This article reviews three aspects of large strain elasticity. First, various conjugate stress tensors to strain tensors are reviewed. Many researchers have studied the theory of large strain elasticity. Many stress tensors including the Cauchy stress tensor, the first and the second Piola–Kirchhoff stress tensor, and the Jaumann stress tensor have been proposed to describe the stress state at a point. Recently, the first author of this article proposed a concept of “base forces” to reveal the essence of stress state. By the concept of base forces, the description of the stress state becomes clearer than other stress tensors. We attempt to take base forces as a basic point of view to deal with a review in which different descriptions of stress state are discussed and compared. The governing equations and boundary conditions expressed by the base forces are given. Second, this article reviews the solution of some singularity problems for large strain elasticity, i.e., problems of stress singularity at a crack or a notch tip, at the point of application of a concentrated force and at the vertex of contact in rubberlike materials. Methods of getting the singularity index of stress by using base forces are introduced and compared to earlier work. Complementary energy principles for large strain elasticity have eluded researchers for nearly 100years. A review of some important advances in this is also given, and a new complementary energy principle related to base forces is introduced.

1.
Hill
,
R.
, 1968, “
On the Constitutive Inequalities for Simple Materials—I
,”
J. Mech. Phys. Solids
0022-5096,
16
, pp.
229
242
.
2.
Seth
,
B. R.
, 1964, “
Generalized Strain Measure With Applications to Physical Problems
,”
Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics
,
M.
Reiner
and
D.
Abir
, eds.,
Pergamon
,
Oxford
, pp.
162
172
.
3.
Guo
,
Z. H.
, and
Man
,
C. S.
, 1992, “
Conjugate Stress and Tensor Equation ∑r=1mUm−rXUr−1=C
,”
Int. J. Solids Struct.
0020-7683,
29
, pp.
2063
2076
.
4.
Hoger
,
A.
, 1987, “
The Stress Conjugate to Logarithmic Strain
,”
Int. J. Solids Struct.
0020-7683,
23
, pp.
1645
1656
.
5.
Guo
,
Z. H.
,
Li
,
J. B.
,
Xiao
,
H.
, and
Chen
,
Y. M.
, 1994, “
Intrinsic Solution to the n-Dimensional Tensor Equation ∑r=1mUm−rXUr−1=C
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
115
, pp.
359
364
.
6.
Xiao
,
H.
, 1995, “
Unified Explicit Basis-Free Expressions for Time Rate and Conjugate Stress of an Arbitrary Hill’s Strain
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
3327
3340
.
7.
Dui
,
G. S.
, and
Ren
,
Q. W.
, 1999, “
Conjugate Stress of Strain E(3)=13(U3−I)
,”
Mech. Res. Commun.
0093-6413,
26
, pp.
529
534
.
8.
Dui
,
G. S.
,
Ren
,
Q. W.
, and
Shen
,
Z. J.
, 2000, “
Conjugate Stresses to Seth’s Strain Class
,”
Mech. Res. Commun.
0093-6413,
27
, pp.
539
542
.
9.
Farahani
,
K.
, and
Naghdabadi
,
R.
, 2000, “
Conjugate Stresses of the Seth-Hill Strain Tensors
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
5247
5255
.
10.
Hill
,
R.
, 1970, “
Constitutive Inequalities for Isotropic Elastic Solids Under Finite Strain
,”
Proc. R. Soc. London, Ser. A
1364-5021,
314
, pp.
457
472
.
11.
Hill
,
R.
, 1978, “
Aspects of Invariance in Solid Mechanics
,”
Adv. Appl. Mech.
0065-2156,
18
, pp.
1
75
.
12.
Farahani
,
K.
, and
Naghdabadi
,
R.
, 2003, “
Basis Free Relations for the Conjugate Stresses of the Strains Based on the Right Stretch Tensor
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
5887
5900
.
13.
Dui
,
G. S.
, 2005, “
Some Basis-Free Formulae for Time Rate and Conjugate Stress of Logarithmic Strain Tensor
,”
J. Elast.
0374-3535,
83
, pp.
113
151
.
14.
Guo
,
Z. H.
, and
Dubey
,
R. N.
, 1984, “
Basic Aspects of Hill’s Method in Solid Mechanics
,”
SM Arch.
0376-7426,
9
, pp.
353
380
.
15.
Scheilder
,
M.
, 1991, “
Time Rates of Generalized Strain Tensors, Part I: Compact Formulas
,”
Mech. Mater.
0167-6636,
11
, pp.
199
210
.
16.
Ogden
,
R. W.
, 1984,
Non-Linear Elastic Deformations
,
Ellis Horwood Ltd.
,
Chichester
.
17.
Ogden
,
R. W.
, 1997,
Non-Linear Elastic Deformations
,
Dover
,
New York
.
18.
Lehmann
,
Th.
,
Guo
,
Z. H.
, and
Liang
,
H. Y.
, 1991, “
The Stress Conjugacy Between Cauchy Stress and Logarithm of the Left Stretch Tensor
,”
Eur. J. Mech. A/Solids
0997-7538,
10
, pp.
395
404
.
19.
Lehmann
,
Th.
, and
Liang
,
H. Y.
, 1993, “
The Stress Conjugate to the Logarithmic Strain lnV
,”
Z. Angew. Math. Mech.
0044-2267,
73
, pp.
357
363
.
20.
Nicholson
,
D. W.
, 2003, “
On the Stress Conjugate to Eulerian Strains
,”
Acta Mech.
0001-5970,
165
, pp.
87
98
.
21.
Gao
,
Y. C.
, 1999,
Foundation of Solid Mechanics
,
China Railway Publisher
,
Beijing
, in Chinese.
22.
Gao
,
Y. C.
, 2003, “
A New Description of the Stress State at a Point With Applications
,”
Arch. Appl. Mech.
0939-1533,
73
, pp.
171
183
.
23.
Gao
,
Y. C.
, 1990, “
Elastostatic Crack Tip Behavior for a Rubber-Like Material
,”
Theor. Appl. Fract. Mech.
0167-8442,
14
, pp.
219
231
.
24.
Gao
,
Y. C.
, and
Shi
,
Z. F.
, 1994, “
Large Strain Field Near an Interface Crack Tip
,”
Int. J. Fract.
0376-9429,
69
, pp.
269
279
.
25.
Gao
,
Y. C.
, and
Durban
,
D.
, 1995, “
The Crack Tip Field in a Rubber Sheet
,”
Eur. J. Mech. A/Solids
0997-7538,
14
, pp.
665
677
.
26.
Liu
,
B.
, and
Gao
,
Y. C.
, 1995, “
The Stress Field Near the Notch Tip of an Incompressible Rubber-Like Specimen Under the Condition of Plane Strain
,”
Sci. China, Ser. A: Math., Phys., Astron. Technol. Sci.
1001-6511,
38
, pp.
1220
1231
.
27.
Gao
,
Y. C.
, and
Liu
,
B.
, 1996, “
Stress Singularity Near the Notch Tip of a Rubber-Like Specimen Under Tension
,”
Eur. J. Mech. A/Solids
0997-7538,
15
, pp.
199
211
.
28.
Liu
,
B.
, and
Gao
,
Y. C.
, 1995, “
A Rubber Cone Under the Tension of a Concentrated Force
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
1485
1493
.
29.
Gao
,
Y. C.
, and
Gao
,
T. S.
, 1996, “
Notch-Tip Fields in Rubber-Like Materials Under Tension Shear Mixed Load
,”
Int. J. Fract.
0376-9429,
78
, pp.
283
298
.
30.
Gao
,
Y. C.
, 1997, “
Large Deformation Field Near a Crack Tip in Rubber-Like Material
,”
Theor. Appl. Fract. Mech.
0167-8442,
26
, pp.
155
162
.
31.
Gao
,
Y. C.
, 1998, “
Large Strain Analysis of a Rubber Wedge Compressed by a Line Load at Its Tip
,”
Int. J. Eng. Sci.
0020-7225,
36
, pp.
831
842
.
32.
Gao
,
Y. C.
, and
Gao
,
T. J.
, 1999, “
Analytical Solution to a Notch Tip Field in Rubber-Like Materials Under Tension
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
5559
5571
.
33.
Gao
,
Y. C.
, and
Chen
,
S. H.
, 2000, “
Asymptotic Analysis and Finite Element Calculation of a Rubber Cone Under Tension
,”
Acta Mech.
0001-5970,
141
, pp.
149
159
.
34.
Gao
,
Y. C.
, and
Gao
,
T. J.
, 2000, “
Large Deformation Contact of a Rubber Notch with a Rigid Wedge
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
4319
4334
.
35.
Gao
,
Y. C.
, and
Zhou
,
L. M.
, 2001, “
Interface Crack Tip Field of Rubber Materials
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
6227
6240
.
36.
Gao
,
Y. C.
, 2001, “
Asymptotic Analysis of the Nonlinear Boussinesq Problem for a Kind of Incompressible Rubber Material (Compression Case)
,”
J. Elast.
0374-3535,
64
, pp.
111
130
.
37.
Gao
,
Y. C.
, and
Chen
,
S. H.
, 2001, “
Large Strain Field Near a Crack tip in a Rubber Sheet
,”
Mech. Res. Commun.
0093-6413,
28
(
1
), pp.
71
78
.
38.
Gao
,
Y. C.
, and
Mai
,
Y. W.
, 2002, “
The Contact Problem of a Rubber Half-Space Dented by a Rigid Cone Apex
,”
Arch. Appl. Mech.
0939-1533,
72
, pp.
213
228
.
39.
Gao
,
Y. C.
, and
Mai
,
Y. W.
, 2002, “
Asymptotic Analysis of a Rubber Cone Dented by a Rigid Cone
,”
Acta Mech.
0001-5970,
158
, pp.
199
214
.
40.
Gao
,
Y. C.
, 2002, “
Analysis of the Interface Crack for Rubber-Like Materials
,”
J. Elast.
0374-3535,
66
, pp.
1
19
.
41.
Gao
,
Y. C.
, and
Qian
,
H. S.
, 2002, “
Analysis of the Contact of a Rubber Notch With a Rigid Wedge
,”
Mech. Res. Commun.
0093-6413,
29
, pp.
165
176
.
42.
Gao
,
Y. C.
, 2006, “
Complementary Energy Principle for Large Elastic Deformation
,”
Sci. China, Ser. G
1672-1799,
49
(
3
), pp.
341
356
.
43.
Chen
,
S. H.
, and
Gao
,
Y. C.
, 2001, “
Asymptotic Analysis and Finite Element Calculation of a Rubber Notch Contacting With a Rigid Wedge
,”
Acta Mech.
0001-5970,
147
, pp.
111
124
.
44.
Shi
,
Z. F.
, and
Gao
,
Y. C.
, 1995, “
Stress-Strain Field Near the Notch Tip of a Rubber Sheet
,”
Acta Mech. Sin.
0459-1879,
11
, pp.
169
177
.
45.
Wang
,
Z. Q.
, and
Gao
,
Y. C.
, 1997, “
Large Strain Field Near a Notch-Tip Under Tension
,”
Theor. Appl. Fract. Mech.
0167-8442,
26
, pp.
163
168
.
46.
Zhou
,
Z.
, and
Gao
,
Y. C.
, 1998, “
Asymptotic Character of Mixed Mode in Plane Deformation of Crack in Rubber-Like Material
,”
Theor. Appl. Fract. Mech.
0167-8442,
30
, pp.
225
233
.
47.
Wong
,
F. S.
, and
Shield
,
R. T.
, 1969, “
Large Plane Deformations of Thin Elastic Sheets of Neo-Hookean Material
,”
Z. Angew. Math. Phys.
0044-2275,
20
, pp.
176
199
.
48.
Knowles
,
J. K.
, 1978, “
On Some Inherently Nonlinear Singular Problems in Finite Elastostatics
,”
Proceedings, Eighth U.S. National Congress of Applied Mechanics
, UCLA, pp.
101
114
.
49.
Knowles
,
J. K.
, 1979, “
Crack Problems in Finite Elastostatics
,”
Proceedings, Symposium on Mathematical Problems in Fracture, SIAM-AMS, Proceedings
, Vol.
12
, pp.
81
96
.
50.
Sternberg
,
E.
, 1979, “
Some Recent Advances in the Application of Nonlinear Elastostatics to Singular Problem
,”
Trends in Solid Mechanics 1979, Proceedings of the Symposium Dedicated to the 65th Birthday of W. T. Koiter
, Delft University Press, Sijthoff and Noordhoof International, pp.
225
234
.
51.
Sternberg
,
E.
, 1980, “
On Singular Problems in Linearized and Finite Elastostatics
,”
Proceedings of the 15th International Congress of Theoretical and Applied Mechanics
,
Toronto
, Aug., pp.
33
43
.
52.
Abeyaratne
,
R.
, 1983, “
Some Finite Elasticity Problems Involving Crack-Tips
,”
Modeling Problems in Crack-Tip Mechanics CFC10
,
University of Waterloo
,
J. T.
Pindera
and
B. R.
Krasnowski
, eds., Aug. 24–26, Matinus Nijhoff, pp.
3
24
.
53.
Knowles
,
J. K.
, and
Sternberg
,
E.
, 1973, “
An Asymptotic Finite-Deformation Analysis of the Elastostatic Field Near the Tip of a Crack
,”
J. Elast.
0374-3535,
3
, pp.
67
107
.
54.
Knowles
,
J. K.
, and
Sternberg
,
E.
, 1974, “
Finite-Deformation Analysis of the Elastostatic Field Near the Tip of a Crack: Reconsideration and Higher-Order Results
,”
J. Elast.
0374-3535,
4
, pp.
201
233
.
55.
Lund
,
R. A.
, and
Westmann
,
R. A.
, 1990, “
Finite Element Analysis of Hyperelastic Large Deformation Crack Tip Fields
,”
Int. J. Fract.
0376-9429,
43
, pp.
257
270
.
56.
Fowler
,
G. F.
, 1984, “
Finite Plane and Anti-Plane Elastostatic Fields With Discontinuous Deformation Gradients Near the Tip of a Crack
,”
J. Elast.
0374-3535,
14
, pp.
287
328
.
57.
Le
,
K. C.
, 1992, “
On the Singular Elastostatic Field Induced by a Crack in a Hadamard Material
,”
Q. J. Mech. Appl. Math.
0033-5614,
45
, pp.
101
117
.
58.
Batra
,
R. C.
, and
Zhang
,
J. P.
, 1993, “
Analysis of Deformations Near a Crack Tip in a Compressible Nonlinear Elastic Material
,”
Eng. Fract. Mech.
0013-7944,
46
, pp.
413
432
.
59.
Knowles
,
J. K.
, 1977, “
Finite Elastostatic Fields With Unbounded Deformation Gradients
,” Finite Elasticity, Applied Mechanics Division, ASME,
27
, pp.
23
40
.
60.
Wang
,
N. M.
, and
Oh
,
H.
, 1977, “
Finite Element Analysis of Crack Problems in Highly Elastic Materials
,”
Fracture 1977
, Vol.
3
,
Waterloo
,
Canada
, ICF4, pp.
467
484
.
61.
Stephenson
,
R. A.
, 1982, “
The Equilibrium Field Near the Tip of a Crack for Finite Plane Strain of Incompressible Elastic Materials
,”
J. Elast.
0374-3535,
12
, pp.
65
99
.
62.
Abeyaratne
,
R.
, and
Yang
,
J. S.
, 1987, “
Localized Shear Deformations Near the Tip of a Mode-I Crack
,”
J. Elast.
0374-3535,
17
, pp.
93
112
.
63.
Quigley
,
C. J.
, and
Parks
,
D. M.
, 1994, “
The Finite Deformation Field Surrounding a Mode I Plane Strain Crack in a Hyperelastic Incompressible Material Under Small-Scale Nonlinearity
,”
Int. J. Fract.
0376-9429,
65
, pp.
75
96
.
64.
Hao
,
T. H.
, 1990, “
Near Field Behavior of In-Plane Crack Extension in Nonlinear Incompressible Material
,”
Theor. Appl. Fract. Mech.
0167-8442,
12
, pp.
241
249
.
65.
Herrmann
,
J. M.
, 1989, “
An Asymptotic Analysis of Finite Deformation Near the Tip of an Interface Crack
,”
J. Elast.
0374-3535,
21
, pp.
227
269
.
66.
Herrmann
,
J. M.
, 1992, “
An Asymptotic Analysis of Finite Deformation Near the Tip of an Interface Crack: Part II
,”
J. Elast.
0374-3535,
29
, pp.
203
241
.
67.
Le
,
K. C.
, and
Stumpf
,
H.
, 1993, “
The Singular Elastostatic Field Due to a Crack in Rubberlike Materials
,”
J. Elast.
0374-3535,
32
, pp.
483
222
.
68.
Tarantino
,
A. M.
, 1996, “
Thin Hyperelastic Sheets of Compressible Material: Field Equations, Airy Stress Function and an Application in Fracture Mechanics
,”
J. Elast.
0374-3535,
44
, pp.
37
59
.
69.
Tarantino
,
A. M.
, 1997, “
The Singular Equilibrium Field at the Notch-Tip of a Compressible Material Infinite Elastostatics
,”
ZAMP
0044-2275,
48
, pp.
370
388
.
70.
Legrain
,
G.
,
Moës
,
N.
, and
Verron
,
E.
, 2005, “
Stress Analysis Around Crack Tips in Finite Strain Problems Using the Extended Finite Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
63
, pp.
290
314
.
71.
Geubelle
,
P. H.
, and
Knauss
,
W. G.
, 1994, “
Finite Strain at the Tip of a Crack in a Sheet of Hyperelastic Material: I. Homogeneous Case
,”
J. Elast.
0374-3535,
35
, pp.
61
98
.
72.
Tarantino
,
A. M.
, 1998, “
On Extreme Thinning at the Notch Tip of a Neo-Hookean Sheet
,”
Q. J. Mech. Appl. Math.
0033-5614,
51
, pp.
179
190
.
73.
Knowles
,
J. K.
, and
Sternberg
,
E.
, 1983, “
Large Deformations Near a Tip of an Interface-Crack Between Two Neo-Hookean Sheets
,”
J. Elast.
0374-3535,
13
, pp.
257
293
.
74.
Ravichandran
,
G.
, and
Knauss
,
W. G.
, 1989, “
A Finite Elastostatic Analysis of Bimaterial Interface Cracks
,”
Int. J. Fract.
0376-9429,
39
, pp.
235
253
.
75.
Geubelle
,
P. H.
, and
Knauss
,
W. G.
, 1994, “
Finite Strain at the Tip of a Crack in a Sheet of Hyperelastic Material: II. Special Bimaterial Cases
,”
J. Elast.
0374-3535,
35
, pp.
99
137
.
76.
Geubelle
,
P. H.
, 1995, “
Finite Deformation Effects in Homogeneous and Interfacial Fracture
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
1003
1016
.
77.
Ru
,
C. Q.
, 1997, “
Finite Strain Singular Field Near the Tip of a Crack Terminating at a Material Interface
,”
Math. Mech. Solids
1081-2865,
2
, pp.
49
73
.
78.
Ru
,
C. Q.
, 2002, “
On Complex-Variable Formulation for Finite Plane Elastostatics of Harmonic Materials
,”
Acta Mech.
0001-5970,
156
(
3–4
), pp.
219
234
.
79.
Knowles
,
J. K.
, 1981, “
A Nonlinear Effect in Mode II Crack Problems
,”
Eng. Fract. Mech.
0013-7944,
15
, pp.
469
476
.
80.
Ru
,
C. Q.
, 1997, “
Finite Deformation at the Vertex of a Bi-Material Wedge
,”
Int. J. Fract.
0376-9429,
84
, pp.
325
350
.
81.
Ru
,
C. Q.
, 2003, “
Non-Elliptic Deformation Field Near the Tip of a Mixed Mode Crack in a Compressible Hyperelastic Material
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
521
530
.
82.
Zhang
,
Z. M.
,
Wang
,
Y. S.
, and
Jin
,
M.
, 2007,
Selected Publications of Gao Yuchen
,
Beijing Jiaotong University Press
,
Beijing
.
83.
Boussinesq
,
J.
, 1885,
Applications des Potentials à l’Etude de l’Equilibre et du Movement des Solides Elastiques
,
Gauthier-Villars
,
Paris
, in French.
84.
Simmonds
,
J. G.
, and
Warne
,
P. G.
, 1994, “
Notes on the Nonlinearly Elastic Boussinesq Problem
,”
J. Elast.
0374-3535,
34
, pp.
69
82
.
85.
Warne
,
D. A. P.
,
Warne
,
P. G.
, and
Lee
,
M. R.
, 2002, “
A Summary of Asymptotic Finite Deformation Results for a Point Load on Hyperelastic Half-Space
,”
Math. Mech. Solids
1081-2865,
7
, pp.
451
482
.
86.
Knowles
,
J. K.
, 1977, “
The Finite Anti-plane Shear Field Near the Tip of a Crack for a Class of Incompressible Elastic Solids
,”
Int. J. Fract.
0376-9429,
13
, pp.
611
639
.
87.
Warne
,
D. A. P.
, and
Warne
,
P. G.
, 2001, “
An Asymptotic Finite Deformation Analysis for an Isotropic Incompressible Hyperelastic Half-Space Subjected to a Tensile Point Load
,”
SIAM J. Appl. Math.
0036-1399,
62
, pp.
107
128
.
88.
Warne
,
D. A. P.
, and
Warne
,
P. G.
, 2002, “
An Asymptotic Finite Deformation Analysis for an Isotropic Compressible Hyperelastic Half-Space Subjected to a Tensile Point Load
,”
SIAM J. Appl. Math.
0036-1399,
63
(
1
), pp.
169
194
.
89.
Antman
,
S. S.
, 1983, “
Regular and Singular Problems for Large Elastic Deformations of Tubes, Wedges and Cylinders
,”
Arch. Ration. Mech. Anal.
0003-9527,
83
, pp.
1
52
.
90.
Lee
,
M. R.
,
Warne
,
D. A. P.
, and
Warne
,
P. G.
, 2004, “
On an Incompressible Nonlinearly Elastic Half-Space Under a Compressive Point Load
,”
Math. Mech. Solids
1081-2865,
9
(
1
), pp.
97
117
.
91.
Hertz
,
H.
, 1881, “Über die Berührung Fester Elasticher Körper,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
171
, in German.
92.
Aleksandrov
,
V. M.
, and
Babeshko
,
V. A.
, 1972, “
On the Pressure on an Elastic Half-Space by a Wedge-Shaped Stamp
,”
J. Appl. Math. Mech.
0021-8928,
36
,
78
83
.
93.
Kipnis
,
L. A.
, and
Cherepanov
,
G. P.
, 1982, “
Contact Problem of Elasticity Theory for a Wedge
,”
J. Appl. Math. Mech.
0021-8928,
46
(
1
), pp.
110
115
.
94.
Filippova
,
L. M.
, 1978, “
Three-Dimensional Contact Problem for a Prestressed Elastic Body
,”
J. Appl. Math. Mech.
0021-8928,
42
(
6
), pp.
1183
1188
.
95.
Hellinger
,
E.
, 1914, “
Die Allgemeinen Ansatze der Mechanik der Kontinua
,”
Enzyklopädie der Mathematischen Wissenschaften
,
4
, pp.
602
694
, in German.
96.
Reissner
,
E.
, 1953, “
On a Variational Theorem for Finite Elastic Deformation
,”
J. Math. Phys. (Cambridge, Mass.)
0097-1421,
32
, pp.
129
135
.
97.
Levinson
,
M.
, 1965, “
The Complementary Energy Theorem in Finite Elasticity
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
826
828
.
98.
Washizu
,
K.
, 1968,
Variational Methods in Elasticity and Plasticity
,
Pergamon
,
Oxford
.
99.
Zubov
,
L. M.
, 1970, “
The Stationary Principle of Complementary Work in Nonlinear Theory of Elasticity
,”
J. Appl. Math. Mech.
0021-8928,
34
, pp.
228
232
; see also
Zubov
,
L. M.
, 1970, “
The Stationary Principle of Complementary Work in Nonlinear Theory of Elasticity
,”
Prikl. Mat. Mekh.
0032-8235,
34
, pp.
241
245
, in Russian.
100.
Fraeijs de Veubeke
,
B. M.
, 1972, “
A New Variational Principle for Finite Elastic Displacements
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
745
763
.
101.
Koiter
,
W. T.
, 1973, “
On the Principle of Stationary Complementary Energy in the Nonlinear Theory of Elasticity
,”
SIAM J. Appl. Math.
0036-1399,
25
, pp.
424
434
.
102.
Ogden
,
R. W.
, 1975, “
A Note on Variational Theorems in Non-Linear Elastostatics
,”
Math. Proc. Cambridge Philos. Soc.
0305-0041,
77
, pp.
609
615
.
103.
Ogden
,
R. W.
, 1977, “
Inequalities Associated With the Inversion of Elastic Stress Deformation Relation and Their Implications
,”
Math. Proc. Cambridge Philos. Soc.
0305-0041,
81
, pp.
313
324
.
104.
Guo
,
Z. H.
, 1980, “
The Unified Theory of Variational Principles in Non-Linear Elasticity
,”
Arch. Mech.
0373-2029,
32
, pp.
577
596
.
105.
Atluri
,
S. N.
, 1980, “
On Some New General and Complementary Energy Theorems for the Rate Problems in Finite Strain Classical Elasticity
,”
J. Struct. Mech.
0360-1218,
8
, pp.
62
91
.
106.
Gao
,
D. Y.
, and
Strang
,
G.
, 1989, “
Geometric Nonlinearity: Potential Energy, Complementary Energy and the Gap Function
,”
Q. Appl. Math.
0033-569X,
47
, pp.
487
504
.
107.
Gao
,
D. Y.
, 1999, “
Pure Complementary Energy Principle and Triality Theory in Finite Elasticity
,”
Mech. Res. Commun.
0093-6413,
26
, pp.
31
37
.
108.
Gao
,
D. Y.
, 1999, “
General Analytical Solutions and Complementtary Variational Principles for Large Deformation Nonsmooth Mechanics
,”
Meccanica
0025-6455,
34
, pp.
169
198
.
109.
Gao
,
D. Y.
, 1997, “
Dual Extremum Principles in Finite Deformation Theory With Applications to Post-Buckling Analysis of Extended Nonlinear Beam Model
,”
Appl. Mech. Rev.
0003-6900,
50
(
11
), pp.
S64
S71
.
110.
Gao
,
D. Y.
, 1998, “
Duality, Triality and Complementary Extremum Principles in Non-Convex Parametric Variational Problems With Applications
,”
IMA J. Appl. Math.
0272-4960,
61
, pp.
199
235
.
111.
Doyle
,
T. C.
, and
Ericksen
,
J. L.
, 1956, “
Nonlinear Elasticity
,”
Adv. Appl. Mech.
0065-2156,
4
, pp.
53
115
.
112.
Biot
,
M. A.
, 1965,
Mechanics of Incremental Deformations
,
Wiley
,
New York
.
113.
Truesdell
,
C. A.
, and
Noll
,
W.
, 1965, in
The Nonlinear Field Theories of Mechanics: Handbuch der Physik
,
S.
Flügge
, ed.,
Springer
,
Berlin
, Vol.
III∕3
.
114.
Green
,
A. E.
, and
Adkins
,
J. E.
, 1970,
Large Elastic Deformations
,
2nd ed.
,
Oxford University Press
,
New York
.
115.
Flügge
,
S.
, 1972,
Tensor Analysis and Continuum Mechanics
,
Springer-Verlag
,
New York
.
116.
Wang
,
C. C.
, and
Truesdell
,
C. A.
, 1973,
Introduction to Rational Elasticity
,
Noordhoff
,
Leyden
.
117.
Guo
,
Z. H.
, 1980,
Nonlinear Theory of Elasticity
,
Science Publisher of China
,
Beijing
, in Chinese.
118.
Ciarlet
,
P. G.
, 1988, “
Three-Dimensional Elasticity
,”
Mathematical Elasticity
,
North-Holland
,
Amsterdam
, Vol.
1
.
119.
Green
,
A. E.
, and
Zerna
,
W.
, 1992,
Theoretical Elasticity
,
Dover Publications
,
New York
.
120.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
, 1994,
Mathematical Foundation of Elasticity
,
Dover
,
New York
.
121.
Antman
,
S. S.
, 1995,
Problems of Nonlinear Elasticity
,
Springer
,
New York
.
122.
Chadwick
,
P.
, 1999,
Continuum Mechanics
,
Dover
,
New York
.
123.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics
,
Wiley
,
Chichester
.
124.
Jin
,
M.
, 2005,
A Course of Nonlinear Continuum Mechanics
,
Tsinghua University Press and Beijing Jiaotong University Press
,
Beijing
, in Chinese.
You do not currently have access to this content.