A review is given on the progress in the study of general solutions of elasticity and their applications since 1972. Apart from summarizing and remarking the development of the general solution method in literature, this review aims to present the readers with a systematic and constructive scheme to develop general solutions from given governing differential equations and then to prove their completeness and investigate their nonuniqueness features. The effectiveness of the constructive scheme manifests itself in the fact that almost all the classic solutions, including not just classic displacement potentials but also classic stress functions, can be rederived by using this scheme. Furthermore, thanks to the systematic features of the scheme, it produces a constructive approach to study the completeness and nonuniqueness of general solutions and possesses more flexibility, which facilitates the extension of elastic general solution methods to more general systems governed by elliptic differential equations. Under the framework of this scheme, a comprehensive review is presented on wide application of general solutions in a variety of research areas, ranging from problems with different materials, isotropic or anisotropic, to various coupling problems, such as thermoelasticity, magnetoelasticity, piezoelectric elasticity, porous elasticity, and quasicrystal elasticity, and to problems of different engineering structures, for instance, the refined theories for beams and plates. There are 213 references cited in this review article.

1.
Muskhelishvili
,
N. I.
, 1963,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Wolters-Noordhoff
,
Groningen
.
2.
Sternberg
,
E.
, 1960, “
On Some Recent Development in the Linear Theory of Elasticity
,”
Structural Mechanics
,
Pergamon
,
Oxford
, pp.
48
73
.
3.
Teodorescu
,
P. P.
, 1964, “
One Hundred Years of Investigations in the Plane Problem of the Theory of Elasticity
,”
Appl. Mech. Rev.
0003-6900,
17
, pp.
175
186
.
4.
Teodorescu
,
P. P.
, 1956, “
On the General Three-Dimensional Solution to the Elastic Problem
,”
Ninth International Congress of Mechanics
,
Brussels
.
5.
Gurtin
,
M. E.
, 1972,
The Linear Theory of Elasticity
(
Encyclopedia of Physics
Vol.
6
a∕2),
S.
Flugge
, ed.,
Springer-Verlag
,
New York
.
6.
Love
,
A. F. H.
, 1927,
A Treatise on the Mathematical Theory of Elasticity
,
4th ed.
,
Cambridge University Press
,
Cambridge
.
7.
Lur’e
,
A. I.
, 1937, “
On the Theory of the System of Linear Differential Equations With the Constant Coefficients
,”
Trudy Leningrad, Industrial, in-ta
,
6
, pp.
31
36
.
8.
Neuber
,
H.
, 1964, “
On the General Solution of Linear-Elastic Problems in Isotropic and Anisotropic Cosserat Continua
,”
Proceedings of the International Congress for Applied Mechanics
, pp.
153
158
.
9.
Neuber
,
H.
, 1972, “
Vollstandigkeistbeweis des Dreifunktionenansatzes der Linearen Elastizitatstheorie
,”
Ing.-Arch.
0020-1154,
41
, pp.
232
234
.
10.
Heki
,
K.
, and
Habara
,
T.
, 1965, “
Introduction of Parametric Functions Into Analysis of Elastic Thin Plate
,”
Proceedings of the Japanese National Congress for Applied Mechanics
, pp.
1
4
.
11.
Zhang
,
H. Q.
, 1979, “
A United Theory on the General Solutions of Systems of Elasticity Equations
,”
J. Dalian Institute of Tech.
,
18
, pp.
25
47
.
12.
Baida
,
E. N.
, 1990,
Several Spatial Problems of Theory of Elasticity
,
South-East University Press
,
Nanjing
, in Chinese.
13.
Wang
,
M. Z.
, and
Wang
,
W.
, 1995, “
Completeness and Nonuniqueness of General Solutions of Transversely Isotropic Elasticity
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
501
513
.
14.
Wang
,
M. Z.
, 2002,
Advanced Theory of Elasticity
,
Peking University Press
,
Beijing
, in Chinese.
15.
Eubanks
,
R. A.
, and
Sternberg
,
E.
, 1956, “
On the Completeness of the Boussinesq–Papkovich Stress Functions
,”
J. Rat. Mech. Anal.
,
5
, pp.
735
746
.
16.
Boussinesq
,
J.
, 1885,
Application des Potentiels a l’Equilibre et des Mouvements des Solides Elastiques
,
Gauthier-Villars
,
Paris
.
17.
Galerkin
,
B.
, 1930, “On an Investigation of Stresses and Deformations in Elastic Isotropic Solids,” Dokl. Akad. Nauk SSSR, Ser. A, pp. 353–358.
18.
Wang
,
M. Z.
, 1991, “
Constructivity and Completeness of the General Solutions in Elasticity
,”
Acta Scie. Natural. Universitatis Pekinensis
,
27
, pp.
26
29
.
19.
Mindlin
,
R.
, 1936, “
Note on the Galerkin and Papkovich Stress Functions
,”
Bull. Am. Math. Soc.
0002-9904,
42
, pp.
373
376
.
20.
Sternberg
,
E.
, and
Gurtin
,
M. E.
, 1962, “
On the Completeness of Certain Stress Functions in the Linear Theory of Elasticity
,”
Proceedings of the Fourth U.S. National Congress for Applied Mechanics
, pp.
793
797
.
21.
Wang
,
M. Z.
, and
Xu
,
X. S.
, 1990, “
On Nonuniqueness of Boussinesq–Galerkin Solutions in Elasticity
,”
Chin. J. Appl. Mech.
,
7
, pp.
97
100
.
22.
Papkovich
,
P. F.
, 1932, “
The Representation of the General Integral of the Fundamental Equations of the Theory of Elasticity in Terms of Harmonic Functions
,”
Izv. Akad. Nauk SSSR, Fiz. Mat. Ser.
,
10
, pp.
1425
1435
.
23.
Neuber
,
H.
, 1934, “
Ein Neuer Ansats zur Losung Raumlicher Probleme der Elastizitatstheorie. Der Hohlkegel Unter Einzellast als Beispiel
,”
Z. Angew. Math. Mech.
0044-2267,
14
, pp.
203
212
.
24.
Wang
,
L. S.
, and
Wang
,
B. B.
, 1991, “
The Transformation of the Papkovich–Neuber (PN) General Solution and Others
,”
Acta Mech. Sin.
0459-1879,
23
, pp.
755
758
.
25.
Ter-Mkrtychan
,
L. N.
, 1947, “
On General Solutions of the Problems of the Theory of Elasticity
,”
Trudy Leningrad, Politekhn. in-ta
,
4
, pp.
3
38
.
26.
Naghdi
,
P. M.
, and
Hsu
,
C. S.
, 1961, “
On a Representation of Displacements in Linear Elasticity in Terms of Three Stress Functions
,”
J. Math. Mech.
0095-9057,
10
, pp.
233
245
.
27.
Wang
,
M. Z.
, 1985, “
The Naghdi–Hsu Solution and the Naghdi–Hsu Transformation
,”
J. Elast.
0374-3535,
15
, pp.
103
108
.
28.
Ton
,
T.-C.
, 1989, “
On the Completeness of the Papkovich–Neuber Solution
,”
Q. Appl. Math.
0033-569X,
47
, pp.
645
659
.
29.
Sokolnikoff
,
I. S.
, 1956,
Mathematical Theory of Elasticity
,
2nd ed.
,
McGraw-Hill
,
New York
.
30.
Stippes
,
M.
, 1969, “
Completeness of the Papkovich Potentials
,”
Q. Appl. Math.
0033-569X,
26
, pp.
477
483
.
31.
Ton
,
T.-C.
, 1989, “
On the Completeness of the Papkovich–Neuber Solution
,”
Q. Appl. Math.
0033-569X,
47
, pp.
645
659
.
32.
Millar
,
B. F.
, 1984, “
On the Completeness of the Papkovich Potentials
,”
Q. Appl. Math.
0033-569X,
41
, pp.
385
393
.
33.
Slobodyansky
,
M. G.
, 1959, “
On the General and Complete Form of Solutions of the Equations of Elasticity
,”
Prikl. Mat. Mekh.
0032-8235,
23
, pp.
468
482
;
Slobodyansky
,
M. G.
, 1959,
J. Appl. Math. Mech.
0021-8928
23
, pp.
666
685
.
34.
Golecki
,
J. J.
, 1974, “
Integral of Differential Equations in Elastostatics Through Determination of the Mean Stress
,”
Ing.-Arch.
0020-1154,
43
, pp.
331
344
.
35.
Golecki
,
J. J.
, 1975, “
Mean Stress Approach to Integration of Differential Equations in Elastostatics, and the Neuber–Papkovich and Galerkin Representations
,”
Ing.-Arch.
0020-1154,
44
, pp.
153
160
.
36.
Golecki
,
J. J.
, 1976, “
Uncoupled Solutions in Elastostatics
,”
Int. J. Eng. Sci.
0020-7225,
14
, pp.
177
180
.
37.
Piltner
,
R.
, 1987, “
The Use of Complex Valued Functions for the Solution of Three-Dimensional Elasticity Problems
,”
J. Elast.
0374-3535,
18
, pp.
191
225
.
38.
Piltner
,
R.
, 1989, “
On the Representation of Three-Dimensional Elasticity Solutions With the Aid of Complex Valued Functions
,”
J. Elast.
0374-3535,
22
, pp.
45
55
.
39.
Gurtin
,
M. E.
, 1962, “
On Helmholtz’s Theorem and the Completeness of the Papkovich–Neuber Stress Functions for Infinite Domains
,”
Arch. Ration. Mech. Anal.
0003-9527,
9
, pp.
225
233
.
40.
Slobodyansky
,
M. C.
, 1938, “
Expression of the Solution of the Differential Equations of Elasticity by Means of One, Two, and Three Functions and Proof of the Generality of These Solutions
,”
Uch. Zap. Gos. Univ.
,
24
, pp.
191
202
.
41.
Lekhnitskii
,
S. G.
, 1940, “
Symmetrical Deformation and Torsion of a Body of Revolution With Special Kind of Anisotropy
,”
Prikl. Mat. Mekh.
0032-8235,
4
, pp.
43
60
.
42.
Lekhnitskii
,
S. G.
, 1981,
Theory Elasticity of an Anisotropic Body
,
Mir
,
Moscow
.
43.
Eubanks
,
R. A.
, and
Sternberg
,
E.
, 1954, “
On the Axisymmetric Problems Elasticity Theory for a Medium With Transverse Isotropy
,”
J. Rat. Mech. Anal.
,
3
, pp.
89
101
.
44.
Hu
,
H. C.
, 1953, “
On the Three-Dimensional Problems of the Theory of a Transversely Isotropic Body
,”
Sci. Sin. (Beijing)
,
2
, pp.
215
217
.
45.
Nowacki
,
W.
, 1954, “
The Stress Function in Three-Dimensional Problems Concerning an Elastic Body Characterized by Transverse Isotropy
,”
Bull. Acad. Pol. Sci. [Biol]
0001-5087,
2
, pp.
21
25
.
46.
Elliott
,
H. A.
, 1948, “
Three-Dimensional Stress Distribution in Hexagonal Aeolotropic Crystals
,”
Proc. Cambridge Philos. Soc.
0068-6735,
44
, pp.
522
533
.
47.
Lodge
,
A. S.
, 1955, “
The Transformation to Isotropic Form of the Equilibrium Equations for a Class of Anisotropic Elastic Solids
,”
Q. J. Mech. Appl. Math.
0033-5614,
8
, pp.
211
225
.
48.
Wang
,
W.
, and
Shi
,
M. X.
, 1998, “
On the General Solutions of Transversely Isotropic Elasticity
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
3283
3297
.
49.
Wang
,
M. Z.
, 1981, “
On the Completeness of Hu Hai–Chang’s Solution
,”
Appl. Math. Mech.
0253-4827,
2
, pp.
43
250
.
50.
Ding
,
H. J.
,
Chen
,
W. Q.
, and
Zhang
,
L. C.
, 2005,
Elasticity of Transversely Isotropic Materials
,
Springer
,
Netherlands
.
51.
Chen
,
W. T.
, 1966, “
On Some Problems in Transversely Isotropic Elastic Materials
,”
J. Appl. Mech.
0021-8936,
33
, pp.
347
355
.
52.
Alexandarov
,
A. Y.
, and
Soloviev
,
I. I.
, 1978,
Three-Dimensional Problems of Theory of Elasticity
,
Nauka
,
Moscow
, in Russian.
53.
Pan
,
Y. C.
, and
Chou
,
T. W.
, 1976, “
Point Force Solution for an Infinite Transversely Isotropic Solid
,”
J. Appl. Mech.
0021-8936,
43
, pp.
608
612
.
54.
Pan
,
Y. C.
, and
Chou
,
T. W.
, 1979, “
Green’s Function Solutions for Semi-Infinite Transversely Isotropic Materials
,”
Int. J. Eng. Sci.
0020-7225,
17
, pp.
543
551
.
55.
Pan
,
Y. C.
, and
Chou
,
T. W.
, 1979, “
Green’s Functions for Two-Phase Transversely Isotropic Materials
,”
J. Appl. Mech.
0021-8936,
46
, pp.
551
556
.
56.
Okumura
,
I. A.
, 1987, “
Generalization of Elliott’s Solution to Transversely Isotropic Solids and Its Application
,”
Struct. Eng./Earthquake Eng.
0289-8063,
4
, pp.
185
195
.
57.
Zureick
,
A. H.
, and
Eubanks
,
R. A.
, 1988, “
Spheroidal Cavity With Prescribed Asymmetric Tractions in Three-Dimensional Transverse Isotropy
,”
J. Eng. Mech.
0733-9399,
114
, pp.
24
28
.
58.
Ding
,
H. J.
, and
Xu
,
B. H.
, 1988, “
General Solutions for Axisymmetric Problems in Transversely Isotropic Body
,”
Appl. Math. Mech.
0253-4827,
9
, pp.
143
151
.
59.
Horgan
,
C. O.
, and
Simmonds
,
J. G.
, 1991, “
Asymptotic Analysis of an End-Loaded Transversely Isotropic Elastic, Semi-Infinite Strip Weak in Shear
,”
Int. J. Solids Struct.
0020-7683,
27
, pp.
1895
1914
.
60.
Fabrikant
,
V. I.
, 1996, “
Complete Solution to the Problem of an External Circular Crack in a Transvesely Isotropic Body Subjected to Arbitary Shear Loading
,”
Int. J. Solids Struct.
0020-7683,
27
, pp.
1895
1914
.
61.
Wang
,
M. Z.
, and
He
,
B. C.
, 1991, “
A Note on the Completeness of Hu Hai–Chang’s Solution
,”
Appl. Math. Mech.
0253-4827,
10
, pp.
571
576
.
62.
Xu
,
X. S.
, and
Wang
,
M. Z.
, 1993, “
The Equivalence Between Boussinesq–Galerkin Solution and Hu Hai–Chang Solution in Elasticity
,”
Acta Mech. Sin.
0459-1879,
25
, pp.
237
241
.
63.
Chen
,
W. O.
,
Lee
,
K. Y.
, and
Ding
,
H. J.
, 2004, “
General Solution for Transversely Isotropic Magento- Electro- Thermo- Elasticity and Potential Theory Method
,”
Int. J. Eng. Sci.
0020-7225,
42
, pp.
1361
1379
.
64.
Morteza
,
E. G.
, 2005, “
A Complete Solution of the Wave Equations for Transversely Isotropic Media
,”
J. Elast.
0374-3535,
81
, pp.
1
19
.
65.
Wang
,
M. Z.
, 1980, “
A Derivation of Complex Variable Formula in Plane Elasticity
,”
Acta Scientiarum Naturalium, Universitatis Pekinensis
,
16
, pp.
43
46
.
66.
Nagatani
,
K.
, 1975, “
Some Properties of Displacement Functions of Problems of Two-Dimensional Elasticity
,”
Trans. Jpn. Soc. Mech. Eng.
0375-9466,
41
, pp.
3494
3496
.
67.
Golecki
,
J. J.
, 1974, “
On Many Valuedness of the Neuber–Papkovich in Two-Dimensional Elasticity
,”
Mech. Res. Commun.
0093-6413,
1
, pp.
85
74
.
68.
Eshelby
,
J. D.
,
Read
,
W. T.
, and
Shockley
,
W.
, 1953, “
Anisotropic Elasticity With Applications to Dislocation Theory
,”
Acta Metall.
0001-6160,
1
, pp.
251
259
.
69.
Stroh
,
A. N.
, 1958, “
Dislocation and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
0031-8086,
7
, pp.
625
646
.
70.
Stroh
,
A. N.
, 1962, “
Steady State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
0022-2488,
41
, pp.
77
103
.
71.
Barnett
,
D. M.
, and
Lothe
,
J.
, 1973, “
Synthesis of the Sextic and the Integral Formalism for Dislocations, Green’s Functions, and Surface Waves in Anisotropic Elastic Solids
,”
Phys. Norv.
0031-8930,
17
, pp.
13
19
.
72.
Ting
,
T. C. T.
, 1988, “
Some Identities and the Structure of Ni in the Stroh Formalism of Anisotropic Elasticity
,”
Q. Appl. Math.
0033-569X,
46
, pp.
109
120
.
73.
Ting
,
T. C. T.
, 1991, “
The Stroh Formalism and Certain Invariances in Two-Dimensional Anisotropic Elasticity
,” in
Modern Theory of Anisotropic Elasticity and Applications
(
SIAM Proceeding Series
),
J. J.
Wu
,
T. C. T.
Ting
, and
D. M.
Barnett
, eds.,
SIAM
,
Philadelphia, PA
, pp.
3
12
.
74.
Suo
,
Z.
,
Kuo
,
C. M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
, 1992, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
739
765
.
75.
Ting
,
T. C. T.
, 1996,
Anisotropic Elasticity: Theory and Applications
,
Oxford University Press
,
Oxford
.
76.
Ting
,
T. C. T.
, 2000, “
Recent Developments in Anisotropic Elasticity
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
401
409
.
77.
Gao
,
C. F.
, and
Wang
,
M. Z.
, 2000, “
Collinear Permeable Cracks Between Dissimilar Piezoelectric Materials
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
4969
4986
.
78.
Gao
,
C. F.
, and
Wang
,
M. Z.
, 2001, “
Green’s Functions of an Interfacial Crack Between Two Dissimilar Piezoelectric Media
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
5323
5334
.
79.
Gao
,
C. F.
,
Zhao
,
Y. T.
, and
Wang
,
M. Z.
, 2000, “
An Exact and Explicit Treatment of an Elliptic Hole Problem in Thermopiezoelectric Media
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2665
2685
.
80.
Yin
,
W. L.
, 2000, “
Deconstructing Plane Anisotropic Elasticity, Part I: The Latent Structure of Lekhnitskii’s Formalism
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
5257
5276
.
81.
Yin
,
W. L.
, 2000, “
Deconstructing Plane Anisotropic Elasticity, Part II: Stroh’s Formalism
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
5277
5296
.
82.
Guo
,
F. L.
, and
Zheng
,
Q. S.
, 2003, “
The Completeness and a New Derivation of the Stroh Formalism of Anisotropic Linear Elasticity
,”
Acta Mech. Sin.
0459-1879,
19
, pp.
270
275
.
83.
Lu
,
P.
, 1994, “
Stroh Type Formalism for Unsymmmetric Laminated Plate
,”
Mech. Res. Commun.
0093-6413,
21
, pp.
249
254
.
84.
Ding
,
H. J.
,
Wang
,
G. Q.
, and
Chen
,
W. Q.
, 1997, “
Green’s Functions for a Two-Phase Infinite Piezoelectric Plane
,”
Proc. R. Soc. London, Ser. A
1364-5021,
453
, pp.
2241
2257
.
85.
Ding
,
H. J.
,
Wang
,
G. Q.
, and
Chen
,
W. Q.
, 1997, “
General Solution of Plane Problem of Piezoelectric Media Expressed by Harmonic Functions
,”
Appl. Math. Mech.
0253-4827,
18
, pp.
757
764
.
86.
Michell
,
J. H.
, 1900, “
The Uniform Torsion and Flexure of Incomplete Tores, With Application to Helical Springs
,”
Proc. London Math. Soc.
0024-6115,
31
, pp.
130
146
.
87.
Timpe
,
A.
, 1924, “
Achensymmetrische Deformation von Under Hungsorpern
,”
Z. Angew. Math. Mech.
0044-2267,
4
, pp.
361
376
.
88.
Noll
,
W.
, 1957, “
Verschiebungsfunktionen Fuer Elastische Schwingungsprobleme
,”
Z. Angew. Math. Mech.
0044-2267,
37
, pp.
81
87
.
89.
Carlson
,
D. E.
, 1983, “
A Note on the Solutions of Boussinesq, Love, and Marguerre in Axisymmetric Elasticity
,”
J. Elast.
0374-3535,
13
, pp.
345
349
.
90.
Wang
,
M. Z.
, 1988, “
On the Completeness of Solutions of Boussinesq, Timpe, Love and Michell in Axisymmetric Elasticity
,”
J. Elast.
0374-3535,
19
, pp.
85
92
.
91.
Ton
,
T.-C.
, 1995, “
On the Completeness and Uniqueness of the Papkovich–Neuber and the Nonaxisymmetric Boussinesq, Love, and Burgatti solutions in General Cylindrical Coordinates
,”
J. Elast.
0374-3535,
36
, pp.
227
255
.
92.
Ton
,
T.-C.
, 1979, “
On the Equivalence Between Boussinesq and Timpe Approaches to the Torsion-Free Axisymmetric Problems of Elasticity
,”
J. Appl. Phys.
0021-8979,
50
, pp.
3906
3908
.
93.
Simmonds
,
J. G.
, 2000, “
Love’s Stress Function for Torsionless Axisymmetric Deformation of Elastically Isotropic Bodies With Body Forces
,”
J. Appl. Mech.
0021-8936,
67
, pp.
628
629
.
94.
Lou
,
Y. C.
, and
Wang
,
M. Z.
, 2003, “
Michell’s General Solutions for Torsionless Axisymmetric Problems With Body Forces in Elasticity
,”
J. Appl. Mech.
0021-8936,
70
, pp.
448
449
.
95.
Ding
,
H. J.
, 1987, “
On the Stress Function of Axisymmetric Deformation in a Solid of Revolution
,”
Shanghai J. Mech.
,
8
, pp.
42
48
.
96.
Thomson
,
W.
, 1848, “
On the Equations of Equilibrium of an Elastic Solid
,”
Cambr. Dubl. Math. J.
,
3
, pp.
87
89
.
97.
Sternberg
,
F.
, and
Eubanks
,
R. A.
, 1955, “
On the Concept of Concentrated Loads and an Extension of the Uniqueness Theorem in the Linear Theory of Elasticity
,”
J. Ration. Mech. Anal.
,
4
, pp.
135
168
.
98.
Turteltaub
,
M. J.
, and
Sternberg
,
E.
, 1968, “
On Concentrated Loads and Green’s Functions in Elastostatics
,”
Arch. Ration. Mech. Anal.
0003-9527,
29
, pp.
193
240
.
99.
Mura
,
T.
, 1987,
Micromechanics of Defects in Solids
,
Martinus Nijhoff
,
Dordrecht
.
100.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
101.
Wang
,
M. Z.
, and
Xu
,
B. X.
, 2004, “
The Arithmetic Mean Theorem of Eshelby Tensor for a Rotational Symmetrical Inclusion
,”
J. Elast.
0374-3535,
77
, pp.
13
23
.
102.
Wang
,
M. Z.
, and
Xu
,
B. X.
, 2006, “
The Arithmetic Mean Theorem of Eshelby Tensor for Exterior Points Outside the Rotational Symmetrical Inclusion
,”
J. Appl. Mech.
0021-8936,
73
, pp.
672
678
.
103.
Xu
,
B. X.
, and
Wang
,
M. Z.
, 2005, “
Special Properties of Eshelby Tensor for a Regular Polygonal Inclusion
,”
Acta Mech. Sin.
0459-1879,
21
, pp.
267
271
.
104.
Xu
,
B. X.
, and
Wang
,
M. Z.
, 2005, “
The Quasi Eshelby Property for Rotational Symmetric Inclusions of Uniform Eigencurvatures Within an Infinite Plate
,”
Proc. R. Soc. London, Ser. A
1364-5021,
461
, pp.
2899
2910
.
105.
Xu
,
B. X.
, and
Wang
,
M. Z.
, 2007, “
The Arithmetic Mean Property for Rotational Symmetrical Inclusions With Rotational Symmetrical Eigenstrains
,”
ZAMM
0044-2267,
87
(
1
), pp.
59
69
.
106.
Franciosi
,
P.
, 2005, “
On the Modified Green Operator Integral for Polygonal, Polyhedral and Other Nonellipsoidal Inclusions
,”
Int. J. Solids Struct.
0020-7683,
42
(
11–12
), pp.
3509
3531
.
107.
Zheng
,
Q. S.
,
Zhao
,
Z. H.
, and
Du
,
D. X.
, 2006, “
Irreducible Structure, Symmetry and Average of Eshelby’s Tensor Fields in Isotropic Elasticity
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
368
393
.
108.
Wang
,
M. Z.
, 1988, “
Brebbia’s Indirect Representation and the Completeness of Papkovich–Neuber’s and Boussinesq–Galerkin’s Solutions in Elasticity
,”
Appl. Math. Model.
0307-904X,
12
, pp.
333
335
.
109.
Yan
,
G. P.
, and
Wang
,
M. Z.
, 1988, “
Somigliana Formula and the Completeness of Papkovich–Neuber and Boussinesq–Galerkin Solutions in Elasticity
,”
Mech. Res. Commun.
0093-6413,
15
, pp.
73
77
.
110.
Neuber
,
H.
, 1937,
Kerbspannungslehre
,
Springer
,
Berlin
.
111.
Uflyand
,
Y. S.
, 1963,
Integral Transforms in the Theory of Elasticity
,
Academia Science SSSR
,
Leningrad
, in Russian.
112.
Kassir
,
M. K.
, and
Sih
,
G. C.
, 1973, “
Application of Papkovich–Neuber Potentials to a Crack Problem
,”
Int. J. Solids Struct.
0020-7683,
9
, pp.
643
654
.
113.
Kassir
,
M. K.
, and
Sih
,
G. C.
, 1975,
Three-Dimensional Crack Problems, Mechanics of Fracture 2
,
Noordhoff International
,
Leyden
.
114.
Meade
,
K. P.
, and
Keer
,
L. M.
, 1984, “
On the Problem of a Pair of Point Forces Applied to the Faces of a Semi-Infinite Plane Crack
,”
J. Elast.
0374-3535,
14
, pp.
3
14
.
115.
Huang
,
K. F.
, and
Wang
,
M. Z.
, 1990, “
The Interface Crack Problem of the Bi-Material Elastic Body
,”
Acta Mech. Sin.
0459-1879,
22
, pp.
363
365
.
116.
Lur’e
,
A. I.
, 1964,
Three-Dimensional Problems of the Theory of Elasticity
,
Interscience
,
New York
.
117.
Wang
,
M. Z.
, 1980, “
On the Solution for Several Boundary Value in Half-Space Elasticity
,”
Acta Scientiarum Naturalium, Universitatis Pekinensis
,
16
, pp.
36
42
.
118.
Phan-Thien
,
N.
, 1983, “
On the Image System for the Kelvin State
,”
J. Elast.
0374-3535,
13
, pp.
231
235
.
119.
Lorentz
,
H. A.
, 1907, “
Ein Allgemeiner Staz, Die Bewegung Einer Reibenden Flssigkeit Betreffend, Nebst Einigen Anwendungen Desselben
,”
Abh. Theor. Phys. Leipzig
,
1
, pp.
23
42
.
120.
Mindlin
,
R. D.
, 1953, “
Force at a Point in the Interior of a Semi-Infinite Solid
,”
Proceedings of the First Midwest Conference on Solid Mechanics
.
121.
Huang
,
K. F.
, and
Wang
,
M. Z.
1991, “
Fundamental Solution of Bimaterial Elastic Space
,”
Sci. China, Ser. A: Math., Phys., Astron. Technol. Sci.
1001-6511,
34
, pp.
309
315
.
122.
Panc
,
V.
, 1975,
Theories of Elastic Plates
,
Noordhoff International Publishing
,
Leyden, Czechoslovakia
.
123.
Friedrichs
,
K. O.
, and
Dressler
,
R. F.
, 1961, “
A Boundary-Layer Theory for Elastic Plates
,”
Commun. Pure Appl. Math.
0010-3640,
14
, pp.
2
33
.
124.
Naghdi
,
P. M.
, 1972,
The Theory of Shells and Plates
(
Encyclopedia of Physics
Vol.
a∕2
),
S.
Flugge
, ed.,
Springer-Verlag
,
New York
.
125.
Piltner
,
R.
, 1992, “
The Derivation of a Thick and Thin Plate Formulation Without Ad Hoc Assumptions
,”
J. Elast.
0374-3535,
29
, pp.
133
173
.
126.
Ladevèze
,
P.
, 2002, “
The Exact Theory of Plate Bending
,”
J. Elast.
0374-3535,
68
(
1–3
), pp.
37
71
.
127.
Ladevèze
,
P.
, and
Simmonds
,
J.
, 1998, “
New Concepts for Linear Beam Theory With Arbitrary Geometry and Loading
,”
Eur. J. Mech. A/Solids
0997-7538,
17
(
3
), pp.
377
402
.
128.
Ladevèze
,
P.
, and
Simmonds
,
J.
, 2001, “
An Exact Theory for Circular, End-Loaded, Anisotropic Beams of Narrow Rectangular Cross Section
,”
J. Elast.
0374-3535,
63
(
2
), pp.
153
170
.
129.
Ladevèze
,
P.
, and
Simmonds
,
J.
, 2001, “
The Exact One-Dimensional Theory for End-Loaded Fully Anisotropic Beams of Narrow Rectangular Cross Section
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
68
(
6
), pp.
865
868
.
130.
Gregory
,
R. D.
, and
Wan
,
F. Y. M.
, 1985, “
On Plate Theories and Saint Venant’s Principle
,”
Int. J. Solids Struct.
0020-7683,
21
, pp.
1005
1024
.
131.
Wan
,
F. Y. M.
, 2003, “
Stress Boundary Conditions for Plate Bending
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
4107
4123
.
132.
Cheng
,
S.
, 1979, “
Elasticity Theory of Plates and a Refined Theory
,”
J. Appl. Mech.
0021-8936,
46
, pp.
644
650
.
133.
Barrett
,
K. E.
, and
Ellis
,
S.
, 1988, “
An Exact Theory of Elastic Plates
,”
Int. J. Solids Struct.
0020-7683,
24
, pp.
859
880
.
134.
Wang
,
F. Y.
, 1990, “
Two-Dimensional Theories Deduced From Three-Dimensional Theory for a Transversely Isotropic Body-I. Plate Problems
,”
Int. J. Solids Struct.
0020-7683,
26
, pp.
445
470
.
135.
Wang
,
F. Y.
, 1991, “
Two-Dimensional Theories Deduced From Three-Dimensional Theory for a Transversely Isotropic Body-II. Plane Problems
,”
Int. J. Solids Struct.
0020-7683,
28
, pp.
161
177
.
136.
Wang
,
W.
, and
Shi
,
M. X.
, 1997, “
Thick Plate Theory Based on General Solutions of Elasticity
,”
Acta Mech.
0001-5970,
123
, pp.
27
36
.
137.
Gregory
,
R. D.
, 1979, “
Green’s Functions, Bilinear Forms, and Completeness of the Eigenfunctions for the Elastostatic Strip and Wedge
,”
J. Elast.
0374-3535,
9
, pp.
283
309
.
138.
Gregory
,
R. D.
, 1980, “
The Traction Boundary Value Problem for the Elastostatic Semi-Infinite Strip, Existence of Solution, and Completeness of the Papkovich–Fadle Eigenfunctions
,”
J. Elast.
0374-3535,
10
, pp.
295
327
.
139.
Gregory
,
R. D.
, 1992, “
The General Form of the Three-Dimensional Elastic Field Inside an Isotropic Plate With Free Faces
,”
J. Elast.
0374-3535,
28
, pp.
1
28
.
140.
Zhao
,
B. S.
, and
Wang
,
M. Z.
, 2003, “
The Decomposed Form of the Three-Dimensional Elastic Plate
,”
Acta Mech.
0001-5970,
166
, pp.
207
216
.
141.
Zhao
,
B. S.
, and
Wang
,
M. Z.
, 2005, “
Equivalence of the Refined Theory and the Decomposed Theorem of an Elastic Plate
,”
Appl. Math. Mech.
0253-4827,
26
(
4
), pp.
486
494
.
142.
Lo
,
K. H.
,
Christensen
,
R. M.
, and
Wu
,
E. M.
, 1977, “
A Higher Order Theory for Plate Deformations, Part 2: Laminated Plates
,”
ASME J. Appl. Mech.
0021-8936,
44
, pp.
669
676
.
143.
Levinson
,
M.
, 1981, “
A New Rectangular Beam Theory
,”
J. Sound Vib.
0022-460X,
74
, pp.
81
87
.
144.
Levinson
,
M.
, 1981, “
Further Results of a New Beam Theory
,”
J. Sound Vib.
0022-460X,
77
, pp.
440
444
.
145.
Levinson
,
M.
, 1986, “
Consistent and Inconsistent Higher Order Beam and Plate Theories: Some Surprising Comparisons
,”
Proceedings of Euromech Colloquium 219 on Refined Dynamical Theories of Beams, Plates and Shells and Their Applications
,
Kassel FR, Germany
, pp.
122
130
.
146.
Fan
,
H.
, and
Widera
,
G. E. O.
, 1992, “
Refined Engineering Beam Theory Based on the Asymptotic Expansion Approach
,”
AIAA J.
0001-1452,
29
, pp.
444
449
.
147.
Kathnelson
,
A. N.
, 1996, “
Improved Engineering Theory for Uniform Beams
,”
Acta Mech.
0001-5970,
114
, pp.
225
229
.
148.
Reddy
,
J. N.
,
Wang
,
C. M.
,
Lim
,
C. T.
, and
Ng
,
K. H.
, 2001, “
Bending Solutions of Levison Beams and Plates in Terms of the Classical Theories
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
4701
4720
.
149.
Gao
,
Y.
, and
Wang
,
M. Z.
, 2004, “
The Refined Theory of Magnetoelastic Beams
,”
Acta Mech.
0001-5970,
173
, pp.
147
161
.
150.
Gao
,
Y.
, and
Wang
,
M. Z.
, 2005, “
Equivalence of Refined Theory and Decomposed Theory of Thermoelastic Beams Under Steady Temperature
,”
Chin. J. Appl. Mech.
,
22
, pp.
164
168
.
151.
Gao
,
Y.
, and
Wang
,
M. Z.
, 2005, “
The Refined Beam Theory Based on the Refined Beam Plate
,”
Acta Mech.
0001-5970,
177
, pp.
191
206
.
152.
Gao
,
Y.
, and
Wang
,
M. Z.
, 2007, “
The Equivalence of the Refined Theory and the Decomposed Theorem of Rectangular Beams
,”
Appl. Math. Model.
0307-904X,
31
(
3
), pp.
551
563
.
153.
Schaefer
,
H.
, 1953, “
Die Spannungsfunktionen des Dreidimensionalen Kontinuums und des Elastischen Krpers
,”
Z. Angew. Math. Mech.
0044-2267,
33
, pp.
356
362
.
154.
Gurtin
,
M. E.
, 1963, “
A Generalization of the Beltrami Stress Functions in Continuum Mechanics
,”
Arch. Ration. Mech. Anal.
0003-9527,
13
, pp.
321
329
.
155.
Wang
,
M. Z.
, 1995, “
Generalized Inverse of Matrices and Stress Function
,”
Proceedings of Modern Mathematical Mechanics of China
, Vol.
16
, pp.
139
145
.
156.
Yin
,
H. M.
, and
Wang
,
M. Z.
, 1998, “
Stress Functions in Two-Dimensional, Three-Dimensional, and n-Dimensional Elasticity
,”
Acta Scientiarum Naturalium, Universitatis Pekinensis
,
34
, pp.
21
26
.
157.
Rao
,
C. R.
, and
Mitra
,
S. K.
, 1974,
Generalized Inverse of Matrices and Its Applications
,
Wiley
,
New York
.
158.
Rostamian
,
R.
, 1979, “
The Completeness of Maxwell’s Stress Function Representation
,”
J. Elast.
0374-3535,
9
, pp.
349
356
.
159.
Shen
,
H. C.
, 1982, “
Dynamic Stress Function Tensor
,”
Appl. Math. Mech.
0253-4827,
3
, pp.
829
834
.
160.
Hackl
,
K.
, and
Zastrow
,
V.
, 1988, “
On the Existence, Uniqueness and Completeness of Displacements and Stress Functions in Linear Elasticity
,”
J. Elast.
0374-3535,
19
, pp.
3
23
.
161.
Pobedria
,
B. E.
, 1980, “
A New Formulation of the Problem of the Mechanics of a Deformable Solid in Stresses
,”
Dokl. Akad. Nauk SSSR
0002-3264,
253
, pp.
295
297
;
Pobedria
,
B. E.
, 1980,
Sov. Math. Dokl.
0197-6788,
22
, pp.
88
91
.
162.
Pobedria
,
B. E.
, 1979, “
Some General Theorems of the Mechanics of a Deformable Solid
,”
Prikl. Mat. Mekh.
0032-8235,
43
, pp.
531
541
.
163.
Pobedria
,
B. E.
, 1994, “
A Problem in Stresses for an Anisotropic Medium
,”
Prikl. Mat. Mekh.
0032-8235,
58
, pp.
77
85
;
Pobedria
,
B. E.
, 1994,
J. Appl. Math. Mech.
0021-8928,
58
, pp.
81
89
.
164.
Kucher
,
V. A.
,
Markenscoff
,
X.
, and
Paukshto
,
M. V.
, 2004, “
Some Properties of the Boundary Value Problem of Linear Elasticity in Terms of Stresses
,”
J. Elast.
0374-3535,
74
, pp.
135
145
.
165.
Teodorescu
,
P. P.
, 1972, “
Stress Functions in Three-Dimensional Elastodynamics
,”
Acta Mech.
0001-5970,
14
(
2–3
), pp.
103
118
.
166.
Sternberg
,
E.
, and
Eubanks
,
R. A.
, 1957, “
On Stress Functions for Elastokinetics and the Integration of the Repeated Wave Equation
,”
Q. Appl. Math.
0033-569X,
15
(
2
), pp.
149
153
.
167.
Payne
,
L. E.
, 1959, “
Representation Formulas for Solutions of a Class of Partial Differential Equations
,”
J. Math. Phys.
0022-2488,
83
, pp.
145
149
.
168.
Aderogba
,
K.
, 1976, “
On Stokelets in a Two-Fluid Space
,”
J. Eng. Math.
0022-0833,
10
, pp.
143
151
.
169.
Ton
,
T.-C.
, and
Blake
,
J. B.
, 1982, “
General Solutions of the Stokes’ Flow Equations
,”
J. Math. Anal. Appl.
0022-247X,
90
, pp.
72
84
.
170.
Wang
,
L. N.
, and
Wang
,
M. Z.
, 1990, “
On the Stokes Entry Flow Into a Semi-Infinite Circular Cylindrical Tube
,”
Appl. Math. Mech.
0253-4827,
11
, pp.
479
487
.
171.
Xu
,
X. S.
, and
Wang
,
M. Z.
, 1991, “
The Use of Complex Valued Functions for the Solution of Spatial Stokes Flow
,”
Acta Scientiarum Naturalium, Universitatis Pekinensis
,
27
, pp.
22
25
.
172.
Xu
,
X. S.
, and
Wang
,
M. Z.
, 1991, “
General Complete Solutions of the Equations of Spatial and Axisymmetric Stokes Flow
,”
Q. J. Mech. Appl. Math.
0033-5614,
44
, pp.
537
548
.
173.
Xu
,
X. S.
, and
Wang
,
M. Z.
, 1992, “
The Axisymmetric Solutions of Stokes and Ideal Flows With the Aid of the Analytic Functions
,”
Appl. Math. (Germany)
0862-7940,
5
, pp.
90
94
.
174.
Shen
,
H. C.
, 1985, “
General Solution of Elastodynamics
,”
Appl. Math. Mech.
0253-4827,
6
, pp.
791
796
.
175.
Poruchikov
,
V. B.
, 1986,
Method of Elastodynamics
,
Nauka
,
Moscow
, in Russian.
176.
Wang
,
W.
, and
Wang
,
M. Z.
, 1992, “
Constructivity and Completeness of the General Solutions in Elastodynamics
,”
Acta Mech.
0001-5970,
91
, pp.
209
214
.
177.
Biot
,
M. A.
, 1956, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
0021-8979,
27
, pp.
240
253
.
178.
Verruijt
,
A.
, 1969, “
The Completeness of Biot’s Solution of the Coupled Thermoelastic Problem
,”
Q. Appl. Math.
0033-569X,
26
, pp.
485
490
.
179.
Qing
,
C. B.
, and
Wang
,
M. Z.
, 1989, “
A New Proof of Completeness of General Solutions in Thermoelasticity
,”
Chin. J. Appl. Mech.
,
6
, pp.
80
82
.
180.
Wang
,
M. Z.
, and
Huang
,
K. F.
, 1991, “
Thermoelastic Problem in the Half Space u an Application of the General Solution in Elasticity
,”
Appl. Math. Mech.
0253-4827,
12
, pp.
849
862
.
181.
Ding
,
H. J.
,
Guo
,
F. L.
, and
Hou
,
P. F.
, 2000, “
General Solution of Coupled Thermoelastic Problem
,”
Appl. Math. Mech.
0253-4827,
21
, pp.
631
636
.
182.
McName
,
J.
, and
Gibson
,
R. E.
, 1960, “
Plane Strain and Axially Symmetric Problems of the Consolidation of Semi-Infinite Clay Stratum
,”
Q. J. Mech. Appl. Math.
0033-5614,
13
, pp.
210
227
.
183.
Biot
,
M. A.
, 1940, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
0021-8979,
12
, pp.
155
164
.
184.
Aifantis
,
E. C.
, 1980, “
On the Problem of Diffusion in Solid
,”
Acta Mech.
0001-5970,
37
, pp.
265
296
.
185.
Unger
,
D. J.
, 1988, “
Completeness of Solutions in the Double Porosity Theory
,”
Acta Mech.
0001-5970,
75
, pp.
269
274
.
186.
Chandrasekharaiah
,
D. S.
, 1987, “
Complete Solutions in the Theory of Elastic Materials With Voids
,”
Q. J. Mech. Appl. Math.
0033-5614,
40
, pp.
401
414
.
187.
Chandrasekharaiah
,
D. S.
, and
Cowin
,
S. C.
, 1989, “
Unified Complete Solutions for the Theories of Thermoelasticity and Poroelasticity
,”
J. Elast.
0374-3535,
21
, pp.
121
126
.
188.
Xu
,
Y.
, and
Wang
,
M. Z.
, 1994, “
General Solutions and Completeness on Elastodynamics With Double Porosity
,”
Acta Scientiarum Naturalium, Universitatis Pekinensis
,
30
, pp.
339
342
.
189.
Nowacki
,
W.
, 1969, “
On the Completeness of Potentials in Micropolar Elasticity
,”
Arch. Mech. Stosow.
0004-0800,
21
, pp.
107
122
.
190.
Bors
,
C. I.
, 1981, “
Deformable Solids With Microstructure Having a Symmetric Stress Tensor
,”
An. Sti. Univ. Iasi
,
27
, pp.
177
184
.
191.
Wang
,
M. Z.
, 1988, “
Generalized Theory of Elasticity
,”
Sci. China, Ser. A
,
31
, pp.
1213
1221
.
192.
Brown
,
W. F.
, 1966,
Magnetoelastic Interactions
,
Springer-Verlag
,
Berlin
.
193.
Pao
,
Y. H.
, and
Yeh
,
C. S.
, 1973, “
A Linear Theory for Soft Ferromagnetic Elastic Solids
,”
Int. J. Eng. Sci.
0020-7225,
11
, pp.
415
436
.
194.
Huang
,
K. F.
, and
Wang
,
M. Z.
, 1995, “
Complete Solution of the Linear Magnetoelasticity and the Magnetic Fields in a Magnetized Elastic Half Space
,”
J. Appl. Mech.
0021-8936,
62
, pp.
930
934
.
195.
Wang
,
Z. K.
, and
Zheng
,
B. L.
, 1995, “
The General Solution of Three-Dimensional Problems in Piezoelectric Media
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
105
115
.
196.
Ding
,
H. J.
,
Chen
,
B.
, and
Liang
,
J.
, 1996, “
General Solutions for Coupled Equations for Piezoelectric Media
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2283
2298
.
197.
Gao
,
C. F.
,
Kessler
,
H.
, and
Balke
,
H.
, 2003, “
Crack Problems in Magnetoelectroelastic Solids. Part II: General Solution of Collinear Cracks
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
983
994
.
198.
Ding
,
H. J.
,
Guo
,
F. L.
,
Hou
,
P. F.
, and
Chi
,
Y. W.
, 1999, “
A General Solution for Static Piezothermoelectric Problems of Crystal Class 6mm Solids
,”
Acta Mech. Solida Sin.
,
12
, pp.
189
197
.
199.
Ding
,
H. J.
,
Guo
,
F. L.
, and
Hou
,
P. F.
, 2000, “
A General Solution for Piezothermoelasticity of Transversely Isotropic Piezoelectric Materials and Its Applications
,”
Int. J. Eng. Sci.
0020-7225,
38
, pp.
1415
1440
.
200.
Ding
,
H. J.
,
Wang
,
H. M.
, and
Chen
,
W. Q.
, 2001, “
The General Solution of Spherically Isotropic Piezoelectric Media and Its Applications
,”
Mech. Res. Commun.
0093-6413,
28
, pp.
389
396
.
201.
Ru
,
C. Q.
, 2000, “
Electrode-Ceramic Interfacial Cracks in Piezoelectric Multilayer Materials
,”
J. Appl. Mech.
0021-8936,
67
, pp.
255
261
.
202.
Shechtman
,
D.
,
Blech
,
I.
,
Gratias
,
D.
, and
Cahn
,
J. W.
, 1984, “
Metallic Phase With Long-Range Orientational and No Translational Symmetry
,”
Phys. Rev. Lett.
0031-9007,
53
, pp.
1951
1953
.
203.
Li
,
X. F.
, and
Fan
,
T. Y.
, 1998, “
New Method for Solving Elasticity Problems of Some Planar Quasicrystals and Solutions
,”
Chin. Phys. Lett.
0256-307X,
15
, pp.
278
280
.
204.
Fan
,
T. Y.
, 1999,
Mathematical Theory of Elasticity of Quasi-Crystals and Its Application
,
Beijing Institute of Technology
,
Beijing
, in Chinese.
205.
Fan
,
T. Y.
, and
Mai
,
Y. W.
, 2004, “
Elasticity Theory, Fracture Mechanics, and Some Relevant Thermal Properties of Quasicrystalline Materials
,”
Appl. Mech. Rev.
0003-6900,
57
, pp.
325
343
.
206.
Gao
,
Y.
, and
Zhao
,
B. S.
, 2006, “
A General Treatment of Three-Dimensional Elasticity of Quasicrystals by an Operator Method
,”
Phys. Status Solidi B
0370-1972,
243
(
15
), pp.
4007
4019
.
207.
Renton
,
J. D.
, 1979, “
Note on Generalized Displacement Functions in the Presence of Initial Stress
,”
J. Struct. Mech.
0360-1218,
7
, pp.
365
373
.
208.
Westergaard
,
H. M.
, 1935, “
General Solution of the Problem of Elastostatics of an n-Dimensional Homogeneous Isotropic Solid in an n-Dimensional Space
,”
Bull. Am. Math. Soc.
0002-9904,
41
, pp.
695
699
.
209.
Wang
,
Z. M.
, 1981, “
A Study of Elastic Stability Problems Based on Mathematical Theory of Elasticity
,”
Appl. Math. Mech.
0253-4827,
2
, pp.
49
74
.
210.
Lu
,
E.
, 1980, “
On the Solution of Reissner Model of Thick Plate
,”
Compos. Math.
0010-437X,
2
, pp.
383
387
.
211.
Hu
,
H. C.
, 1981,
The Variational Principles of Elasticity and Its Application
,
Science
,
Beijing, China
, in Chinese.
212.
Wang
,
L. S.
, 1985, “
On General Solution of Problem of Elastic Shallow Thin Shells
,”
Acta Mech. Sin.
0459-1879,
17
, pp.
64
71
.
213.
Wang
,
W.
, 1996, “
Completeness and Nonuniqueness of General Solutions of Elastic Shallow Thin Shells With a Constant Curvature
,”
Acta Mech. Sin.
0459-1879,
28
, pp.
532
541
.
You do not currently have access to this content.