer
,
A. H.
, 2001, “
Penetration Failure Mechanisms of Armor-Grade Fiber Composites Under Impact
,”
J. Compos. Mater.
0021-9983,
35
, pp.
1605
1633
.
42.
Silva
,
M. A. G.
,
Cismaşiu
,
C.
, and
Chiorean
,
C. G.
, 2003, “
Low Velocity Impact on Laminates Reinforced With Polyethylene and Aramidic Fibres
,”
Proceedings of the Ninth International Conference on Enhancement and Promotion of Computational Methods in Engineering and Science
,
V. P.
Lu
,
L. N.
Lamas
,
Y. -P.
Li
, and
K. M.
Mok
, eds.,
Taylor & Francis
,
London, UK
, pp.
843
851
.
43.
Katangur
,
P.
,
Patra
,
P. K.
, and
Warner
,
S. B.
, 2006, “
Nanostructured Ultraviolet Resistant Polymer Coatings
,”
Polym. Degrad. Stab.
0141-3910,
91
, pp.
2437
2442
.
44.
Miravete
,
A.
, 1999,
3-D Textile Reinforcements in Composites Materials
,
Woodhead Publishing Limited
,
Cambridge, UK
, p.
2
.
45.
Grogan
,
J.
,
Tekalur
,
S. A.
,
Shukla
,
A.
,
Bogdanovich
,
A.
, and
Coffelt
,
R. A.
, 2007, “
Ballistic Resistance of 2D and 3D Woven Sandwich Composites
,”
J. Sandwich Struct. Mater.
,
9
, pp.
283
302
.
46.
Naik
,
N. K.
,
Shrirao
,
P.
, and
Reddy
,
B. C. K.
, 2006, “
Ballistic Impact Behaviour of Woven Fabric Composites: Formulation
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
1521
1552
.
47.
Wang
,
X.
,
Hu
,
B.
,
Feng
,
Y.
,
Liang
,
F.
,
Mo
,
J.
,
Xiong
,
J.
, and
Qiu
,
Y.
, 2008, “
Low Velocity Impact Properties of 3D Woven Basalt/Aramid Hybrid Composites
,”
Compos. Sci. Tech.
,
68
, pp.
444
450
.
48.
Wynne
,
R. C.
, 1998, “
Flexible, Lightweight, Compound Body Armor
,” U.S. Patent No. 5,804,757, Sept. 8.
49.
Price
,
A. L.
,
Erb
,
D. F.
, Jr.
, and
Ritter
,
E. D.
, 2006, “
B2: Enhanced Energy Absorbing Materials
,” U.S. Patent No. 7,101,818, Sept. 5.
50.
Shockey
,
D. A.
,
Marchand
,
A. H.
,
Skaggs
,
S. R.
,
Cort
,
G. E.
,
Burkett
,
M. W.
, and
Parker
,
R.
, 1990, “
Failure Phenomenology of Confined Ceramic Targets and Impacting Rods
,”
Int. J. Impact Eng.
0734-743X,
9
, pp.
263
275
.
51.
Zhang
,
X.
, and
Mai
,
Y. -W.
, 1997, “
Damage Wave Propagation in Elastic-Brittle Materials
,”
Proceedings of the IUTAM Symposium on Rheology of Bodies With Defects
,
R.
Wang
, ed.,
Springer
,
New York
, Vol.
64
, pp.
179
190
.
52.
Chen
,
W. W.
,
Rajendran
,
A. M.
,
Song
,
B.
, and
Nie
,
X.
, 2007, “
Dynamic Fracture of Ceramics in Armor Applications
,”
J. Am. Ceram. Soc.
0002-7820,
90
, pp.
1005
1018
.
53.
Sarva
,
S.
,
Nemat-Nasser
,
S.
,
McGee
,
J.
, and
Isaacs
,
J.
, 2007, “
The Effect of Thin Membrane Restraint on the Ballistic Performance of Armor Grade Ceramic Tiles
,”
Int. J. Impact Eng.
0734-743X,
34
, pp.
277
302
.
54.
LaSalvia
,
J. C.
,
Horwath
,
E. J.
,
Rapacki
,
E. J.
,
James Shih
,
C.
, and
Meyers
,
M. A.
, 2001, “
Microstructural and Micromechanical Aspects of Ceramic/Long-Rod Projectile Interactions: Dwell/Penetration Transitions
,”
Proceedings of the Explomet 2000
,
K. P.
Staudhammer
,
L. E.
Murr
, and
M. A.
Meyers
, eds.,
Elsevier Science
,
New York
, pp.
437
446
.
55.
LaSalvia
,
J. C.
,
Normandia
,
M. J.
,
Miller
,
H. T.
, and
MacKenzie
,
D. E.
, 2005, “
Sphere Impact Induced Damage in Ceramics: I. Armor-Grade SiC And TiB2
,”
Ceram. Eng. Sci. Proc.
0196-6219,
26
, pp.
171
181
.
56.
Chen
,
M.
,
McCauley
,
J. W.
, and
Hemker
,
K. J.
, 2003, “
Shock-Induced Localized Amorphization in Boron Carbide
,”
Science
0036-8075,
299
, pp.
1563
1566
.
57.
Normandia
,
M. J.
, 2004, “
Impact Response and Analysis of Several Silicon Carbides
,”
Int. J. Appl. Ceram. Technol.
1546-542X,
1
, pp.
226
234
.
58.
Hauver
,
G. E.
,
Rapacki
,
E. J.
,
Netherwood
,
P. H.
, and
Benck
,
R. F.
, 2005, “
Interface Defeat of Long-Rod Projectiles by Ceramic Armor
,” U.S. Army Research Laboratory, Report No. ARL-TR-3950.
59.
Doyoyo
,
M.
, 2003, “
Experiments on the Penetration of Thin Long-Rod Projectiles Into Thick Long-Cylindrical Borosilicate Targets Under Pressure-Free Polycarbonate, Aluminum and Steel Confinements
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
5455
5475
.
60.
Kaufmann
,
C.
,
Cronin
,
D.
,
Worswick
,
M.
,
Pageau
,
G.
, and
Beth
,
A.
, 2003, “
Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armor
,”
Shock Vib.
1070-9622,
10
, pp.
51
58
.
61.
Moynihan
,
T. J.
,
Chou
,
S. -C.
, and
Mihalcin
,
A. L.
, 2000, “
Application of the Depth-of-Penetration Test Methodology to Characterize Ceramics for Personnel Protection
,” U.S. Army Research Laboratory, Report No. ARL-TR-2219.
62.
Ray
,
R. D.
,
Flinders
,
M.
,
Anderson
,
A.
, and
Cutler
,
R. A.
, 2003, “
Hardness/Toughness Relationship for SiC Armor
,”
J. Am. Ceram. Soc.
0002-7820,
24
(
3
), pp.
401
410
.
63.
Zhang
,
J.
,
Huang
,
R.
,
Gu
,
H.
,
Jiang
,
D.
,
Lin
,
Q.
, and
Huang
,
Z.
, 2005, “
High Toughness in Laminated SiC Ceramics From Aqueous Tape Casting
,”
Scr. Mater.
1359-6462,
52
, pp.
381
385
.
64.
Flinders
,
M.
,
Ray
,
R. D.
,
Anderson
,
A.
, and
Cutler
,
R. A.
, 2005, “
High-Toughness Silicon Carbide as Armor
,”
J. Am. Ceram. Soc.
0002-7820,
88
, pp.
2217
2226
.
65.
Marsh
,
G.
, 2005, “
Composites Fight for Share of Military Applications
,”
J. Reinf. Plast. Compos.
0731-6844,
49
(
5
), pp.
18
22
.
66.
Jovicic
,
J.
,
Zavaliangos
,
A.
, and
Ko
,
F.
, 2000, “
Modeling of the Ballistic Behavior of Gradient Design Composite Armors
,”
Composites, Part A
1359-835X,
31
, pp.
773
784
.
67.
Hogg
,
P. J.
, 2006, “
Composites in Armor
,”
Science
0036-8075,
314
, pp.
1100
1101
.
68.
Arias
,
A.
,
Zaera
,
R.
,
Lopez-Puente
,
J.
, and
Navarro
,
C.
, 2003, “
Numerical Modeling of the Impact Behavior of New Particulate-Loaded Composite Materials
,”
Compos. Struct.
0263-8223,
61
, pp.
151
159
.
69.
Clegg
,
R. A.
,
White
,
D. M.
,
Hayhurst
,
C.
,
Ride
,
W.
,
Harwick
,
W.
, and
Hiermaierl
,
S.
, 2003, “
Advanced Numerical Models and Material Characterization Techniques for Composite Materials Subject to Impact and Shock Wave Loading
,”
J. Phys. France
,
110
, pp.
311
316
.
70.
Mahdi
,
E.
,
Hamouda
,
A. S. M.
,
Mokhtar
,
A. S.
, and
Majid
,
D. L.
, 2005, “
Many Aspects to Improve Damage Tolerance of Collapsible Composite Energy Absorber Devices
,”
Compos. Struct.
0263-8223,
67
, pp.
175
187
.
71.
Khalid
,
A. A.
, 2006, “
The Effect of Testing Temperature and Volume Fraction on Impact Energy of Composites
,”
Mater. Des.
0264-1275,
27
, pp.
499
506
.
72.
Ivanov
,
I.
, and
Tabiei
,
A.
, 2004, “
Loosely Woven Fabric Model With Viscoelastic Crimped Fibres for Ballistic Impact Simulations
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
1565
1583
.
73.
Grujicic
,
M.
,
Pandurangan
,
B.
,
Zecevic
,
U.
,
Koudela
,
K. L.
, and
Cheeseman
,
B. A.
, 2007, “
Ballistic Performance of Alumina/S-2 Glass Reinforced Polymer-Matrix Composite Hybrid Lightweight Armor Against Armor Piercing (AP) and Non-AP Projectiles
,”
Multidiscipline Modeling in Materials and Structures
,
3
, pp.
287
312
.
74.
Mustafa Ubeyli
,
R.
,
Yıldırım
,
O.
, and
Ogel
,
B.
, 2007, “
On the Comparison of the Ballistic Performance of Steel and Laminated Composite Armors
,”
Mater. Des.
0264-1275,
28
, pp.
1257
1262
.
75.
Wilkins
,
M. L.
, 1978, “
Mechanics of Penetration and Perforation
,”
Int. J. Eng. Sci.
0020-7225,
16
, pp.
793
807
.
76.
Woodward
,
R. L.
, 1990, “
A Simple One-Dimensional Approach to Modeling Ceramic Composite Armor Defeat
,”
Int. J. Impact Eng.
0734-743X,
9
, pp.
455
474
.
77.
Vermeeren
,
C. A. J. R.
, 2003, “
An Historic Overview of the Development of Fibre Metal Laminates
,”
Appl. Compos. Mater.
0929-189X,
10
, pp.
189
205
.
78.
Vogelesang
,
L. B.
,
Verbruggen
,
M. L. C. E.
, and
Paalvast
,
C. G.
, 1989, “
Armour Plate Composite With Ceramic Impact Layer
,” U.S. Patent No. 4,836,084, Jun. 6.
79.
Vogelesang
,
L. B.
, and
Roebrocks
,
G. H. J. J.
, 1991, “
Metal-Resin Laminate Reinforced With S2-Glass Fibres
,” U.S. Patent No. 5,039,571, Aug. 13.
80.
Schaeffler
,
P.
,
Rajner
,
W.
,
Claar
,
D.
,
Trendelenburg
,
T.
, and
Nishimura
,
H.
, 2005, “
Production, Properties, and Applications of Alulight® Closed-Cell Aluminum Foams
,”
Proceedings of the Fifth International Workshop on Advanced Manufacturing Technologies
, London, Canada, May 16–18, pp.
151
156
.
81.
Yu
,
C. -J.
,
Claar
,
T. D.
,
Eifert
,
H. H.
,
Gama
,
B. A.
,
Gillespie
,
J. W.
, Jr.
,
Bogetti
,
T. A.
, and
Fink
,
B. K.
, 2001, “
Application of Porous Metal Foams in Hybrid Armor Systems
,”
Proceedings of Explomet 2000
,
K. P.
Staudhammer
,
L. E.
Murr
, and
M. A.
Meyers
, eds.,
Elsevier Science
,
New York
, pp.
429
436
.
82.
Gama
,
B. A.
,
Bogetti
,
T. A.
,
Fink
,
B. K.
,
Yu
,
C. -J.
,
Claar
,
T. D.
,
Eifert
,
H. H.
, and
Gillespie
,
J. W.
, Jr.
, 2001, “
Aluminum Foam Integral Armor: A New Dimension in Armor Design
,”
Compos. Struct.
0263-8223,
52
, pp.
381
395
.
83.
Lane
,
R. A.
, 2005, “
High Performance Fibers for Personnel and Vehicle Armor Systems: Putting a Stop to Current and Future Threats
,”
AMPTIAC Quarterly
,
9
(
2
), pp.
3
9
.
84.
Bonsignore
,
E.
, ed., 2006, “
Body Armour—Technological Issues
,”
Military Technology
,
30
(
4
), pp.
72
79
.
85.
2003, “
New Fibers Could Lighten Body Armor
,” SSC-Natick Press Release, U.S. Army Soldier Systems Center-Natick, retrieved Feb. 14, 2008, http://www.m5fiber.com/magellan/about_m5.htmhttp://www.m5fiber.com/magellan/about_m5.htm.
86.
McConnell
,
V. P.
, 2006, “
Ballistic Protection Materials: A Moving Target
,”
J. Reinf. Plast. Compos.
0731-6844,
50
(
11
), pp.
20
25
.
87.
Faur-Csukat
,
G.
, 2006, “
A Study on the Ballistic Performance of Composites
,”
Macromol. Symp.
1022-1360,
239
, pp.
217
226
.
88.
Sabet
,
A. R.
,
Beheshty
,
M. H.
, and
Rahimi
,
H.
, 2008, “
High Velocity Impact Behavior of GRP Panels Containing Coarse-Sized Sand Filler
,”
Polym. Compos.
0272-8397,
29
, pp.
932
938
.
89.
Thaumaturgo
,
C.
, and
Da Costa
,
A. M.
, Jr.
, 1997, “
Shock-Waves on Polymer Composites
,”
J. Mater. Sci. Lett.
0261-8028,
16
, pp.
1480
1482
.
90.
Coppage
,
E. A.
, 1997, “
Anti-Ballistic Protective Composite Fabric
,” U.S. Patent No. 5,660,913, Aug. 26.
91.
Njuguna
,
J.
,
Pielichowski
,
K.
, and
Desai
,
S.
, 2008, “
Nanofiller-Reinforced Polymer Nanocomposites
,”
Polym. Adv. Technol.
1042-7147,
19
, pp.
947
959
.
92.
Hsieh
,
A. J.
,
Song
,
J. W.
,
Nebo
,
J.
, and
Singh
,
A.
, 2001, “
Ballistic Impact Measurements of Polycarbonate Layered-Silicate Nanocomposites
,”
ANTEC 2001 Conference Proceedings
,
Society of Plastic Engineers
,
CT
, pp.
2185
2190
.
93.
Song
,
J. W.
, and
Hsieh
,
A. J.
, 2002, “
Ballistic Impact Resistance of Monolithic, Hybrid and Nanocomposites of PC and PMMA
,”
Proceedings of the American Society for Composites, 17th Technical Conference
,
C. T.
Sun
and
H.
Kim
, eds.,
Purdue University
,
West Lafayette, IN
, Oct. 21–23.
94.
Sands
,
J. M.
,
Patel
,
P. J.
,
Dehmer
,
P. G.
,
Hsieh
,
A. J.
, and
Boyce
,
M. C.
, 2004, “
Protecting the Future Force: Transparent Materials Safeguard the Army’s Vision
,”
Advanced Materials and Processes Technology Information Analysis Center (AMPTIAC) Quarterly
,
8
(
4
), pp.
28
36
.
95.
Liff
,
S. M.
,
Kumar
,
N.
, and
McKinley
,
G. H.
, 2007, “
High-Performance Elastomeric Nanocomposites Via Solvent-Exchange Processing
,”
Nature Mater.
1476-1122,
6
, pp.
76
83
.
96.
Grujicic
,
M.
,
Pandurangan
,
B.
,
Angstadt
,
D. C.
,
Koudela
,
K. L.
, and
Cheeseman
,
B. A.
, 2007, “
Ballistic-Performance Optimization of a Hybrid Carbon-Nanotube/E-Glass Reinforced Poly-Vinyl-Ester-Epoxy-Matrix Composite Armor
,”
J. Mater. Sci.
0022-2461,
42
, pp.
5347
5359
.
97.
Baughman
,
R. H.
,
Zakhidov
,
A. A.
, and
de Heer
,
W. A.
, 2002, “
Carbon Nanotubes—The Route Toward Applications
,”
Science
0036-8075,
297
, pp.
787
792
.
98.
Qian
,
L.
, and
Hinestroza
,
J. P.
, 2004, “
Application of Nanotechnology for High Performance Textiles
,”
Journal of Textile and Apparel, Technology and Management
,
4
, pp.
1
7
.
99.
Harris
,
P. J. F.
, 2004, “
Carbon Nanotube Composites
,”
Int. Mater. Rev.
0950-6608,
49
, pp.
31
43
.
100.
Thostenson
,
E. T.
,
Li
,
C.
, and
Chou
,
T. -W.
, 2005, “
Nanocomposites in Context
,”
Compos. Sci. Technol.
0266-3538,
65
, pp.
491
516
.
101.
Hiroaki
,
M.
,
Manjusri
,
M.
, and
Mohanty
,
A. K.
, 2005, “
Mechanical Properties of Carbon Nanotubes and Their Polymer Nanocomposites
,”
J. Nanosci. Nanotechnol.
1533-4880,
5
, pp.
593
1615
.
102.
Mylvaganam
,
K.
, and
Zhang
,
L. C.
, 2007 “
Ballistic Resistance Capacity of Carbon Nanotubes
,”
Nanotechnology
0957-4484,
18
, p.
475701
.
103.
Koziol
,
K.
,
Vilatela
,
J.
,
Moisala
,
A.
,
Motta
,
M.
,
Cunniff
,
P.
,
Sennett
,
M.
, and
Windle
,
A.
, 2007, “
High-Performance Carbon Nanotube Fiber
,”
Science
0036-8075,
318
, pp.
1892
1895
.
104.
Zhang
,
M.
,
Atkinson
,
K. R.
, and
Baughman
,
R. H.
, 2004, “
Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology
,”
Science
0036-8075,
306
, pp.
1358
1361
.
105.
Reneker
,
D. H.
, and
Chun
,
I.
, 1996, “
Nanometre Diameter Fibres of Polymer, Produced by Electrospinning
,”
Nanotechnology
0957-4484,
7
, pp.
216
223
.
106.
Thompson
,
C. J.
,
Chase
,
G. G.
,
Yarin
,
A. L.
, and
Reneker
,
D. H.
, 2007, “
Effects of Parameters on Nanofiber Diameter Determined From Electrospinning Model
,”
Polymer
0032-3861,
48
, pp.
6913
6922
.
107.
Dalton
,
A. B.
,
Collins
,
S.
,
Razal
,
J.
,
Munoz
,
E.
,
Ebron
,
V. H.
,
Kim
,
B. G.
,
Coleman
,
J. N.
,
Ferraris
,
J. P.
, and
Baughman
,
R. H.
, 2004, “
Continuous Carbon Nanotube Composite Fibers: Properties, Potential Applications, and Problems
,”
J. Mater. Chem.
0959-9428,
14
, pp.
1
3
.
108.
Motta
,
M.
,
Li
,
Y. -L.
,
Kinloch
,
I.
, and
Windle
,
A.
, 2005, “
Mechanical Properties of Continuously Spun Fibers of Carbon Nanotubes
,”
Nano Lett.
1530-6984,
5
, pp.
1529
1533
.
109.
Li
,
Y. -L.
,
Kinloch
,
I. A.
, and
Windle
,
A. H.
, 2004, “
Direct Spinning of Carbon Nanotube Fibers From Chemical Vapor Deposition Synthesis
,”
Science
0036-8075,
304
, pp.
276
278
.
110.
Motta
,
M.
,
Kinloch
,
I.
,
Moisala
,
A.
,
Premnath
,
V.
,
Pick
,
M.
, and
Windle
,
A.
, 2007, “
The Parameter Space for the Direct Spinning of Fibers and Films of Carbon Nanotubes
,”
Physica E (Amsterdam)
1386-9477,
37
, pp.
40
43
.
111.
Yu
,
Z.
,
Ait-Kadi
,
A.
, and
Brisson
,
J.
, 1991, “
Nylon/Kevlar Composites I: Mechanical Properties
,”
Polym. Eng. Sci.
0032-3888,
31
, pp.
1222
1227
.
112.
Salehi-Mobarakeh
,
H.
,
Nakata
,
S.
,
Ait-Kadi
,
A.
, and
Brisson
,
J.
, 2007, “
Kevlar and Glass Fiber Treatment for Thermoplastic Composites by Step Polycondensation
,”
Polym. Compos.
0272-8397,
28
, pp.
278
286
.
113.
Haggenmueller
,
R.
,
Du
,
F.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
, 2006, “
Interfacial In Situ Polymerization of Single Wall Carbon Nanotube/Nylon 6,6 Nanocomposites
,”
Polymer
0032-3861,
47
, pp.
2381
2388
.
114.
Moniruzzaman
,
M.
,
Chattopadhyay
,
J.
,
Billups
,
W. E.
, and
Winey
,
K. I.
, 2007, “
Tuning the Mechanical Properties of SWNT/Nylon 6,10 Composites With Flexible Spacers at the Interface
,”
Nano Lett.
1530-6984,
7
, pp.
1178
1185
.
115.
Mahfuz
,
H.
,
Adnan
,
A.
,
Rangari
,
V. K.
,
Hasan
,
M. M.
,
Jeelani
,
S.
,
Wright
,
W. J.
and
DeTeresa
,
S. J.
, 2006, “
Enhancement of Strength and Stiffness of Nylon 6 Filaments through Carbon Nanotubes Reinforcement
,”
Appl. Phys. Lett.
0003-6951,
88
, pp.
083119
.
116.
Terrones
,
M.
, 2003, “
Science and Technology of the Twenty First Century: Synthesis, Properties and Applications of Carbon Nanotubes
,”
Annu. Rev. Mater. Res.
1531-7331,
33
, pp.
419
501
.
117.
Tenne
,
R.
,
Remškar
,
M.
,
Enyashin
,
A.
, and
Seifert
,
G.
, 2008, “
Inorganic Nanotubes and Fullerene-Like Structures (IF)
,”
Top. Appl. Phys.
0303-4216,
111
, pp.
631
671
.
118.
Tsirlina
,
T.
,
Feldman
,
Y.
,
Homyonfer
,
M.
,
Sloan
,
J.
,
Hutchison
,
J. L.
, and
Tenne
,
R.
, 1998, “
Synthesis and Characterization of Inorganic Fullerene-Like WSe2 Material
,”
Fullerenes, Nanotubes, Carbon Nanostruct.
1536-383X,
6
, pp.
157
165
.
119.
Rapoport
,
L.
,
Fleischer
,
N.
, and
Tenne
,
R.
, 2005, “
Applications of WS2 (MoS2) Inorganic Nanotubes and Fullerene-Like Nanoparticles for Solid Lubrication and for Structural Nanocomposites
,”
J. Mater. Chem.
0959-9428,
15
, pp.
1782
1788
.
120.
Zhu
,
Y. Q.
,
Sekine
,
T.
,
Li
,
Y. H.
,
Wang
,
W. X.
,
Fay
,
M. W.
,
Edwards
,
H.
,
Brown
,
P. D.
,
Fleischer
,
N.
and
Tenne
,
R.
, 2005, “
WS2 and MoS2
Inorganic Fullerenes-Super Shock Absorbers at Very High Pressures,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
17
, pp.
1500
1503
.
121.
Zhu
,
Y. Q.
,
Sekine
,
T.
,
Li
,
Y. H.
,
Fay
,
M. W.
,
Zhao
,
Y. M.
,
Patrick Poa
,
C. H.
,
Wang
,
W. X.
,
Roe
,
M. J.
,
Brown
,
P. D.
,
Fleischer
,
N.
, and
Tenne
,
R.
, 2005, “
Shock-Absorbing and Failure Mechanisms of WS2 and MoS2 Nanoparticles With Fullerene-Like Structures Under Shock Wave Pressure
,”
J. Am. Chem. Soc.
0002-7863,
127
, pp.
16263
16272
.
122.
Jang
,
J. -H.
,
Ullal
,
C. K.
,
Choi
,
T.
,
Lemieux
,
M. C.
,
Tsukruk
,
V. V.
, and
Thomas
,
E. L.
, 2006, “
3D Polymer Microframes That Exploit Length-Scale-Dependent Mechanical Behavior
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
18
, pp.
2123
2127
.
123.
Cunniff
,
P. M.
,
Fossey
,
S. A.
,
Auerbach
,
M. A.
,
Song
,
J. W.
,
Kaplan
,
D. L.
,
Wade Adams
,
W.
,
Eby
,
R. K.
,
Mahoney
,
D.
, and
Vezie
,
D. L.
, 1994, “
Mechanical and Thermal Properties of Dragline Silk From the Spider Nephila Clavipes
,”
Polym. Adv. Technol.
1042-7147,
5
, pp.
401
410
.
124.
Laible
,
R. C.
, 1980, “
Fibrous Armour
,”
Ballistic Materials and Penetration Mechanics
,
R. C.
Laible
, ed.,
Elsevier Applied Science
,
New York
, pp.
73
115
.
125.
Massachusetts Institute of Technology
, 2007, “
Spider Silk Inspires Strong and Stretchy Nanocomposite Fibers
,” retrieved Oct. 20, 2008, http://www.sciencedaily.com /releases/2007/01/070119115103.htmhttp://www.sciencedaily.com /releases/2007/01/070119115103.htm.
126.
Bruet
,
B. J. F.
,
Song
,
J.
,
Boyce
,
M. C.
, and
Ortiz
,
C.
, 2008, “
Materials Design Principles of Ancient Fish Armour
,”
Nature Mater.
1476-1122,
7
, pp.
748
756
.
127.
Vlassak
,
J. J.
,
Ciavarella
,
M.
,
Barber
,
J. R.
, and
Wang
,
X.
, 2003, “
The Indentation Modulus of Elastically Anisotropic Materials for Indenters of Arbitrary Shape
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
1701
1721
.
128.
Mohanty
,
A. K.
,
Misra
,
M.
, and
Drzal
,
L. T.
, 2002, “
Sustainable Bio-Composites From Renewable Resources: Opportunities and Challenges in the Green Materials World
,”
J. Polym. Environ.
1566-2543,
10
, pp.
19
26
.
129.
Netravali
,
A. N.
, and
Chabba
,
S.
, 2003, “
Composites Get Greener
,”
Mater. Today
1369-7021,
6
, pp.
22
29
.
130.
Pervaiz
,
M.
, and
Sain
,
M. M.
, 2003, “
Carbon Storage Potential in Natural Fiber Composites
,”
Resour. Conserv. Recycl.
0921-3449,
39
, pp.
325
340
.
131.
Joshi
,
S. V.
,
Drzal
,
L. T.
,
Mohanty
,
A. K.
, and
Arora
,
S.
, 2004, “
Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites?
,”
Composites, Part A
1359-835X,
35
, pp.
371
376
.
132.
John
,
M. J.
, and
Thomas
,
S.
, 2008, “
Biofibers and Biocomposites
,”
Carbohydr. Polym.
0144-8617,
71
, pp.
343
364
.
133.
Taj
,
S.
,
Munawar
,
M. A.
, and
Khan
,
S. U.
, 2007, “
Review: Natural Fiber-Reinforced Polymer Composites
,”
The Proceedings of the Pakistan Academy of Sciences
,
44
, pp.
129
144
.
134.
Garcıa
,
M.
,
Garmendia
,
I.
, and
Garcıa
,
J.
, 2008, “
Influence of Natural Fiber Type in Eco-Composites
,”
J. Appl. Polym. Sci.
0021-8995,
107
, pp.
2994
3004
.
135.
Panthapulakkal
,
S.
, and
Sain
,
M.
, 2007, “
Studies on the Water Absorption Properties of Short Hemp—Glass Fiber Hybrid Polypropylene Composites
,”
J. Compos. Mater.
0021-9983,
41
, pp.
1871
1883
.
136.
Thwe
,
M. M.
, and
Liao
,
K.
, 2002, “
Effects of Environmental Aging on the Mechanical Properties of Bamboo-Glass Fiber Reinforced Polymer Matrix Hybrid Composites
,”
Composites, Part A: Appl. Sci. Manuf.
,
33
, pp.
43
52
.
137.
Costa
,
F. H. M. M.
, and
D’Almeida
,
J. R. M.
, 1999, “
Effect of Water Absorption on the Mechanical Properties of Sisal and Jute Fiber Composites
,”
Polym.-Plast. Technol. Eng.
0360-2559,
38
, pp.
1081
1094
.
138.
Joseph
,
K.
,
Thomas
,
S.
, and
Pavithran
,
C.
, 1995, “
Effect of Ageing on the Physical and Mechanical Properties of Sisal-Fiber-Reinforced Polyethylene Composites
,”
Compos. Sci. Tech.
,
53
, pp.
99
110
.
139.
Mukhopadhyay
,
S.
, and
Srikanta
,
R.
, 2008, “
Effect of Ageing of Sisal Fibers on Properties of Sisal-Polypropylene Composites
,”
Polym. Degrad. Stab.
0141-3910,
93
, pp.
2048
2051
.
140.
Sombatsompop
,
N.
, and
Chaochanchaikul
,
K.
, 2004, “
Effect of Moisture Content on Mechanical Properties, Thermal and Structural Stability and Extrudate Texture of Poly(Vinyl Chloride)/Wood Sawdust Composites
,”
Polym. Int.
0959-8103,
53
, pp.
1210
1218
.
141.
Santulli
,
C.
, 2001, “
Post-Impact Damage Characterisation on Natural Fibre Reinforced Composites Using Acoustic Emission
,”
NDT & E Int.
,
34
, pp.
531
536
. 0963-8695
142.
Ray
,
A. K.
,
Das
,
S. K.
, and
Pathak
,
L. C.
, 2003, “
Synthesis of Silicon Carbide Mats Using Natural Fibers
,”
Mater. Lett.
0167-577X,
57
, pp.
1120
1123
.
143.
Ahmad
,
I.
,
Chin
,
T. S.
,
Cheong
,
C. K.
,
Jalar
,
A.
,
Abdullah
,
I.
, 2005, “
Study of Fiber Surface Treatment on Reinforcement/Matrix Interaction in Twaron Fiber/ENR Composites
,”
Am. J. App. Sci.
(special issue), pp.
14
20
.
144.
Silva
,
R. V.
,
Spinelli
,
D.
,
Bose Filho
,
W. W.
,
Claro Neto
,
S.
,
Chierice
,
G. O.
, and
Tarpani
,
J. R.
, 2006, “
Fracture Toughness of Natural Fibers/Castor Oil Polyurethane Composites
,”
Compos. Sci. Tech.
,
66
, pp.
1328
1335
.
145.
Dhakal
,
H. N.
,
Zhang
,
Z. Y.
,
Richardson
,
M. O. W.
, and
Errajhi
,
O. A. Z.
, 2007, “
The Low Velocity Impact Response of Non-Woven Hemp Fibre Reinforced Unsaturated Polyester Composites
,”
Compos. Struct.
0263-8223,
81
, pp.
559
567
.
146.
Wambua
,
P.
,
Vangrimde
,
B.
,
Lomov
,
S.
, and
Verpoest
,
I.
, 2007, “
The Response of Natural Fiber Composites to Ballistic Impact by Fragment Simulating Projectiles
,”
Compos. Struct.
0263-8223,
77
, pp.
232
240
.
147.
Risby
,
M. S.
,
Wong
,
S. V.
,
Hamouda
,
A. M. S.
,
Khairul
,
A. R.
, and
Elsadig
,
M.
, 2008, “
Ballistic Performance of Coconut Shell Powder/Twaron Fabric Against Non-Armour Piercing Projectiles
,”
Def. Sci. J.
0011-748X,
58
, pp.
248
263
.
You do not currently have access to this content.