A large variety of plate theories are described and assessed in the present work to evaluate the bending and vibration of sandwich structures. A brief survey of available works is first given. Such a survey includes significant review papers and latest developments on sandwich structure modelings. The kinematics of classical, higher order, zigzag, layerwise, and mixed theories is described. An exhaustive numerical assessment of the whole theories is provided in the case of closed form solutions of simply supported panels made of orthotropic layers. Reference is made to the unified formulation that has recently been introduced by the first author for a plate/shell analysis. Attention has been given to displacements, stresses (both in-plane and out-of-plane components), and the free vibration response. Only simply supported orthotropic panels loaded by a transverse distribution of bisinusoidal pressure have been analyzed. Five benchmark problems are treated. The accuracy of the plate theories is established with respect to the length-to-thickness-ratio (LTR) geometrical parameters and to the face-to-core-stiffness-ratio (FCSR) mechanical parameters. Two main sources of error are outlined, which are related to LTR and FCSR, respectively. It has been concluded that higher order theories (HOTs) can be conveniently used to reduce the error due to LTR in thick plate cases. But HOTs are not effective in increasing the accuracy of the classical theory analysis whenever the error is caused by increasing FCSR values; layerwise analysis becomes mandatory in this case.

1.
Plantema
,
F. J.
, 1966,
Sandwich Construction
,
Wiley
,
New York
.
2.
Allen
,
H. G.
, 1969,
Analysis and Design of Structural Sandwich Panels
,
Pergamon
,
Oxford
.
3.
Zenkert
,
D.
, 1995,
An Introduction to Sandwich Structures
,
Chamelon
,
Oxford
.
4.
Bitzer
,
T. N.
, 1997,
Honeycomb Technology
,
Chapman and Hall
,
London
.
5.
Vinson
,
J. R.
, 1999,
The Behavior of Sandwich Structures of Isotropic and Composite Materials
,
Technomic
,
Lancaster, PA
.
6.
Marshall
,
A. C.
, 1990,
Core Composite and Sandwich Structures
(
International Encyclopedia of Composites
), Vol.
I
,
S. M.
Lee
, ed.,
VCH
,
New York
, pp.
488
607
.
7.
Corden
,
J.
, 1995,
Honeycomb Structures
(
ASM Handbook I: Composites
),
J. R.
Davies
, ed.,
American Society of Metals
,
Metals Park, OH
, pp.
721
728
.
8.
Pagano
,
N. J.
, 1970, “
Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates
,”
J. Compos. Mater.
0021-9983,
4
, pp.
20
34
.
9.
Dundrova
,
V.
, 1966, “
Stress and Strain Analysis of Simply Supported Non-Homogenous Rectangular Plates on the Basis of Lamé Equations
,”
Theory of Plates and Shells
,
Vydavatesstvo Slovenskej Akademie vied
,
Bratislava
.
10.
Meyer-Piening
,
H. R.
, 2004, “
Application of the Elasticity Solution to Linear Sandwich Beams, Plates and Shells Analysis
,”
J. Sandwich Struct. Mater.
,
6
, pp.
295
312
.
11.
Demasi
,
L.
, 2007, “
Three Dimensional Closed Form Solution and Exact Thin Plate Theories for Isotropic Plates
,”
Compos. Struct.
0263-8223,
80
, pp.
183
195
.
12.
Cauchy
,
A. L.
, 1828, “
Sur l’equilibre et le mouvement d’une plaque solide
,”
Exercises Math.
,
3
, pp.
328
355
.
13.
Poisson
,
S. D.
, 1829, “
Memoire sur l’equilibre et le mouvement des corps elastique
,”
Mem. Acad. Sci. Inst. Fr.
0368-9263,
8
, p.
357
570
.
14.
Kirchhoff
,
G.
, 1850, “
Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe
,”
J. Reine Angew. Math.
0075-4102,
40
, pp.
51
88
.
15.
Love
,
A. E. H.
, 1927,
The Mathematical Theory of Elasticity
,
4th ed.
,
Cambridge University Press
,
Cambridge
.
16.
Reissner
,
E.
, 1945, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
0021-8936,
12
, pp.
69
76
.
17.
Mindlin
,
R. D.
, 1951, “
Influence of Rotatory Inertia and Shear in Flexural Motions of Isotropic Elastic Plates
,”
ASME J. Appl. Mech.
0021-8936,
18
, pp.
1031
1036
.
18.
Carrera
,
E.
, 1995, “
A Class of Two-Dimensional Theories for Anisotropic Multilayered Plates Analysis
,”
Atti Accad. Sci. Torino Mem. Sci. Fis.
,
19–20
, pp.
1
39
.
19.
Lekhnitskii
,
S. G.
, 1968,
Anisotropic Plates
,
2nd ed.
, S. W. Tsai, translator,
Gordon and Breach
,
New York
.
20.
Ambartsumian
,
S. A.
, 1961,
Theory of Anisotropic Shells
, translated from Russian, NASA TTF-18,
Fizmatzig
,
Moskwa
.
21.
Ambartsumian
,
S. A.
, 1969,
Theory of Anisotropic Plates
,
J. E.
Ashton
, T. Cheron tanslator,
Technomic Publishing Company
,
Moskwa
.
22.
Ambartsumian
,
S. A.
, 1991,
Fragments of the Theory of Anisotropic Shells
,
World Scientific
,
Singapore
.
23.
Librescu
,
L.
, 1975,
Elasto-Statics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures
,
Noordhoff, Leyden
,
The Netherlands
.
24.
Reddy
,
J. N.
, 1997,
Mechanics of Laminated Composite Plates, Theory and Analysis
,
CRC
,
Boca Raton, FL
.
25.
Ambartsumian
,
S. A.
, 1962, “
Contributions to the Theory of Anisotropic Layered Shells
,”
Appl. Mech. Rev.
0003-6900,
15
, pp.
245
249
.
26.
Habip
,
L. M.
, 1964, “
A Review of Recent Russian Work on Sandwich Structures
,”
Int. J. Mech. Sci.
0020-7403,
6
, pp.
483
487
.
27.
Habip
,
L. M.
, 1965, “
A Review of Recent Work on Multilayered Structures
,”
Int. J. Mech. Sci.
0020-7403,
8
, pp.
589
583
.
28.
Grigolyuk
,
E. I.
, and
Kogan
,
F. A.
, 1972, “
State of Art of the Theory of Multilayer Shells
,”
Appl. Mech. Rev.
0003-6900,
15
, pp.
245
249
.
29.
Sun
,
C. T.
, and
Whitney
,
J. M.
, 1973, “
On the Theories for the Dynamic Response of Laminated Plates
,”
Am. Inst. of Aeronaut. Astronaut. J.
,
11
, pp.
372
398
.
30.
Leissa
,
A. W.
, 1987, “
A Review of Laminated Composite Plate Buckling
,”
Appl. Mech. Rev.
0003-6900,
15
, pp.
245
249
.
31.
Librescu
,
L.
, and
Reddy
,
J. N.
, 1987, “
A Critical Review and Generalization of Transverse Shear Deformable Anisotropic Plates
,”
Euromech Colloquium, 219, Refined Dynamical Theories of Beams, Plates and Shells and Their Applications
, Kassel, September 1986,
I.
Elishakoff
and
H.
Irretier
, eds.,
Springer
,
Berlin
, pp.
32
43
.
32.
Grigolyuk
,
E. I.
, and
Kulikov
,
G. M.
, 1988, “
General Directions of the Development of Theory of Shells
,”
Mekh. Kompoz. Mater.
0203-1272,
24
, pp.
287
298
.
33.
Kapania
,
R. K.
, and
Raciti
,
S.
, 1989, “
Recent Advances in Analysis of Laminated Beams and Plates
,”
Am. Inst. of Aeronaut. Astronaut. J.
,
27
, pp.
923
946
.
34.
Kapania
,
R. K.
, 1989, “
A Review on the Analysis of Laminated Shells
,”
ASME J. Pressure Vessel Technol.
0094-9930,
111
, pp.
88
96
.
35.
Vasiliev
,
V. V.
, and
Lur’e
,
S. A.
, 1992, “
On Refined Theories of Beams, Plates and Shells
,”
J. Compos. Mater.
0021-9983,
26
, pp.
422
430
.
36.
Noor
,
A. K.
, and
Burton
,
W. S.
, 1989, “
Assessment of Shear Deformation Theories for Multilayered Composite Plates
,”
Appl. Mech. Rev.
0003-6900,
41
, pp.
1
18
.
37.
Noor
,
A. K.
, and
Burton
,
W. S.
, 1990, “
Assessment of Computational Models for Multilayered Composite Shells
,”
Appl. Mech. Rev.
0003-6900,
43
, pp.
67
97
.
38.
Burton
,
S.
, and
Noor
,
A. K.
, 1995, “
Assessment of Computational Model for Sandwich Panels and Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
124
, pp.
125
151
.
39.
Noor
,
A. K.
,
Burton
,
S.
, and
Bert
,
C. W.
, 1996, “
Computational Model for Sandwich Panels and Shells
,”
Appl. Mech. Rev.
0003-6900,
49
, pp.
155
199
.
40.
Jemielita
,
G.
, 1990, “
On Kinematical Assumptions of Refined Theories of Plates: A Survey
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
1080
1091
.
41.
Reddy
,
J. N.
, and
Robbins
,
D. H.
, 1994, “
Theories and Computational Models for Composite Laminates
,”
Appl. Mech. Rev.
0003-6900,
47
, pp.
147
165
.
42.
Lur’e
,
S. A.
, and
Shumova
,
N. P.
, 1996, “
Kinematic Models of Refined Theories Concerning Composite Beams Plates and Shells
,”
Int. Appl. Mech.
1063-7095,
32
, pp.
422
430
.
43.
Grigorenko
,
Ya. M.
, 1996, “
Approaches to Numerical Solution of Linear and Nonlinear Problems in Shell Theory in Classical and Refined Formulations
,”
Int. Appl. Mech.
1063-7095,
32
, pp.
409
442
.
44.
Grigorenko
,
Ya. M.
, and
Vasilenko
,
A. T.
, 1997, “
Solution of Problems and Analysis of the Stress Strain State of Non-Uniform Anisotropic Shells (Survey)
,”
Int. Appl. Mech.
1063-7095,
33
, pp.
851
880
.
45.
Altenbach
,
H.
, 1998, “
Theories for Laminated and Sandwich Plates: A Review
,”
Int. Appl. Mech.
1063-7095,
34
, pp.
243
252
.
46.
Librescu
,
L.
, and
Hause
,
T.
, 2000, “
Recent Developments in the Modeling and Behaviors of Advanced Sandwich Constructions: A Survey
,”
Compos. Struct.
0263-8223,
48
, pp.
1
17
.
47.
Vinson
,
J. R.
, 2001, “
Sandwch Structures, Applied Mechanics Reviews
,”
Appl. Mech. Rev.
0003-6900,
54
, pp.
201
214
.
48.
Carrera
,
E.
, 2001, “
Developments, Ideas and Evaluations Based Upon the Reissner’s Mixed Theorem in the Modeling of Multilayered Plates and Shells
,”
Appl. Mech. Rev.
0003-6900,
54
, pp.
301
329
.
49.
Qatu
,
M. S.
, 2002, “
Recent Research Advances in the Dynamic Behavior of Shells: 1989-2000. Part 1: Laminated Composite Shells
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
325
330
.
50.
Hohe
,
J.
, and
Becker
,
W.
, 2002, “
Effective Stress-Strain Relations for Two-Dimensional Cellular Sandwich Core: Homogenization, Material Models, and Properties
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
61
87
.
51.
Hohe
,
J.
, and
Librescu
,
L.
, 2004, “
Advances in the Structural Modeling of Elastic Sandwich Panels
,”
Mech. Adv. Mater. Struct.
,
11
, pp.
395
424
.
52.
Carrera
,
E.
, 2003, “
A Historical Review of Zig-Zag Theories for Multilayered Plates and Shell
,”
Appl. Mech. Rev.
0003-6900,
56
, pp.
290
309
.
53.
Lekhnitskii
,
S. G.
, 1935, “
Strength Calculation of Composite Beams
,”
Vestn. Inzh. Tekh..
0372-5936 (
9
).
54.
Ambartsumian
,
S. A.
, 1958, “
On a Theory of Bending of Anisotropic Plates
,”
Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk.
0367-679X (
4
).
55.
Ambartsumian
,
S. A.
, 1958, “
On a General Theory of Anisotropic Shells
,”
Prikl. Mat. Mekh.
0032-8235,
22
(
2
), pp.
226
237
.
56.
Reissner
,
E.
, 1984, “
On a Certain Mixed Variational Theory and a Proposed Applications
,”
Int. J. Numer. Methods Eng.
0029-5981,
20
, pp.
1366
1368
.
57.
Frostig
,
Y.
, 1999, “
Bending of Curved Sandwich Panels With Transversely Flexible Core: Closed Form Higher-Order Theory
,”
J. Sandwich Struct. Mater.
,
1
, pp.
4
41
.
58.
Frostig
,
Y.
, and
Rabinovich
,
O.
, 2000, “
Behavior of Unidirectional Sandwich Panels With a Multi-Skin Construction or a Multilayered Core Layout-Higher-Order Approach
,”
J. Sandwich Struct. Mater.
,
2
, pp.
181
213
.
59.
Rabinovich
,
O.
, and
Frostig
,
Y.
, 2001, “
High-Order Analysis of Unidirectional Sandwich Panels With Flat and Generally Curved Faces and Soft Core
,”
J. Sandwich Struct. Mater.
,
3
, pp.
89
116
.
60.
Frostig
,
Y.
, and
Thomsen
,
O. T.
, 2005, “
Localized Effects in the Nonlinear Behavior of Sandwich Panels With a Transversely Flexible Core
,”
Journal of Sandwich and Structures and Materials
,
7
, pp.
53
77
.
61.
Frostig
,
Y.
, and
Thomsen
,
O. T.
, 2006, “
Localized Effects Near Non-Vertical Core Junctions In Sandwich Panels: A High-Order Approach
,”
J. Sandwich Struct. Mater.
,
8
, pp.
125
156
.
62.
Pantano
,
A.
, and
Averill
,
R. C.
, 2000, “
A 3D Zig-Zag Sub-Laminate Model for the Analysis of Thermal Stresses in Laminated Composite and Sandwich Plate
,”
Journal of Sandwich and Structures and Materials
,
2
, pp.
288
312
.
63.
Swanson
,
S. R.
, 2000, “
Response of Orthotropic Sandwich Plates to Concentrated Loadings
,”
J. Sandwich Struct. Mater.
,
2
, pp.
270
287
.
64.
Swanson
,
S. R.
, and
Kim
,
J.
, 2000, “
Comparison of Higher Order Theory for Sandwich Beams With Finite Element and Elasticity Analysis
,”
J. Sandwich Struct. Mater.
,
2
, pp.
33
49
.
65.
Whitney
,
J. M.
, 2001, “
A Local Model for Bending of Weak Core Sandwich Plates
,”
J. Sandwich Struct. Mater.
,
3
, pp.
269
288
.
66.
Pagano
,
J. N.
, 1978, “
Stress Fields in Composite Laminates
,”
Int. J. Solids Struct.
0020-7683,
14
, pp.
385
400
.
67.
Liu
,
Q.
, and
Zhao
,
Y.
, 2001, “
Prediction of Natural Frequencies of a Sandwich Panel Using Thick Plate Theories
,”
J. Sandwich Struct. Mater.
,
3
, pp.
289
319
.
68.
Birman
,
V.
, and
Bert
,
C. W.
, 2001, “
On the Choice of Shear Correction Factor in Sandwich Structures
,”
J. Sandwich Struct. Mater.
,
4
, pp.
83
98
.
69.
Matsunaga
,
H.
, 2002, “
Assessment of a Global Higher-Order Deformation Theory for Laminated Composite and Sandwich Plates
,”
Comput. Struct.
0045-7949,
56
, pp.
279
291
.
70.
Topdar
,
P.
,
Sheikh
,
A. H.
, and
Dhang
,
N.
, 2003, “
Finite Element Analysis of Composite and Sandwich Plates Using a Continuous Interlaminar Shear Stress Model
,”
J. Sandwich Struct. Mater.
,
5
, pp.
207
229
.
71.
Lyckegaard
,
A.
, and
Thomsen
,
O. T.
, 2004, “
High Order Analysis of Junction Between Straight and Curved Panels
,”
J. Sandwich Struct. Mater.
,
6
, pp.
497
529
.
72.
Garg
,
A. K.
,
Khare
,
R. K.
,
Kant
,
T.
, 2005, “
Free Vibration Analysis of Skew Fiber-Reinforced Composite and Sandwich Laminates Using a Shear Deformable Finite Element Model
,”
J. Sandwich Struct. Mater.
,
8
, pp.
33
53
.
73.
Malekzadeh
,
K.
,
Khalili
,
M. R.
, and
Mittal
,
R. K.
, 2005, “
Local and Global Damped Vibrations of Plates With Viscoelastic Soft Flexible Core
,”
Journal of Sandwich and Structures and Materials
,
7
, pp.
431
456
.
74.
Roque
,
C. M. C.
,
Ferreira
,
A. J. A.
, and
Jorge
,
R. M. N.
, 2006, “
Free Vibration Analysis of Composite and Sandwich Plate by Trigonometric Layer-Wise Deformation Theory and Radial Basis Function
,”
J. Sandwich Struct. Mater.
,
8
, pp.
497
515
.
75.
Hu
,
H.
,
Beluouettra
,
S.
,
Daya
,
E. M.
, and
Potier-Ferry
,
M.
, 2006, “
Evaluation of Kinematic Formulations for Viscoelastically Damped Sandwich Beam Modeling
,”
J. Sandwich Struct. Mater.
,
8
, pp.
477
495
.
76.
Carrera
,
E.
, 1998, “
Layer-Wise Mixed Models for Accurate Vibration Analysis of Multilayered Plates
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
820
828
.
77.
Carrera
,
E.
,
Demasi
,
L.
, and
Manganello
,
M.
, 2002, “
Assessment of Plate Elements on Bending and Vibrations of Composite Structures
,”
Mech. Adv. Mater. Struct.
,
9
, pp.
333
357
.
78.
Carrera
,
E.
, and
Demasi
,
L.
, 2002, “
Multilayered Finite Plate Element Based on Reissner’s Mixed Variational Theorem. Part I: Theory
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
, pp.
191
231
.
79.
Carrera
,
E.
and
Demasi
,
L.
, 2002, “
Multilayered Finite Plate Element Based on Reissner’s Mixed Variational Theorem. Part II: Numerical Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
, pp.
253
291
.
80.
Carrera
,
E.
, 2003, “
Theories and Finite Elements for Multilayered Plates and Shells: A Unified Compact Formulation With Numerical Assessment and Benchmarking
,”
Arch. Comput. Methods Eng.
1134-3060,
10
, pp.
215
296
.
81.
Carrera
,
E.
, and
Brischetto
,
S.
, 2008, “
Analysis of Thickness Locking in Classical, Refined and Mixed Multilayered Plate Theories
,”
Compos. Struct.
0263-8223,
82
, pp.
549
562
.
82.
Murakami
,
H.
, 1986, “
Laminated Composite Plate Theory With Improved In-Plane Responses
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
661
666
.
You do not currently have access to this content.