The present paper provides details on the new trends in application of asymptotic homogenization techniques to the analysis of composite materials and thin-walled composite structures and their effective properties. The problems under consideration are important from both fundamental and applied points of view. We review a state-of-the-art in asymptotic homogenization of composites by presenting the variety of existing methods, by pointing out their advantages and shortcomings, and by discussing their applications. In addition to the review of existing results, some new original approaches are also introduced. In particular, we analyze a possibility of analytical solution of the unit cell problems obtained as a result of the homogenization procedure. Asymptotic homogenization of 3D thin-walled composite reinforced structures is considered, and the general homogenization model for a composite shell is introduced. In particular, analytical formulas for the effective stiffness moduli of wafer-reinforced shell and sandwich composite shell with a honeycomb filler are presented. We also consider random composites; use of two-point Padé approximants and asymptotically equivalent functions; correlation between conductivity and elastic properties of composites; and strength, damage, and boundary effects in composites. This article is based on a review of 205 references.

1.
Willis
,
J. R.
, 1983, “
The Overall Elastic Response of Composite Materials
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
50
, pp.
1202
1209
.
2.
Buryachenko
,
V. A.
, 2001, “
Multiparticle Effective Field and Related Methods in Micromechanics of Composite Materials
,”
Appl. Mech. Rev.
,
54
, pp.
1
47
. 0003-6900
3.
Markov
,
K. Z.
, 2000, “
Elementary Micromechanics of Heterogeneous Media
,”
Heterogeneous Media: Micromechanics Modeling Methods and Simulations
,
K. Z.
Markov
and
L.
Preziozi
, eds.,
Birkhäuser
,
Boston
, pp.
1
162
.
4.
Bakhvalov
,
N.
, and
Panasenko
,
G.
, 1989,
Averaging Processes in Periodic Media: Mathematical Problems in Mechanics of Composite Materials
,
Kluwer
,
Dordrecht
.
5.
Kalamkarov
,
A. L.
, 1992,
Composite and Reinforced Elements of Construction
,
Wiley
,
Chichester, NY
.
6.
Bensoussan
,
A.
,
Lions
,
J. -L.
, and
Papanicolaou
,
G.
, 1978,
Asymptotic Methods in Periodic Structures
,
North-Holland
,
Amsterdam
.
7.
Panasenko
,
G. P.
, 2005,
Multi-Scale Modeling for Structures and Composites
,
Springer
,
Berlin
.
8.
Awrejcewicz
,
J.
,
Andrianov
,
I. V.
, and
Manevitch
,
L. I.
, 1998,
Asymptotic Approaches in Nonlinear Dynamics: New Trends and Applications
,
Springer
,
Berlin
.
9.
Dal Maso
,
G.
, 1993,
An Introduction to 2–4 at. %-Convergence
,
Birkhäuser
,
Boston
.
10.
Oleynik
,
O. A.
,
Shamaev
,
A. S.
, and
Yosifian
,
G. A.
, 1992,
Mathematical Problems in Elasticity and Homogenization
,
North-Holland
,
Amsterdam
.
11.
V.
Berdichevsky
,
V.
Jikov
, and
G.
Papanicolaou
, eds., 1999,
Homogenization
,
World Scientific
,
Singapore
.
12.
Tartar
,
L.
, 1990, “
H-Measure, A New Approach for Studying Homogenization, Oscillation and Concentration Effects in Partial Differential Equations
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math.
0308-2105,
115
, pp.
193
230
.
13.
Allaire
,
G.
, and
Conca
,
C.
, 1998, “
Boundary Layers in the Homogenization of a Spectral Problem in Fluid-Solid Structures
,”
SIAM J. Math. Anal.
,
29
(
2
), pp.
343
379
. 0036-1410
14.
Conca
,
C.
, and
Lund
,
F.
, 1999, “
Fourier Homogenization Method and the Propagation of Acoustic Waves Through a Periodic Vortex Array
,”
SIAM J. Appl. Math.
0036-1399,
59
(
5
), pp.
1573
1581
.
15.
Lagzdins
,
A. Zh.
,
Tamuzh
,
V. P.
,
Teters
,
G. A.
, and
Kregers
,
A. F.
, 1992,
Orientational Averaging in Mechanics of Solids
,
Longman Scientific and Technical
,
Essex, UK
/
Wiley
,
New York
.
16.
Dorobantu
,
M.
, and
Enquist
,
B.
, 1998, “
Wavelet-Based Numerical Homogenization
,”
SIAM J. Math. Anal.
,
35
(
2
), pp.
540
559
. 0036-1410
17.
Pilipchuk
,
V. N.
, and
Starushenko
,
G. A.
, 1997, “
A Version of Non-Smooth Transformations of Variables for One-Dimensional Elastic Systems of Periodic Structures
,”
J. Appl. Math. Mech.
,
61
(
2
), pp.
265
274
. 0021-8928
18.
Milton
,
G. W.
, 2002,
The Theory of Composites
,
Cambridge University Press
,
Cambridge
.
19.
Andrianov
,
I. V.
,
Awrejcewicz
,
J.
, and
Manevitch
,
L. I.
, 2004,
Asymptotical Mechanics of Thin-Walled Structures: A Handbook
,
Springer
,
Berlin
.
20.
Berlin
,
A. A.
,
Wolfson
,
S. A.
,
Oshmyan
,
V. G.
, and
Enikolopyan
,
N. S.
, 1990,
Principles for Polymer Composites Design
,
Chemistry
,
Moscow
, in Russian.
21.
Manevitch
,
L. I.
,
Andrianov
,
I. V.
, and
Oshmyan
,
V. G.
, 2002,
Mechanics of Periodically Heterogeneous Structures
,
Springer
,
Berlin
.
22.
Pobedrya
,
B. Ye.
, 1984,
Mechanics of Composite Materials
,
Moscow State University Press
,
Moscow
, in Russian.
23.
Sanchez-Palencia
,
E.
, 1980,
Non-Homogeneous Media and Vibration Theory
,
Springer
,
Berlin
.
24.
Bakhvalov
,
N. S.
, and
Eglit
,
M. E.
, 1995, “
The Limiting Behavior of Periodic Media With Soft Media Inclusions
,”
Comput. Math. Math. Phys.
,
35
(
6
), pp.
719
730
. 0965-5425
25.
Bakhvalov
,
N. S.
, and
Eglit
,
M. E.
, 2001,
Homogenization of Some Multiparametric Problems
(
Analysis and Application, ISAAC 2001
),
Kluwer
,
Dordrecht
, pp.
31
49
.
26.
Allaire
,
G.
, 1992, “
Homogenization and Two-Scale Convergence
,”
SIAM J. Math. Anal.
0036-1410,
23
, pp.
1482
1518
.
27.
Zhikov
,
V. V.
, 2000, “
On an Extension of the Method of Two-Scale Convergence and Its Applications
,”
Mat. Sb.
0368-8666,
191
(
7
), pp.
973
1014
.
28.
Bouchitté
,
G.
, and
Bellieud
,
M.
, 2002, “
Homogenization of a Soft Elastic Material Reinforced by Fibers
,”
Asymptotic Anal.
,
32
, pp.
153
183
. 0003-2638
29.
Camar-Eddine
,
M.
, and
Milton
,
G. W.
, 2004, “
Non-Local Interactions in the Homogenization Closure if Thermoelastic Functional
,”
Asymptotic Anal.
,
41
, pp.
259
276
. 0003-2638
30.
Cherednichenko
,
K. D.
, 2006, “
Two-Scale Asymptotics for Non-Local Effects in Composites With Highly Anisotropic Fibres
,”
Asymptotic Anal.
,
49
, pp.
39
59
. 0003-2638
31.
Cherednichenko
,
K. D.
,
Smyshlyaev
,
V. P.
, and
Zhikov
,
V. V.
, 2006, “
Non-Local Homogenized Limits for Composite Media With Highly Anisotropic Periodic Fibres
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math.
0308-2105,
136
, pp.
87
114
.
32.
Smyshlyaev
,
V. P.
, and
Cherednichenko
,
K. D.
, 2000, “
On Derivation of Strain Gradient Effects in the Overall Behaviour of Periodic Heterogeneous Media
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
1325
1357
.
33.
Kalamkarov
,
A. L.
, 1987, “
On the Determination of Effective Characteristics of Cellular Plates and Shells of Periodic Structure
,”
Mech. Solids
0025-6544,
22
, pp.
175
179
.
34.
Kalamkarov
,
A. L.
, 1989, “
The Thermoelasticity Problem for Structurally Nonuniform Shells of Regular Structure
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
30
, pp.
981
988
.
35.
Kalamkarov
,
A. L.
, and
Kolpakov
,
A. G.
, 1997,
Analysis, Design and Optimization of Composite Structures
,
Wiley
,
Chichester, NY
.
36.
Kalamkarov
,
A. L.
, and
Kolpakov
,
A. G.
, 1996, “
On the Analysis and Design of Fiber Reinforced Composite Shells
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
63
(
4
), pp.
939
945
.
37.
Andrianov
,
I. V.
,
Danishevs’kyy
,
V. V.
, and
Kalamkarov
,
A. L.
, 2007, “
Asymptotic Justification of the Three-Phase Composite Model
,”
Compos. Struct.
,
77
(
3
), pp.
395
404
. 0263-8223
38.
Christensen
,
R. M.
, 2005,
Mechanics of Composite Materials
,
Dover
,
New York
.
39.
Christensen
,
R. M.
, and
Lo
,
K. H.
, 1979, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
0022-5096,
27
, pp.
315
330
.
40.
Kalamkarov
,
A. L.
, and
Liu
,
H. Q.
, 1998, “
A New Model for the Multiphase Fiber-Matrix Composite Materials
,”
Composites, Part B
1359-8368,
29
(
5
), pp.
643
653
.
41.
Bruggeman
,
D. A. G.
, 1935, “
Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielecktrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen
,”
Ann. Phys.
0003-3804,
416
(
7
), pp.
636
664
.
42.
Bruggeman
,
D. A. G.
, 1935, “
Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielecktrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen
,”
Ann. Phys.
0003-3804,
416
(
8
), pp.
665
679
.
43.
Kalamkarov
,
A. L.
, and
Georgiades
,
A. V.
, 2002, “
Modeling of Smart Composites on Account of Actuation, Thermal Conductivity and Hygroscopic Absorption
,”
Composites, Part B
1359-8368,
33
(
2
), pp.
141
152
.
44.
Jiang
,
C. P.
,
Xu
,
Y. L.
,
Cheung
,
Y. K.
, and
Lo
,
S. H.
, 2004, “
A Rigorous Method for Doubly Periodic Cylindrical Inclusions Under Longitudinal Shear and Its Applications
,”
Mech. Mater.
,
36
, pp.
225
237
. 0167-6636
45.
Rodríguez-Ramos
,
R.
,
Sabina
,
F. J.
,
Guinovart-Díaz
,
R.
, and
Bravo-Castillero
,
J.
, 2001, “
Closed-Form Expressions for the Effective Coefficients of Fibre-Reinforced Composite With Transversely Isotropic Constituents. I. Elastic and Square Symmetry
,”
Mech. Mater.
,
33
, pp.
223
235
. 0167-6636
46.
Sabina
,
F. J.
,
Bravo-Castillero
,
J.
,
Rodríguez-Ramos
,
R.
,
Guinovart-Díaz
,
R.
, and
Valdiviezo-Mijangos
,
O. C.
, 2002, “
Overal Behavior of Two-Dimensional Periodic Composites
,”
Int. J. Solids Struct.
,
39
, pp.
483
497
. 0020-7683
47.
Guinovart-Díaz
,
R.
,
Rodríguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
,
Sabina
,
F. J.
,
Otero-Hernández
,
J. A.
, and
Maugin
,
G. A.
, 2005, “
A Recursive Asymptotic Homogenization Scheme for Multi-Fibrous Elastic Composites
,”
Mech. Mater.
,
37
, pp.
1119
1131
. 0167-6636
48.
Bakhvalov
,
N. S.
,
Bogachev
,
K. Yu.
, and
Eglit
,
M. E.
, 1996, “
Numerical Calculation of Effective Elastic Moduli for Incompressible Porous Material
,”
Mech. Compos. Mater.
0191-5665,
32
(
5
), pp.
579
587
.
49.
Guz'
,
A. N.
, and
Nemish
,
Yu. N.
, 1987, “
Perturbation of Boundary Shape in Continuum Mechanics
,”
Sov. Appl. Mech.
,
23
(
9
), pp.
799
822
. 0038-5298
50.
Andrianov
,
I. V.
,
Bolshakov
,
V. I.
,
Danishevs’kyy
,
V. V.
, and
Weichert
,
D.
, 2007, “
Asymptotic Simulation of Imperfect Bonding in Periodic Fibre-Reinforced Composite Materials Under Axial Shear
,”
Int. J. Mech. Sci.
,
49
(
3
), pp.
1344
1354
. 0020-7403
51.
Andrianov
,
I. V.
,
Danishevs’kyy
,
V. V.
, and
Kalamkarov
,
A. L.
, 2008, “
Micromechanical Analysis of Fiber-Reinforced Composites on Account of Influence of Fiber Coatings
,”
Composites, Part B
1359-8368,
39
(
5
), pp.
874
881
.
52.
Andrianov
,
I. V.
,
Danishevs’kyy
,
V. V.
,
Guillet
,
A.
, and
Pareige
,
Ph.
, 2005, “
Effective Properties and Micro-Mechanical Response of Filamentary Composite Wires Under Longitudinal Shear
,”
Eur. J. Mech. A/Solids
0997-7538,
24
, pp.
195
206
.
53.
Fil’shtinskii
,
L. A.
, and
Bardzokas
,
D.
, 1995, “
Averaging the Electrical Properties of Fiber-Reinforced Metal Composites
,”
Mech. Compos. Mater.
0191-5665,
31
(
4
), pp.
390
396
.
54.
Fil’shtinskii
,
L. A.
, and
Bardzokas
,
D.
, 1997, “
Averaging the Electrical Properties of Fiber-Reinforced Metal Composites With Hollow Fibers
,”
Mech. Compos. Mater.
0191-5665,
33
(
3
), pp.
269
274
.
55.
Fil’shtinskii
,
L. A.
, and
Shramko
,
Yu. V.
, 1998, “
Averaging the Physical Properties of Fibrous Piezocomposites
,”
Mech. Compos. Mater.
0191-5665,
34
(
1
), pp.
87
93
.
56.
Grigolyuk
,
E. I.
, and
Fil’shtinskii
,
L. A.
, 1990,
Perforated Plates and Shells
,
Nauka
,
Moscow
, in Russian.
57.
Grigolyuk
,
E. I.
, and
Fil’shtinskii
,
L. A.
, 1992,
Periodic Piecewise Homogeneous Elastic Structures
,
Nauka
,
Moscow
, in Russian.
58.
Grigolyuk
,
E. I.
, and
Fil’shtinskii
,
L. A.
, 1994,
Regular Piecewise Homogeneous Structures With Defects
,
Fizmatlit
,
Moscow
, in Russian.
59.
Mol’kov
,
V. A.
, and
Pobedrya
,
B. Ye.
, 1985, “
Effective Characteristics of a Unidirectional Fiber Composite With a Periodic Structure
,”
Mech. Solids
0025-6544,
20
(
2
), pp.
117
127
.
60.
Berdichevsky
,
V. L.
, 1983,
Variational Principles of the Continuum Mechanics
,
Nauka
,
Moscow
, in Russian.
61.
Frankel
,
N. A.
, and
Acrivos
,
A.
, 1967, “
On the Viscosity of a Concentrated Suspension of Solid Spheres
,”
Chem. Eng. Sci.
0009-2509,
22
, pp.
847
853
.
62.
Lukkassen
,
D.
,
Meidell
,
A.
, and
Vigdergauz
,
Sh.
, 2003, “
On the Elastic Deformation of Symmetric Periodic Structures
,”
Q. J. Mech. Appl. Math.
0033-5614,
56
(
3
), pp.
441
454
.
63.
Baker
,
G. A.
, and
Graves-Morris
,
P.
, 1996,
Padé Approximants
,
Cambridge University Press
,
Cambridge
.
64.
Perrins
,
W. T.
,
McKenzie
,
D. R.
, and
McPhedran
,
R. C.
, 1979, “
Transport Properties of Regular Arrays of Cylinders
,”
Proc. R. Soc. London, Ser. A
,
369
, pp.
207
225
. 0080-4630
65.
O’Brien
,
R. W.
, 1977, “
Properties of Suspensions of Interacting Particles
,” Ph.D. thesis, University of Cambridge, Cambridge.
66.
Bergman
,
D. J.
, 1978, “
The Dielectric Constant of a Composite Material—A Problem in Classical Physics
,”
Phys. Rep., Phys. Lett.
0370-1573,
43
(
9
), pp.
377
407
.
67.
May
,
S.
,
Tokarzewski
,
S.
,
Zachara
,
A.
, and
Cichocki
,
B.
, 1994, “
Continued Fraction Representation for the Effective Thermal Conductivity Coefficient of a Periodic Two Component Composite
,”
Int. J. Heat Mass Transfer
,
37
, pp.
2165
2173
. 0017-9310
68.
Telega
,
J. J.
,
Tokarzewski
,
S.
, and
Galka
,
A.
, 2000, “
Effective Conductivity of Nonlinear Two-Phase Media: Homogenization and Two-Point Padé Approximants
,”
Acta Appl. Math.
,
61
, pp.
295
315
. 0167-8019
69.
Tokarzewski
,
S.
, 1996, “
Two-Point Padé Approximants for the Expansions of Stieltjes Functions in Real Domain
,”
J. Comput. Appl. Math.
,
67
, pp.
59
72
. 0377-0427
70.
Tokarzewski
,
S.
, 1996, “
N-Point Padé Approximants to Real-Valued Stieltjes Series With Non-Zero Radii of Convergence
,”
J. Comput. Appl. Math.
,
75
, pp.
259
280
. 0377-0427
71.
Tokarzewski
,
S.
, and
Andrianov
,
I. V.
, 2001, “
Effective Coefficients for Real Non-Linear and Fictitious Linear Temperature-Dependent Periodic Composites
,”
Int. J. Non-Linear Mech.
0020-7462,
36
(
1
), pp.
187
195
.
72.
Tokarzewski
,
S.
,
Blawzdziewicz
,
J.
, and
Andrianov
,
I. V.
, 1994, “
Two-Point Padé Approximants for Formal Stieltjes Series
,”
Numer. Algorithms
1017-1398,
8
, pp.
313
328
.
73.
Tokarzewski
,
S.
,
Blawzdziewicz
,
J.
, and
Andrianov
,
I. V.
, 1994, “
Effective Conductivity for Densely Packed Highly Conducting Cylinders
,”
Appl. Phys. A
0721-7250,
59
, pp.
601
604
.
74.
Tokarzewski
,
S.
,
Galka
,
A.
, and
Andrianov
,
I. V.
, 1997, “
Bounds on the Effective Transport Coefficients of Two-Phase Media From Discrete Theoretical and Experimental Data
,”
Comp. Assist. Mech. Eng. Sc.
1232-308X,
4
, pp.
229
241
.
75.
Tokarzewski
,
S.
, and
Telega
,
J. J.
, 1996, “
S-Continued Fraction to Complex Transport Coefficients of Two-Phase Composites
,”
Comp. Assist. Mech. Eng. Sc.
1232-308X,
3
, pp.
109
119
.
76.
Tokarzewski
,
S.
, and
Telega
,
J. J.
, 1996, “
Two-Point Padé Approximants to Stieltjes Series Representations of Bulk Moduli of Regular Composites
,”
Comp. Assist. Mech. Eng. Sc.
1232-308X,
3
, pp.
121
132
.
77.
Tokarzewski
,
S.
, and
Telega
,
J. J.
, 1997, “
S-Continued Fraction Method for the Investigation of a Complex Dielectric Constant of Two-Phase Composite
,”
Acta Appl. Math.
,
49
, pp.
55
83
. 0167-8019
78.
Tokarzewski
,
S.
,
Telega
,
J. J.
,
Pindor
,
M.
, and
Gilewicz
,
J.
, 2003, “
A Note on Total Bounds on Complex Transport Moduli of Parametric Two-Phase Media
,”
ZAMP
,
54
, pp.
713
726
. 0044-2275
79.
McPhedran
,
R. C.
,
Poladian
,
L.
, and
Milton
,
G. W.
, 1988, “
Asymptotic Studies of Closely Spaced Highly Conducting Cylinders
,”
Proc. R. Soc. London, Ser. A
,
415
, pp.
185
196
. 0080-4630
80.
Slepyan
,
L. I.
, and
Yakovlev
,
Yu. S.
, 1980,
Integral Transforms in the Nonstationary Problems of Mechanics
,
Sudostroyenie
,
Leningrad
, in Russian.
81.
Andrianov
,
I. V.
,
Danishevs’kyy
,
V. V.
, and
Tokarzewski
,
S.
, 1996, “
Two-Point Quasifractional Approximants for Effective Conductivity of a Simple Cubic Lattice of Spheres
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
11
), pp.
2349
2352
.
82.
Andrianov
,
I. V.
,
Danishevs’kyy
,
V. V.
, and
Tokarzewski
,
S.
, 2000, “
Quasifractional Approximants for Effective Conductivity of a Regular Arrays of Spheres
,”
Acta Appl. Math.
,
61
, pp.
29
35
. 0167-8019
83.
Andrianov
,
I. V.
,
Starushenko
,
G. A.
, and
Danishevs’kyy
,
V. V.
, 1999, “
Asymptotic Determination of the Thermal Conductivity of a Pile Field
,”
Soil Mech. Found. Eng. (Engl. Transl.)
,
36
(
1
), pp.
31
36
. 0038-0741
84.
Andrianov
,
I. V.
,
Schevchenko
,
V. V.
, and
Kholod
,
E. G.
, 1995, “
Asymptotic Methods in the Statics and Dynamics of Perforated Plates and Shells With Periodic Structure
,”
Technische Mechanik
,
15
(
2
), pp.
141
157
.
85.
Andrianov
,
I. V.
,
Starushenko
,
G. A.
, and
Tokarzewski
,
S.
, 1998, “
Homogenization Procedure and Padé Approximants in the Theory of Composite Materials With Parallelepiped Inclusions
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
1
), pp.
175
181
.
86.
Andrianov
,
I. V.
,
Starushenko
,
G. A.
, and
Tokarzewski
,
S.
, 1999, “
Torsion of a Non-Homogeneous Bar With Periodic Parallelepiped Inclusions
,”
Technische Mechanik
,
19
(
1
), pp.
5
12
.
87.
Andrianov
,
I. V.
,
Starushenko
,
G. A.
,
Danishevs’kyy
,
V. V.
, and
Tokarzewski
,
S.
, 1999, “
Homogenization Procedure and Padé Approximants for Effective Heat Conductivity of Composite Materials With Cylindrical Inclusions Having Square Cross-Sections
,”
Proc. R. Soc. London, Ser. A
1364-5021,
455
, pp.
3401
3413
.
88.
Tokarzewski
,
S.
,
Andrianov
,
I. V.
, and
Danishevs’kyy
,
V. V.
, 1997, “
The Investigation of a Complex Conductivity of Regular Arrays of Spheres
,”
Theoretical Foundations of Civil Engineering: Warsaw University of Technology
,
5
, pp.
414
425
.
89.
Tokarzewski
,
S.
,
Andrianov
,
I. V.
, and
Danishevs’kyy
,
V. V.
, 2001, “
Parametric Complex Bounds on Effective Transport Coefficients of Two-Phase Media
,”
Theoretical Foundations of Civil Engineering: Warsaw University of Technology
,
9
, pp.
431
440
.
90.
Tokarzewski
,
S.
,
Andrianov
,
I. V.
,
Danishevs’kyy
,
V. V.
, and
Starushenko
,
G. A.
, 2001, “
Analytical Continuation of Asymptotic Expansions of Effective Transport Coefficients by Padé Approximants
,”
Nonlinear Anal. Theory, Methods Appl.
0362-546X,
47
, pp.
2283
2292
.
91.
Sangani
,
A. S.
, and
Acrivos
,
A.
, 1983, “
The Effective Conductivity of a Periodic Array of Spheres
,”
Proc. R. Soc. London, Ser. A
,
386
, pp.
263
275
. 0080-4630
92.
McPhedran
,
R. C.
, and
Milton
,
G. W.
, 1981, “
Bounds and Exact Theories for the Transport Properties of Inhomogeneous Media
,”
Appl. Phys. (Berlin)
,
26
, pp.
207
220
. 0340-3793
93.
Meredith
,
R. E.
, and
Tobias
,
C. W.
, 1960, “
Resistance to Potential Flow Through a Cubical Array of Spheres
,”
J. Appl. Phys.
0021-8979,
31
, pp.
1270
1273
.
94.
Meredith
,
R. E.
, and
Tobias
,
C. W.
, 1962, “
Conduction in Heterogeneous Systems
,”
Adv. Electrochem. Electrochem. Eng.
0567-9907,
2
, pp.
15
47
.
95.
McPhedran
,
R. C.
, and
McKenzie
,
D. R.
, 1978, “
The Conductivity of Lattices of Spheres. 1. The Simple Cubic Lattice
,”
Proc. R. Soc. London, Ser. A
0950-1207,
359
, pp.
45
63
.
96.
McKenzie
,
D. R.
, and
McPhedran
,
R. C.
, 1977, “
Exact Modelling of Cubic Lattice Permittivity and Conductivity
,”
Nature (London)
0028-0836,
265
, pp.
128
129
.
97.
McKenzie
,
D. R.
,
McPhedran
,
R. C.
, and
Derrick
,
G. H.
, 1978, “
The Conductivity of Lattices of Spheres. II. The Body-Centred and Face-Centred Lattices
,”
Proc. R. Soc. London, Ser. A
,
362
, pp.
211
232
. 0080-4630
98.
Drugan
,
W. J.
, and
Willis
,
J. R.
, 1996, “
A Micromechanics-Based Nonlocal Constitutive Equation and Estimates of Representative Volume Element Size for Elastic Composites
,”
J. Mech. Phys. Solids
0022-5096,
44
(
4
), pp.
497
524
.
99.
Drugan
,
W. J.
, 2003, “
Two Exact Micromechanics-Based Nonlocal Constitutive Equations for Random Linear Elastic Composite Materials
,”
J. Mech. Phys. Solids
0022-5096,
51
(
9
), pp.
1745
72
.
100.
Segurado
,
J.
, and
Llorca
,
J.
, 2002, “
A Numerical Approximation to the Elastic Properties of Sphere-Reinforced Composites
,”
J. Mech. Phys. Solids
0022-5096,
50
(
10
), pp.
2107
21
.
101.
Molchanov
,
S. A.
, 1991, “
Ideas in the Theory of Random Media
,”
Acta Appl. Math.
0167-8019,
22
, pp.
139
282
.
102.
Buryachenko
,
V. A.
, and
Kushch
,
V. I.
, 2006, “
Effective Transverse Elastic Moduli of Composites at Non-Dilute Concentration of a Random Field of Aligned Fibers
,”
ZAMP
,
57
(
3
), pp.
491
505
. 0044-2275
103.
Berlyand
,
L.
, and
Mityushev
,
V.
, 2001, “
Generalized Clausius-Mossotti Formula for Random Composite With Circular Fibres
,”
J. Stat. Phys.
,
102
(
1/2
), pp.
115
145
. 0022-4715
104.
Berlyand
,
L.
, and
Mityushev
,
V.
, 2005, “
Increase and Decrease of the Effective Conductivity of Two Phase Composites Due to Polydispersity
,”
J. Stat. Phys.
0022-4715,
118
(
3–4
), pp.
481
509
.
105.
Andrianov
,
I. V.
,
Danishevs’kyy
,
V. V.
, and
Weichert
,
D.
, 2008, “
Simple Estimation on Effective Transport Properties of a Random Composite Material With Cylindrical Fibres
,”
ZAMP
,
59
(
5
), pp.
889
903
. 0044-2275
106.
Helsing
,
J.
,
Milton
,
G. W.
, and
Movchan
,
A. B.
, 1997, “
Duality Relations, Correspondences and Numerical Results for Planar Elastic Composites
,”
J. Mech. Phys. Solids
0022-5096,
45
(
4
), pp.
565
590
.
107.
Kozlov
,
G. M.
, 1989, “
Geometrical Aspects of Averaging
,”
Russ. Math. Surveys
0036-0279,
44
(
2
), pp.
91
144
.
108.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1963, “
A Variational Approach to the Theory of Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
127
40
.
109.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1962, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Material
,”
J. Appl. Phys.
0021-8979,
33
, pp.
3125
3131
.
110.
Hashin
,
Z.
, 1983, “
Analysis of Composite Materials–A Survey
,”
ASME J. Appl. Mech.
,
50
, pp.
481
505
. 0021-8936
111.
Keller
,
J. B.
,
Rubenfeld
,
L. A.
, and
Molyneux
,
J. E.
, 1967, “
Extremum Principles for Slow Viscous Flows With Applications to Suspensions
,”
J. Fluid Mech.
0022-1120,
30
, pp.
97
125
.
112.
Rubenfeld
,
L. A.
, and
Keller
,
J. B.
, 1969, “
Bounds on the Elastic Moduli of Composite Media
,”
SIAM J. Appl. Math.
0036-1399,
17
, pp.
495
510
.
113.
Torquato
,
S.
, and
Rubinshtein
,
J.
, 1991, “
Improved Bounds on the Effective Conductivity of High-Contrast Suspensions
,”
J. Appl. Phys.
0021-8979,
69
(
10
), pp.
7118
7125
.
114.
Torquato
,
S.
, 2002,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer
,
New York
.
115.
Benveniste
,
Y.
, 1995, “
Correspondence Relations Among Equivalent Classes of Heterogeneous Piezoelectric Solids Under Anti-Plane Mechanical and In-Plane Electrical Fields
,”
J. Mech. Phys. Solids
0022-5096,
43
, pp.
553
571
.
116.
Gibiansky
,
L. V.
, and
Torquato
,
S.
, 1995, “
Rigorous Links Between the Effective Conductivity and Elastic Moduli of Fibre-Reinforced Composite Materials
,”
Philos. Trans. R. Soc. London, Ser. B
,
343
, pp.
243
278
. 0962-8436
117.
Gibiansky
,
L. V.
, and
Torquato
,
S.
, 1996, “
Connection Between the Conductivity and Elastic Moduli of Isotropic Composites
,”
Proc. R. Soc. London, Ser. A
1364-5021,
452
, pp.
253
283
.
118.
Sevostianov
,
I.
, and
Kachanov
,
M.
, 2002, “
Explicit Cross-Property Correlations for Anisotropic Two-Phase Composite Materials
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
253
282
.
119.
Sevostianov
,
I.
, and
Kachanov
,
M.
, 2003, “
Correlations Between Elastic Moduli and Thermal Conductivities of Anisotropic Short Fiber Reinforced Thermoplastics: Theory and Experimental Verification
,”
Mater. Sci. Eng., A
,
360
, pp.
339
344
. 0921-5093
120.
Sevostianov
,
I.
,
Verijenko
,
V. E.
, and
Kachanov
,
M.
, 2002, “
Cross-Property Correlations for Short Fiber Reinforced Composites With Damage and Their Experimental Verification
,”
Composites, Part B
1359-8368,
33
, pp.
205
213
.
121.
Sevostianov
,
I.
,
Sabina
,
F. J.
,
Bravo-Castillero
,
J.
,
Guinovart-Diaz
,
R.
, and
Rodriguez-Ramos
,
R.
, 2006, “
Cross-Property Connections for Fiber-Reinforced Composites With Transversely-Isotropic Constituents
,”
Int. J. Fract.
,
142
, pp.
299
306
. 0376-9429
122.
Sevostianov
,
I.
, 2002, “
Correlation Between Mechanical and Conductive Properties of Porous/Microcracked Metals
,”
Theor Appl. Mech.
0285-6042,
28–29
, pp.
289
324
.
123.
Sevostianov
,
I.
, 2003, “
Explicit Relations Between Elastic and Conductive Properties of a Material Containing Annular Cracks
,”
Philos. Trans. R. Soc. London, Ser. A
,
361
, pp.
987
999
. 0013-7812
124.
Sevostianov
,
I.
, and
Kachanov
,
M.
, 2004, “
Connection Between Elastic and Conductive Properties of Microstructures With Hertzian Contacts
,”
Proc. R. Soc. London, Ser. A
0950-1207,
460
, pp.
1529
1534
.
125.
Manevitch
,
L. I.
,
Pavlenko
,
A. V.
, and
Koblik
,
S. G.
, 1979,
Asymptotic Methods in the Theory of Elasticity of Orthotropic Bodies
,
Viszha Shkola
,
Donetzk, Kiev
, in Russian.
126.
Andrianov
,
I. V.
,
Danishevs’kyy
,
V. V.
, and
Weichert
,
D.
, 2002, “
Asymptotic Determination of Effective Elastic Properties of Composite Materials With Fibrous Square-Shaped Inclusions
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
1019
1036
.
127.
Andrianov
,
I. V.
,
Danishevs’kyy
,
V. V.
, and
Weichert
,
D.
, 2008, “
Analytical Study of the Load Transfer in Fibre-Reinforced 2D Composite Materials
,”
Int. J. Solids Struct.
,
45
, pp.
1217
1243
. 0020-7683
128.
Duvaut
,
G.
, 1976, “
Analyse fonctionnelle et méchanique des milieux continues
,”
Proceedings of the 14th IUTAM Congress
,
North-Holland
,
Amsterdam
, pp.
119
132
.
129.
Duvaut
,
G.
, 1977,
Comportement macroscopique d’une plaque perforée périodiquement
(
Lecture Notes in Mathematics
Vol.
594
),
Springer
,
Berlin
, pp.
131
145
.
130.
Andrianov
,
I. V.
,
Lesnichaya
,
V. A.
, and
Manevitch
,
L. I.
, 1985,
Homogenization Methods in the Statics and Dynamics of Ribbed Shells
,
Nauka
,
Moscow
, in Russian.
131.
Caillerie
,
D.
, 1981, “
Equations de la diffusion stationnaire dans un domaine comportant une distribution périodique d’inclusions aplaties de grande conductivité
,”
C. R. Acad. Sci., Ser. I: Math.
0764-4442,
292
(
1
), pp.
115
118
.
132.
Caillerie
,
D.
, 1984, “
Thin Elastic and Periodic Plates
,”
Math. Methods Appl. Sci.
,
6
, pp.
159
191
. 0170-4214
133.
Kohn
,
R. V.
, and
Vogelius
,
M.
, 1984, “
A New Model for Thin Plates With Rapidly Varying Thickness
,”
Int. J. Solids Struct.
0020-7683,
20
, pp.
333
350
.
134.
Kohn
,
R. V.
, and
Vogelius
,
M.
, 1985, “
A New Model for Thin Plates With Rapidly Varying Thickness, II: A Convergence Proof
,”
Q. J. Mech. Appl. Math.
0033-5614,
43
, pp.
1
22
.
135.
Kohn
,
R. V.
, and
Vogelius
,
M.
, 1986, “
A New Model for thin Plates With Rapidly Varying Thickness, III: Comparison of Different Scalings
,”
Q. J. Mech. Appl. Math.
0033-5614,
44
, pp.
35
48
.
136.
Kalamkarov
,
A. L.
, 1988, “
Geometrically Nonlinear Problem of a thin Composite Layer With Undulating Surfaces of Periodic Structure
,”
Mech. Solids
0025-6544,
23
(
5
), pp.
40
45
.
137.
Kalamkarov
,
A. L.
,
Duvaut
,
G.
, and
Léné
,
F.
, 2002, “
A New Asymptotic Model of Flexible Composite Shells of a Regular Structure
,”
Int. J. Eng. Sci.
,
40
, pp.
333
343
. 0020-7225
138.
Kalamkarov
,
A. L.
, and
Kolpakov
,
A. G.
, 2001, “
A New Asymptotic Model for a Composite Piezoelastic Plate
,”
Int. J. Solids Struct.
0020-7683,
38
(
34–35
), pp.
6027
6044
.
139.
Kalamkarov
,
A. L.
, and
Georgiades
,
A. V.
, 2002, “
Micromechanical Modeling of Smart Composite Structures
,”
Smart Mater. Struct.
,
11
, pp.
423
434
. 0964-1726
140.
Kalamkarov
,
A. L.
, and
Georgiades
,
A. V.
, 2004, “
Asymptotic Homogenization Models for Smart Composite Plates With Rapidly Varying Thickness: Part I–Theory
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
2
(
1
), pp.
133
148
.
141.
Kalamkarov
,
A. L.
,
Saha
,
G.
, and
Georgiades
,
A. V.
, 2007, “
General Micromechanical Modeling of Smart Composite Shells With Application to Smart Honeycomb Sandwich Structures
,”
Compos. Struct.
,
79
(
1
), pp.
18
33
. 0263-8223
142.
Kalamkarov
,
A. L.
,
Georgiades
,
A. V.
,
Challagulla
,
K.
, and
Saha
,
G.
, 2006, “
Micromechanics of Smart Composite Plates With Periodically Embedded Actuators and Rapidly Varying Thickness
,”
Journal of Thermoplastic Composite Materials
,
19
(
3
), pp.
251
276
.
143.
Georgiades
,
A. V.
,
Kalamkarov
,
A. L.
, and
Challagulla
,
K.
, 2006, “
Asymptotic Homogenization Model for Generally Orthotropic Reinforcing Networks in Smart Composite Plates
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
1197
1210
.
144.
Challagulla
,
K.
,
Georgiades
,
A. V.
, and
Kalamkarov
,
A. L.
, 2007, “
Asymptotic Homogenization Modelling of Thin Composite Network Structures
,”
Compos. Struct.
,
79
(
3
), pp.
432
444
. 0263-8223
145.
Challagulla
,
K.
,
Georgiades
,
A. V.
, and
Kalamkarov
,
A. L.
, 2007, “
Asymptotic Homogenization Model for Three-Dimensional Network Reinforced Composite Structures
,”
J. Mech. Mater. Struct.
1559-3959,
2
(
4
), pp.
613
632
.
146.
Challagulla
,
K.
,
Georgiades
,
A. V.
,
Saha
,
G.
, and
Kalamkarov
,
A. L.
, 2008, “
Micromechanical Analysis of Grid-Reinforced Thin Composite Generally Orthotropic Shells
,”
Composites, Part B
1359-8368,
39
(
4
), pp.
627
644
.
147.
Saha
,
G.
,
Kalamkarov
,
A. L.
, and
Georgiades
,
A. V.
, 2007, “
Asymptotic Homogenization Modeling and Analysis of Effective Properties of Smart Composite Reinforced and Sandwich Shells
,”
Int. J. Mech. Sci.
,
49
(
2
), pp.
138
150
. 0020-7403
148.
Saha
,
G.
,
Kalamkarov
,
A. L.
, and
Georgiades
,
A. V.
, 2007, “
Effective Elastic Characteristics of Honeycomb Sandwich Composite Shells Made of Generally Orthotropic Materials
,”
Composites, Part A
1359-835X,
38
(
6
), pp.
1533
1546
.
149.
Kalamkarov
,
A. L.
,
Veedu
,
V.
, and
Ghasemi-Nejhad
,
M. N.
, 2005, “
Mechanical Properties Modeling of Carbon Single-Walled Nanotubes: An Asymptotic Homogenization Method
,”
J. Comput. Theor. Nanosci.
1546-1955,
2
(
1
), pp.
124
131
.
150.
Kalamkarov
,
A. L.
,
Georgiades
,
A. V.
,
Rokkam
,
S.
,
Veedu
,
V.
, and
Ghasemi-Nejhad
,
M. N.
, 2006, “
Analytical and Numerical Techniques to Predict Carbon Nanotubes Properties
,”
Int. J. Solids Struct.
0020-7683,
43
(
22–23
), pp.
6832
6854
.
151.
Reddy
,
J. N.
, 1997,
Mechanics of Laminated Composite Plates: Theory and Analysis
,
CRC
,
Boca Raton, FL
.
152.
Georgiades
,
A. V.
, and
Kalamkarov
,
A. L.
, 2004, “
Asymptotic Homogenization Models for Smart Composite Plates With Rapidly Varying Thickness: Part II–Applications
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
2
(
1
), pp.
149
172
.
153.
Guz'
,
A. N.
, and
Kokhanenko
,
Yu. V.
, 1995, “
Edge Effects in Composites
,”
Int. Appl. Mech.
,
31
(
3
), pp.
165
181
. 1063-7095
154.
Dumontet
,
H.
, 1986, “
Study of a Boundary Layer Problem in Elastic Composite Materials
,”
Model. Math. Anal. Numer.
0764-583X,
20
, pp.
265
286
.
155.
Kalamkarov
,
A. L.
,
Kudryavtsev
,
B. A.
, and
Bardzokas
,
D.
, 1991, “
New Generalized Integral Transforms in Axisymmetric Boundary-Value Problems in the Mechanics of Composites
,”
Mech. Compos. Mater.
0191-5665,
27
(
6
), pp.
648
657
.
156.
Allaire
,
G.
, and
Amar
,
M.
, 1999, “
Boundary Layer Tails in Periodic Homogenization
,”
COCV
1292-8119,
4
, pp.
209
243
.
157.
Mishuris
,
G.
, and
Öchsner
,
A.
, 2005, “
Edge Effects Connected With Thin Interfaces in Composite Materials
,”
Compos. Struct.
0263-8223,
68
, pp.
409
417
.
158.
Versieux
,
H. M.
, and
Sarkis
,
M.
, 2006, “
Numerical Boundary Corrector for Elliptic Equations With Rapidly Oscillating Periodic Coefficients
,”
Commun. Numer. Methods Eng.
1069-8299,
22
, pp.
577
589
.
159.
Gorbachev
,
V. I.
, and
Pobedrya
,
B. Ye.
, 1985, “
On Some Fracture Criteria for Composite Materials
,”
Izv. Akad. Nauk Arm. SSR, Ser. Mekh.
,
38
, pp.
30
37
.
160.
Pobedrya
,
B. Ye.
, 1988, “
About Failure Criteria of Structurally-Nonhomogeneous Materials
,”
Plastichnost i. Razrushenie Tverdih Tel
,
Nauka
,
Moscow
, pp.
170
175
, in Russian.
161.
Pobedrya
,
B. Ye.
, and
Gorbachev
,
V. I.
, 1988, “
Strength Criteria for Layered and Fibrous Composites
,”
Problemi Mashinostroyeniya i Avtomatizazii
, Vol.
21
,
Mashinostroyenie
,
Moscow
, pp.
65
68
.
162.
Muravleva
,
L. V.
, 2007, “
On Some Composite Failure Criteria Based on the Averaging Method
,”
Mech. Solids
0025-6544,
42
(
3
), pp.
471
480
.
163.
Pobedrya
,
B. Ye.
, and
Gorbachev
,
V. I.
, 1984, “
Stress and Strain Concentration in Composite Materials
,”
Mech. Compos. Mater.
0191-5665,
20
(
2
), pp.
141
148
.
164.
Luo
,
D.
, and
Takezono
,
S.
, 2003, “
The Numerical Simulation of the Mechanical Behavior of CFCC With Matrix Anisotropic Damage by Homogenization Method
,”
Mater. Sci. Res. Int.
1341-1683,
9
(
1
), pp.
61
68
.
165.
Dascalu
,
C.
,
Bilbie
,
G.
, and
Agiasofitou
,
E. K.
, 2008, “
Damage and Size Effects in Elastic Solids: A Homogenization Approach
,”
Int. J. Solids Struct.
,
45
, pp.
409
430
. 0020-7683
166.
Devries
,
F.
, 1991, “
A Fatigue Damage Model by Fibres Breaks in Unidirectional Composites
,”
Composite Material Technology
,
Proceedings of the 14th Annual Energy-Sources Technology Conference and Exhibition
, Houston, TX,
ASME
,
New York
, pp.
137
144
.
167.
Devries
,
F.
,
Dumontet
,
H.
,
Duvaut
,
G.
, and
Léné
,
F.
, 1989, “
Homogenization and Damage for Composite Structures
,”
Int. J. Numer. Methods Eng.
,
27
, pp.
285
298
. 0029-5981
168.
Leguillon
,
D.
, and
Sanchez-Palencia
,
E.
, 1982, “
On the Behaviour of a Cracked Elastic Body With or Without Friction
,”
J. Mec. Theor. Appl.
0750-7240,
1
(
2
), pp.
195
209
.
169.
Terada
,
K.
, and
Kikuchi
,
N.
, 2001, “
A Class of General Algorithms for Multiscale Analysis of Heterogeneous Media
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
5427
5464
.
170.
Ghosh
,
S.
,
Bai
,
J.
, and
Raghavan
,
P.
, 2007, “
Concurrent Multi-Level Model for Damage Evolution in Microstructurally Debonding Composites
,”
Mech. Mater.
0167-6636,
39
(
3
), pp.
241
266
.
171.
Ghosh
,
S.
,
Lee
,
K.
, and
Raghavan
,
P.
, 2001, “
A Multi-Level Computational Model for Multi-Scale Damage Analysis in Composite and Porous Materials
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
2335
2385
.
172.
Ghosh
,
S.
,
Ling
,
Y.
,
Majumdar
,
B.
, and
Kim
,
R.
, 2000, “
Interfacial Debonding Analysis in Multiple Fiber Reinforced Composites
,”
Mech. Mater.
0167-6636,
32
, pp.
561
591
.
173.
Léné
,
F.
, 1986, “
Damage Constitutive Relations for Composite Materials
,”
Eng. Fract. Mech.
0013-7944,
25
(
5–6
), pp.
713
728
.
174.
Raghavan
,
P.
, and
Ghosh
,
S.
, 2005, “
A Continuum Damage Mechanics Model for Unidirectional Composites Undergoing Interfacial Debonding
,”
Mech. Mater.
,
37
, pp.
955
979
. 0167-6636
175.
Allen
,
D. H.
, 2001, “
Homogenization Principles and Their Application to Continuum Damage Mechanics
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
2223
2230
.
176.
Allen
,
D. H.
,
Jones
,
R. H.
, and
Boyd
,
J. G.
, 1994, “
Micromechanical Analysis of a Continuous Fiber Metal Matrix Composite Including the Effects of Matrix Viscoplasticity and Evolving Damage
,”
J. Mech. Phys. Solids
0022-5096,
42
(
3
), pp.
505
529
.
177.
Costanzo
,
F.
,
Boyd
,
J. G.
, and
Allen
,
D. H.
, 1996, “
Micromechanics and Homogenization of Inelastic Composite Materials With Growing Cracks
,”
J. Mech. Phys. Solids
0022-5096,
44
(
3
), pp.
333
370
.
178.
Chaboche
,
J. L.
,
Kruch
,
S.
, and
Pottier
,
T.
, 1998, “
Micromechanics Versus Macromechanics: A Combined Approach for Metal Matrix Composite Constitutive Modeling
,”
Eur. J. Mech. A/Solids
0997-7538,
17
, pp.
885
908
.
179.
Fish
,
J.
,
Yu
,
Q.
, and
Shek
,
K.
, 1999, “
Computational Damage Mechanics for Composite Materials Based on Mathematical Homogenization
,”
Int. J. Numer. Methods Eng.
0029-5981,
45
, pp.
1657
1679
.
180.
Jain
,
J. R.
, and
Ghosh
,
S.
, 2008, “
Homogenization Based 3D Continuum Damage Mechanics Model for Composites Undergoing Microstructural Debonding
,”
ASME J. Appl. Mech.
0021-8936,
75
(
3
), p.
031011
.
181.
Kruch
,
S.
,
Chaboche
,
J. L.
, and
Pottier
,
T.
, 1996, “
Two-Scale Viscoplastic and Damage Analysis of Metal Matrix Composite
,”
Damage and Interfacial Debonding in Composites
,
G. Z.
Voyiadjis
and
D. H.
Allen
, eds.,
Elsevier
,
Amsterdam
, pp.
45
56
.
182.
Matzenmiller
,
A.
,
Lubliner
,
J.
, and
Taylor
,
R. L.
, 1995, “
A Constitutive Model for Anisotropic Damage in Fiber-Composites
,”
Mech. Mater.
0167-6636,
20
, pp.
125
152
.
183.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
, 1993, “
Micromechanical Characterization of Damage-Plasticity in Metal Matrix Composites
,”
Damage in Composite Materials
,
G. Z.
Voyiadjis
, ed.,
Elsevier
,
Amsterdam
, pp.
67
102
.
184.
Voyiadjis
,
G. Z.
, and
Park
,
T. A.
, 1992, “
A Plasticity-Damage Theory for Large Deformation of Solids–I: Theoretical Foundation
,”
Int. J. Eng. Sci.
0020-7225,
30
(
9
), pp.
1089
1106
.
185.
Voyiadjis
,
G. Z.
, and
Park
,
T. A.
, 1996, “
Elasto-Plastic Stress and Strain Concentration Tensors for Damage Fibrous Composites
,”
Damage and Interfacial Debonding in Composites
,
G. Z.
Voyiadjis
and
D. H.
Allen
, eds.,
Elsevier
,
Amsterdam
, pp.
81
106
.
186.
Oskay
,
C.
, and
Fish
,
J.
, 2004, “
Fatigue Life Prediction Using 2-Scale Temporal Asymptotic Homogenization
,”
Int. J. Numer. Methods Eng.
,
61
(
3
), pp.
329
359
. 0029-5981
187.
Kouznetsova
,
V. G.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
, 2001, “
An Approach to Micro-Macro Modeling of Heterogeneous Materials
,”
Comput. Mech.
0178-7675,
27
, pp.
37
48
.
188.
Choi
,
J.
, and
Tamma
,
K. K.
, 2001, “
Woven Fabric Composites. Part 1: Prediction of Homogenized Elastic Properties and Micromechanical Damage Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2285
2298
.
189.
Gałka
,
A.
,
Telega
,
J. J.
, and
Tokarzewski
,
S.
, 1997, “
Nonlinear Transport Equation and Macroscopic Properties of Microheterogeneous Media
,”
Arch. Mech.
0373-2029,
49
(
2
), pp.
293
319
.
190.
Andrianov
,
I. V.
,
Awrejcewicz
,
J.
, and
Diskovsky
,
A. A.
, 2006, “
Homogenization of Quasi-Periodic Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
4
), pp.
532
534
.
191.
Kalamkarov
,
A. L.
,
Hassan
,
E.
,
Georgiades
,
A. V.
, and
Savi
,
M. A.
, 2009, “
Asymptotic Homogenization Model for 3D Grid-Reinforced Composite Structures With Generally Orthotropic Reinforcements
,”
Compos. Struct.
0263-8223,
89
(
2
), pp.
186
196
.
192.
Saha
,
G.
, and
Kalamkarov
,
A. L.
, 2009, “
Micromechanical Thermoelastic Model for Sandwich Composite Shells Made of Generally Orthotropic Materials
,”
Journal of Sandwich Structures and Materials
,
11
(
1
), pp.
27
56
.
193.
Kolpakov
,
A. G.
, 2004,
Stressed Composite Structures: Homogenized Models for Thin-Walled Nonhomogeneous Structures With Initial Stresses
,
Springer
,
Berlin
.
194.
Kolpakov
,
A. G.
, 2007,
Composite Materials and Structural Elements With Initial Stresses
,
Siberian Branch of Russian Academy of Sciences
,
Novosibirsk
, in Russian.
195.
Pernin
,
J. N.
, 1999, “
Diffusion in Composite Solid: Threshold Phenomenon and Homogenization
,”
Int. J. Eng. Sci.
,
37
, pp.
1597
1610
. 0020-7225
196.
Pernin
,
J. N.
, and
Jacquet
,
E.
, 2001, “
Elasticity in Highly Heterogeneous Composite Medium: Threshold Phenomenon and Homogenization
,”
Int. J. Eng. Sci.
,
39
, pp.
755
798
. 0020-7225
197.
Pernin
,
J. N.
, and
Jacquet
,
E.
, 2001, “
Elasticity and Viscoelasticity in Highly Heterogeneous Composite Medium: Threshold Phenomenon and Homogenization
,”
Int. J. Eng. Sci.
0020-7225,
39
, pp.
1655
1689
.
198.
Balagurov
,
B. Ya.
, 2001, “
Effective Electrical Characteristics of a Two-Dimensional Three-Component Doubly-Periodic System With Circular Inclusions
,”
J. Exp. Theor. Phys.
1063-7761,
92
(
1
), pp.
123
134
.
199.
Balagurov
,
B. Ya.
, 2001, “
Partial Moments of Electric Field Strength in the Problem of Conduction of Binary Composites
,”
J. Exp. Theor. Phys.
1063-7761,
93
(
4
), pp.
824
832
.
200.
Balagurov
,
B. Ya.
, and
Kashin
,
V. A.
, 2000, “
Conductivity of a Two-Dimensional System With a Periodic Distribution of Circular Inclusions
,”
J. Exp. Theor. Phys.
1063-7761,
90
(
5
), pp.
850
860
.
201.
Balagurov
,
B. Ya.
, and
Kashin
,
V. A.
, 2005, “
Analytic Properties of the Effective Dielectric Constant of a Two-Dimensional Rayleigh Model
,”
J. Exp. Theor. Phys.
1063-7761,
100
(
4
), pp.
731
741
.
202.
Mityushev
,
V. V.
,
Pesetskaya
,
E. V.
, and
Rogosin
,
S. V.
, 2007,
Analytical Methods for Heat Conduction in Composites and Porous Media
,
Wiley-VCH
,
Amsterdam
.
203.
Mityushev
,
V.
,
Obnosov
,
Yu.
,
Pesetskaya
,
E.
, and
Rogosin
,
S.
, 2008, “
Analytical Methods for Heat Conduction in Composites
,”
Mathematical Modelling and Analysis
,
13
(
1
), pp.
67
78
.
204.
Parnell
,
W. J.
, and
Abrahams
,
I. D.
, 2008, “
A New Integral Equation Approach to Elastodynamic Homogenization
,”
Proc. R. Soc. London, Ser. A
1364-5021,
464
, pp.
1461
1482
.
205.
2007,
Nonlinear Homogenization and Its Applications to Composites, Polycrystals and Smart Materials
,
P.
Ponte Castañeda
,
J. J.
Telega
, and
B.
Gambin
, eds.,
Springer
,
Berlin
.
You do not currently have access to this content.