Robust vibration control of piezoelectric actuated smart structures has attracted substantial interest in recent years. Such control laws are desirable for systems where guaranteed stability or performance is required despite the presence of multiple sources of uncertainty. In this work, we review the principal problems that the structural control engineer has to address when designing robust control laws: structural modeling techniques, uncertainty modeling, controller order reduction, and robustness validation. A comprehensive literature review is presented and the different techniques employed are discussed in detail in a tutorial manner for the case of a piezoelectric smart plate, with the aim of providing a comprehensive and unitary methodology for designing and validating robust H controllers for active structures.

1.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
, 1996,
Robust and Optimal Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
de Abreu
,
G. L. C. M.
, and
Ribeiro
,
J. F.
, 2003, “
On-Line Control of a Flexible Beam Using Adaptive Fuzzy Controller and Piezoelectric Actuators
,”
Controle & Automação, Revista da Sociedade Brasileira de Automática
,
14
(
4
), pp.
377
383
.
3.
Jha
,
R.
, and
Rower
,
J.
, 2001, “
Experimental Investigation of Active Vibration Control Using Neural Networks
,”
42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit
,
Seattle, WA
, Apr.
4.
Dosch
,
J.
,
Leo
,
D.
, and
Inman
,
D.
, 1995, “
Modeling and Control for Vibration Suppression of a Flexible Active Structure
,”
J. Guid. Control Dyn.
0731-5090,
18
(
2
), pp.
340
346
.
5.
Moreira
,
F. J. O.
,
Arruda
,
J. R. F.
, and
Inman
,
D. J.
, 2001, “
Design of a Reduced-Order H∞ Controller for Smart Structure Satellite Applications
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
, pp.
2251
2269
.
6.
Yaman
,
Y.
,
Caliskan
,
T.
,
Nalbantoglu
,
V.
,
Prasad
,
E.
, and
Waechter
,
D.
, 2001, “
Active Vibration Control of a Smart Beam
,”
Proceedings of CANSMART Workshop on Smart Materials and Structures
,
Montreal, Canada
, Oct.
7.
Hong
,
S.
,
Park
,
C. H.
, and
Park
,
H. C.
, 2006, “
Vibration Control of Beams Using Multiobjective State-Feedback Control
,”
Smart Mater. Struct.
0964-1726,
15
(
1
), pp.
157
163
.
8.
Crassidis
,
J. L.
,
Baz
,
A.
, and
Wereley
,
N.
, 2000, “
H∞ Control of Active Constrained Layer Damping
,”
J. Vib. Control
1077-5463,
6
(
1
), pp.
113
136
.
9.
Halim
,
D.
, and
R. Moheimani
,
S. O.
, 2001, “
Spatial Control of Flexible Structures—Application of Spatial H∞ Control to a Piezoelectric Laminate Beam
,”
Proceedings of the American Control Conference
,
Arlington, VA
, June.
10.
Barrault
,
G.
,
Halim
,
D.
, and
Hansen
,
C.
, 2007, “
High Frequency Spatial Vibration Control Using H∞ Method
,”
Mech. Syst. Signal Process.
0888-3270,
21
(
4
), pp.
1541
1560
.
11.
Zhang
,
X.
,
Shao
,
C.
,
Li
,
S.
,
Xu
,
D.
, and
Erdman
,
A. G.
, 2001, “
Robust H∞ Vibration Control for Flexible Linkage Mechanism Systems With Piezoelectric Sensors and Actuators
,”
J. Sound Vib.
0022-460X,
243
(
1
), pp.
145
155
.
12.
Yaman
,
Y.
,
Caliskan
,
T.
,
Nalbantoglu
,
V.
,
Prasad
,
E.
, and
Waechter
,
D.
, 2002, “
Active Vibration Control of a Smart Plate
,”
ICAS 2002, International Council of the Aeronautical Sciences
,
Toronto, Canada
, September.
13.
Xie
,
S. L.
,
Zhang
,
X. N.
,
Zhang
,
J. H.
, and
Yu
,
L.
, 2004, “
H∞ Robust Vibration Control of a Thin Plate Covered With a Controllable Constrained Damping Layer
,”
J. Vib. Control
1077-5463,
10
(
1
), pp.
115
133
.
14.
Chang
,
W.
,
Gopinathan
,
S. V.
,
Varadan
,
V. V.
, and
Varadan
,
V. K.
, 2002, “
Design of Robust Vibration Controller for a Smart Panel Using Finite Element Model
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
265
276
.
15.
Prajna
,
S.
,
Kaiser
,
O. E.
,
Pietrzko
,
S. J.
, and
Morari
,
M.
, 2000, “
Robust Active Control of a Vibrating Plate
,”
National Conference on Noise Control Engineering NOISE-CON 2000
,
Newport Beach, CA
, Dec. Acoustical Society of America.
16.
Kim
,
J. H.
,
Choi
,
S. B.
,
Cheong
,
C. C.
,
Han
,
S. S.
, and
Lee
,
J. K.
, 1999, “
H∞ Control of Structure-Borne Noise of a Plate Featuring Piezoceramic Actuators
,”
Smart Mater. Struct.
0964-1726,
8
(
1
), pp.
1
12
.
17.
Sadri
,
A. M.
,
Wayne
,
R. J.
, and
Wright
,
J. R.
, 1999, “
Robust Strategies for Active Vibration Control of Plate-Like Structures: Theory and Experiment
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
213
(
6
), pp.
489
504
.
18.
Hamden
,
A. M. A.
, and
Nayfeh
,
A. H.
, 1989, “
Measures of Modal Controllability and Observability for First- and Second-Order Linear Systems
,”
J. Guid. Control Dyn.
0731-5090,
12
(
3
), pp.
421
428
.
19.
Li
,
P.
,
Cheng
,
L.
,
Li
,
Y. Y.
, and
Chen
,
N.
, 2003, “
Robust Control of a Vibrating Plate Using μ-Synthesis Approach
,”
Thin-Walled Struct.
0263-8231,
41
(
11
), pp.
973
986
.
20.
Tani
,
J.
,
Qui
,
J.
, and
Miura
,
H.
, 1990, “
Vibration Control of a Cylindrical Shell Using Piezoelectric Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
6
, pp.
380
388
.
21.
Qiu
,
J.
, and
Tani
,
J.
, 1996, “
Vibration Control of a Cylindrical Shell Using Distributed Piezoelectric Sensors and Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
6
(
4
), pp.
474
481
.
22.
Qiu
,
J.
, and
Tani
,
J.
, 1996, “
Vibration Suppression of a Cylindrical Shell Using a Hybrid Control Method
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
7
,
278
286
.
23.
Iorga
,
L.
,
Ursu
,
I.
, and
Munteanu
,
E.
, 2007, “
Enhancing Wing Dynamic Behavior by Using Piezo Actuators
,”
Recent Advances in Aerospace Actuation Systems and Components
,
Toulouse, France
, June.
24.
Callahan
,
J.
, and
Baruh
,
H.
, 1996, “
Active Control of Flexible Structures by Use of Segmented Piezoelectric Elements
,”
J. Guid. Control Dyn.
0731-5090,
19
, pp.
808
815
.
25.
Baruh
,
H.
, 1998,
Analytical Dynamics
,
McGraw-Hill
,
New York
.
26.
Iorga
,
L.
, 2006, “
Control Techniques of Piezoelectric Actuated Structures
,” Ph.D. thesis, Rutgers University, New Brunswick, NJ.
27.
Balas
,
M. J.
, 1978, “
Feedback Control of Flexible Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-23
(
4
), pp.
673
679
.
28.
Zames
,
G.
, 1966, “
On the Input-Output Stability of Nonlinear Time-Varying Feedback Systems (Parts I and II)
,”
IEEE Trans. Autom. Control
0018-9286,
AC-11
, pp.
228
465
.
29.
Zhou
,
K.
, and
Doyle
,
J. C.
, 1998,
Essentials of Robust Control
,
Prentice-Hall
,
Englewood Cliffs, NJ.
.
30.
Skogestad
,
S.
, and
Postlethwaite
,
I.
, 2005,
Multivariable Feedback Control: Analysis and Design
,
Wiley-Interscience
.
31.
Chen
,
B. M.
, 2000,
Robust and H∞ Control
,
Springer-Verlag
,
Berlin
.
32.
Zames
,
G.
, 1979, “
Feedback and Optimal Sensitivity: Model Reference Transformations, Weighted Seminorms and Approximate Inverses
,”
Proceedings of the 17th Allerton Conference
,
Monticello, IL
, pp.
744
752
.
33.
Doyle
,
J. C.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
, 1989, “
State-Space Solutions of Standard H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control
0018-9286,
34
(
8
), pp.
831
847
.
34.
Byun
,
K. W.
,
Wie
,
B.
,
Geller
,
D.
, and
Sunkel
,
J.
, 1991, “
Robust H∞ Control Design for the Space Station With Structured Parameter Uncertainty
,”
J. Guid. Control Dyn.
0731-5090,
14
(
6
),
1115
1122
.
35.
Balas
,
G. J.
,
Chiang
,
R.
,
Packard
,
A.
, and
Safonov
,
M.
, 2005,
Robust Control Toolbox
,
MathWorks
,
Natick, MA
.
36.
Benner
,
P.
,
Mehrmann
,
V.
,
Sima
,
V.
,
Van Huffel
,
S.
,
Varga
,
A.
, 1999, “
SLICOT—A Subroutine Library in Systems and Control Theory
,”
Applied and Computational Control, Signals, and Circuits
, Vol.
1
,
B. N.
Datta
, ed.,
Birkhäuser
,
Boston
, pp.
505
546
.
37.
Eaton
,
J. W.
, 2002,
GNU Octave Manual
,
Network Theory Limited
,
Bristol, UK
.
38.
Kar
,
I. N.
,
Miyakura
,
T.
, and
Seto
,
K.
, 2000, “
Bending and Torsional Vibration Control of a Flexible Plate Structure Using H∞-Based Robust Control Law
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
8
(
3
), pp.
545
553
.
39.
Varga
,
A.
, 2002, “
New Numerical Software for Model and Controller Reduction
,” Institut fur Robotik und Mechatronik, DLR Technical Report SLICOT Working Note No. 2002-5.
40.
Aouf
,
N.
,
Boulet
,
B.
, and
Botez
,
R.
, 2002, “
Model and Controller Reduction for Flexible Aircraft Preserving Robust Performance
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
(
2
), pp.
229
237
.
41.
Gajic
,
Z.
, and
Lelic
,
M.
, 2001, “
Improvement of System Order Reduction via Balancing Using the Method of Singular Perturbations
,”
Automatica
0005-1098,
37
, pp.
1859
1865
.
42.
Enns
,
D.
, 1984, “
Model Reduction for Control Systems Design
,” Ph.D. thesis, Stanford University, Stanford, CA.
43.
Baker
,
G. A.
, and
Graves-Morris
,
P.
, 1996,
Padé Approximants
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
44.
2006,
Control System Toolbox User’s Guide
, Mathworks Inc., Mar.
45.
Doyle
,
J. C.
, 1982, “
Analysis of Feedback Systems With Structured Uncertainties
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
129
, pp.
242
250
.
46.
Braatz
,
R. D.
,
Young
,
P. M.
,
Doyle
,
J. C.
, and
Morari
,
M.
, 1994, “
Computational-Complexity of μ-Calculation
,”
IEEE Trans. Autom. Control
0018-9286,
39
(
5
), pp.
1000
1002
.
47.
Rasheed
,
K.
,
Hirsh
,
H.
, and
Gelsey
,
A.
, 1997, “
A Genetic Algorithm for Continuous Design Space Search
,”
Artif. Intell. Eng.
0954-1810,
11
(
3
), pp.
295
305
.
You do not currently have access to this content.