This paper provides an overview of ongoing studies in the area of thermocapillary convection driven by a surface tension gradient parallel to the free surface in a floating zone. Here, research interests are focused around the onset of oscillatory thermocapillary convection, also known as the transition from quasisteady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, and the margin relationship can be represented by a complex function of the critical parameters. The experimental results indicate that the velocity deviation of an oscillatory flow has the same order of magnitude as that of an average flow, and the deviations of other quantities, such as temperature and free surface radii fluctuations, are much smaller when compared with their normal counterparts. Therefore, the onset of oscillation should be a result of the dynamic process in a fluid, and the problem is a strongly nonlinear one. In the past few decades, several theoretical models have been introduced to tackle the problem using analytical methods, linear instability analysis methods, energy instability methods, and unsteady 3D numerical methods. The last of the above mentioned methods is known to be the most suitable for a thorough analysis of strong nonlinear processes, which generally leads to a better comparison with the experimental results. The transition from oscillatory thermocapillary convection to turbulence falls under the studies of chaotic behavior in a new system, which opens a fascinating new frontier in nonlinear science, a hot research area drawing many recent works. This paper reviews theoretical models and analysis, and also experimental research, on thermocapillary connection in floating zones. It cites 93 references.

1.
Ostrach
,
S.
, 1982, “
Low-Gravity Fluid Flow
,”
Annu. Rev. Fluid Mech.
0066-4189,
14
, pp.
313
345
.
2.
1987,
Space Fluid Science and Materials Science
,
H. U.
Walter
, ed.,
ESA
,
Paris
.
3.
Materials and Fluids Under Low Gravity: Proceedings of the IX European Symposium on Gravity-Dependent Phenomena in Physical Sciences
,
L.
Ratke
,
H.
Walter
, and
B.
Feuerbacher
, eds.,
Springer
,
Berlin
.
4.
Jones
,
L. E.
, and
Narayanan
,
R.
, 2002,
Interface Instability
,
Springer
,
New York
.
5.
Pearson
,
J. R. A.
, 1958, “
On Convection Cells Induced by Surface Tension
,”
J. Fluid Mech.
0022-1120,
4
, pp.
489
500
.
6.
Xiong
,
B.
, and
Hu
,
W. R.
, 1992, “
Crystal Growth in Floating Zone With Phase Change and Thermo-Solutal Convection
,”
J. Cryst. Growth
0022-0248,
125
, pp.
149
156
.
7.
Chang
,
C. E.
, and
Wilcox
,
W. R.
, 1975, “
Inhomogeneities Due to Thermocapillary Flow in Floating Zone Melting
,”
J. Cryst. Growth
0022-0248,
28
, pp.
8
12
.
8.
Chun
,
Ch. H.
, and
Wuest
,
W.
, 1978, “
A Micro-Gravity Simulation of the Marangoni Convection
,”
Acta Astronaut.
0094-5765,
5
, pp.
681
686
.
9.
Chun
,
Ch. H.
, and
Wuest
,
W.
, 1979, “
Experiments on the Transition From the Steady to the Oscillatory Marangoni-Convection of a Floating Zone Under Reduced Gravity Effect
,”
Acta Astronaut.
0094-5765,
6
, pp.
1073
1082
.
10.
Schwabe
,
D.
,
Scharmann
,
A.
,
Preisser
,
F.
, and
Oeder
,
R.
, 1978, “
Experiments on Surface Tension Driven Flow in Floating Zone Melting
,”
J. Cryst. Growth
0022-0248,
43
, pp.
305
312
.
11.
Schwabe
,
D.
, and
Scharmann
,
A.
, 1979, “
Some Evidence for the Existence and Magnitude of a Critical Marangoni Number for the Onset of Oscillatory Flow in Crystal Growth Melts
,”
J. Cryst. Growth
0022-0248,
46
, pp.
125
131
.
12.
Kuhlmann
,
H. C.
, 1999,
Thermocapillary Convection in Model of Crystal Growth
,
Springer
,
New York
.
13.
Hu
,
W. R.
, and
Tang
,
Z. M.
, 2003,
Floating Zone Convection
,
Science
,
Beijing
.
14.
Levenstam
,
M.
,
Amberg
,
G.
, and
Wimkler
,
C.
, 2001, “
Instabilities of Thermocapillary Convection in a Half-Zone at Intermediate Prandtl Numbers
,”
Phys. Fluids
1070-6631,
13
, pp.
807
816
.
15.
Preisser
,
F.
,
Schwabe
,
D.
, and
Scharmann
,
A.
, 1983, “
Steady and Oscillatory Thermocapillary Convection in Liquid Columns with Free Cylindrical Surface
,”
J. Fluid Mech.
0022-1120,
126
, pp.
545
567
.
16.
Hu
,
W. R.
,
Shu
,
J. Z.
,
Zhou
,
R.
, and
Tang
,
Z. M.
, 1994, “
Influence of Liquid Bridge Volume on the Onset of Oscillation in Floating Zone Convection I. Experiment
,”
J. Cryst. Growth
0022-0248,
142
, pp.
379
386
.
17.
Tang
,
Z. M.
, and
Hu
,
W. R.
, 1994, “
Influence of Liquid Bridge Volume on the Onset of Oscillation in Floating Zone Convection II. Numerical Simulation
,”
J. Cryst. Growth
0022-0248,
142
, pp.
385
391
.
18.
Levenstam
,
M.
, and
Amberg
,
G.
, 1995, “
Hydrodynamical Instabilities of Thermocapillary Flow in Half-Zone
,”
J. Fluid Mech.
0022-1120,
297
, pp.
357
372
.
19.
Nakamura
,
S.
,
Hibiya
,
T.
,
Imaishi
,
N.
,
Yoda
,
S.
,
Nakamura
,
T.
,
Koyama
,
M.
,
Dold
,
P.
, and
Benz
,
K. W.
, 1999, “
Observation of Periodic Marangoni Convection in a Molten Silicon Bridge on Board the TR-IA-6 Rocket
,”
J. Jpn. Soc. Microgravity Appl.
0915-3616,
16
, pp.
99
103
.
20.
Chang
,
Y. K.
, 1983, “
The Float-Zone Growth of Ti3Au and Ti3Au
,”
J. Cryst. Growth
0022-0248,
62
, pp.
627
632
.
21.
Croll
,
A.
,
Muller-Sebert
,
W.
, and
Nitche
,
R.
, 1989, “
The Critical Marangoni Number for the Onset of Time-Dependent Convection in Silicon
,”
Mater. Res. Bull.
0025-5408,
24
, pp.
995
1004
.
22.
Jurisch
,
M.
, and
Loser
,
W.
, 1990, “
Analyses of Periodic Non-Rotational W Striation in Mo Single Crystals Due to Nonsteady Thermocapillary Convection
,”
J. Cryst. Growth
0022-0248,
102
, pp.
214
222
.
23.
Jurish
,
M.
, 1990, “
Surface Temperature Oscillatory of a Floating Zone Resulting From Oscillatory Thermocapillary Convection
,”
J. Cryst. Growth
0022-0248,
102
, pp.
223
232
.
24.
Rupp
,
R.
,
Muller
,
G.
, and
Neumann
,
G.
, 1989, “
Three-Dimensional and Time-Dependent Modeling of the Marangoni Convection in a Zone Melting Configuration for GaAs
,”
J. Cryst. Growth
0022-0248,
97
, pp.
34
41
.
25.
Croll
,
A.
,
Kaiser
,
Th.
,
Schweizer
,
A.
,
Danilewsky
,
A. N.
,
Lauer
,
S.
,
Tegetmeier
,
A.
, and
Benz
,
K. W.
, 1998, “
Floating-Zone and Floating-Solutal Zone of GaSb Under Microgravity
,”
J. Cryst. Growth
0022-0248,
191
, pp.
365
376
.
26.
Han
,
J. H.
,
Sun
,
Z. W.
,
Dai
,
L. R.
,
et al.
, 1996, “
Experiment on the Thermocapillary Convection of a Mercury Liquid Bridge in a Floating Half Zone
,”
J. Clim.
0894-8755,
169
, pp.
129
135
.
27.
Sun
,
Z. W.
,
Han
,
J. H.
,
Dai
,
L. R.
,
Xie
,
J. C.
, and
Hu
,
W. R.
, 1997, “
Experimental Study of Thermocapillary Convection on a Liquid Bridge Consisting of Fluid With Low Prandtl Number in a Floating Half-Zone
,”
Science in China E.
,
29
(
1
), pp.
97
104
.
28.
Cao
,
Z. H.
,
Xie
,
J. C.
,
Tang
,
Z. M.
, and
Hu
,
W. R.
, 1991, “
The Influence of Buoyancy on the Onset of Oscillatory Convection in a Half Floating Zone
,”
Adv. Space Res.
0273-1177,
11
(
7
), pp.
166
170
.
29.
Cao
,
Z. H.
,
You
,
H. T.
,
Tang
,
Z. M.
, and
Hu
,
W. R.
, 1991, “
Experimental Investigation of Thermocapillary Convection in a Half Floating Zone
,”
Adv. Space Res.
0273-1177,
11
(
7
), pp.
232
236
.
30.
Yang
,
Y. K.
, and
Kou
,
S.
, 2001, “
Temperature Oscillation in a Tin Liquid Bridge and Critical Marangoni Number Dependency on Prandtl Number
,”
J. Cryst. Growth
0022-0248,
222
, pp.
135
143
.
31.
Takagi
,
K.
,
Otaka
,
M.
,
Natsui
,
H.
,
Arai
,
T.
,
Yoda
,
S.
,
Yuan
,
Z. F.
,
Mukai
,
K.
,
Yasuhiro
,
S.
, and
Imaishi
,
N.
, 2001, “
Experimental Study on Transition to Oscillatory Thermocapillary Flow in a Low Prandtl Number Liquid Bridge
,”
J. Cryst. Growth
0022-0248,
233
, pp.
399
407
.
32.
Schatz
,
M. F.
, and
Neitzel
,
G. P.
, 2001, “
Experiments on Thermocapillary Instability
,”
Annu. Rev. Fluid Mech.
0066-4189,
33
, pp.
93
129
.
33.
Velten
,
R.
,
Schwabe
,
D.
, and
Scharmann
,
A.
, 1991, “
A Periodic Instability of Thermocapillary Convection in Cylindrical Liquid Bridge
,”
Phys. Fluids A
0899-8213,
3
, pp.
267
177
.
34.
Chun
,
Ch. H.
, 1980, “
Experiments on Steady and Oscillatory Temperature Distribution in a Floating Zone Due to the Marangoni Convection
,”
Acta Astronaut.
0094-5765,
7
(
4–5
), pp.
479
488
.
35.
Komotani
,
Y.
,
Ostrach
,
S.
, and
Vargas
,
M.
, 1984, “
Oscillatory Thermocapillary Convection in a Simulated Floating-Zone Configuration
,”
J. Cryst. Growth
0022-0248,
66
, pp.
83
90
.
36.
Xie
,
J. C.
,
Shu
,
J. Z.
,
Yao
,
Y. L.
,
Tang
,
Z. M.
, and
Hu
,
W. R.
, 1996, “
The Oscillation Feature of Thermocapillary Convection
,”
Adv. Astronaut. Sci.
0065-3438,
91
, pp.
441
453
.
37.
Hirata
,
A.
,
Sakurai
,
M.
,
Ohishi
,
N.
, and
Koyama
,
M.
, 1997, “
Transition Process From Laminar to Oscillatory Marangoni Convection in a Liquid Bridge
,”
J. Jpn. Soc. Microgravity Appl.
0915-3616,
14
, pp.
137
143
.
38.
Schwabe
,
D.
,
Preisser
,
F.
, and
Scharmann
,
A.
, 1982, “
Verification of the Oscillatory State of Thermocapillary Convection in a Floating Zone Under Low Gravity
,”
Acta Astronaut.
0094-5765,
9
, pp.
265
273
.
39.
Schwabe
,
D.
, and
Scharmann
,
A.
, 1984, “
Microgravity Experiments on the Transition From Laminar to Oscillatory Thermocapillary Convection in Floating Zones
,”
Adv. Space Res.
0273-1177,
4
(
5
), pp.
43
47
.
40.
Monti
,
R.
,
Fortezza
,
R.
,
Desiderio
,
G.
,
et al.
, 1992, “
Onset of Oscillatory Marangoni Flow: Scientific Results of the Experiment Performed in Telescience on Texus, 23
,” Final Report of Sounding Rocket Experiments in Fluid Science and Material Science, ESA Report No. SP-1132, Vol.
2
, pp.
40
64
.
41.
Albanese
,
C.
,
Carotenuto
,
L.
,
Castagnolo
,
D.
,
Ceglia
,
E.
, and
Monti
,
R.
, 1995, “
First Results From “Onset” Experiment During D2 Space Mission
,” in
Scientific Results of German Spacelab Mission D-2
,
P. R.
Sahm
,
M. H.
Keller
, and
B.
Schiewe
, eds., DARA, Bonn, pp.
247
258
.
42.
Carotenuto
,
L.
,
Castagnolo
,
D.
,
Albabese
,
C.
, and
Monti
,
R.
, 1998, “
Instability of Thermocapillary Convection in Liquid Bridge
,”
Phys. Fluids
1070-6631,
10
, pp.
555
565
.
43.
Monti
,
R.
,
Castagnolo
,
D.
,
Dell’Aversana
,
P.
,
Desiderio
,
G.
,
Moreno
,
S.
, and
Evangelista
,
G.
, 1992, “
An Experimental and Numerical Analysis of Thermocapillary Flow in Silicon Oils in a Micro-Floating Zone
,”
43rd Congress IAF
,
Washington, D.C.
44.
Sumner
,
L. B. S.
, and
Neitzel
,
G. P.
, 2001, “
Oscillatory Thermocapillary Convection in Liquid Bridges With Highly Deformed Free Surface
,”
Phys. Fluids
1070-6631,
13
, pp.
107
120
.
45.
Frank
,
S.
, and
Schwabe
,
D.
, 1992, “
Temporal and Spatial Elements of Thermocapillary Convection in Floating Zones
,”
Exp. Fluids
0723-4864,
23
, pp.
234
251
.
46.
Han
,
J. H.
,
Zhou
,
Y. R.
, and
Hu
,
W. R.
, 1997, “
Investigation on a Simulation Model of Floating Half Zone Convection. II. Experiment
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2671
2677
.
47.
Hu
,
W. R.
,
You
,
H. T.
, and
Cao
,
Z. H.
, 1992, “
Free Surface Oscillation of Thermocapillary Convection in Liquid Bridge of Half Floating Zone
,”
Scientia Sinica (Science in China)
,
A35
, pp.
1101
1107
.
48.
Yao
,
Y. L.
,
Liu
,
F.
, and
Hu
,
W. R.
, 1996, “
How to Determine Critical Marangoni Number in Half Floating Zone Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2539
2544
.
49.
Shu
,
J. Z.
,
Yao
,
Y. L.
, and
Hu
,
W. R.
, 1993, “
Free Surface Vibration in Oscillatory Convection in Half Floating Zone
,”
Scientia Sinica (Science in China)
,
A36
, pp.
326
332
.
50.
Yao
,
Y. L.
,
Shu
,
J. Z.
,
Xie
,
J. C.
,
Hu
,
W. R.
,
Hirata
,
A.
,
Nishizawa
,
S. I.
, and
Sakurai
,
M.
, 1997, “
Transition of Oscillatory Floating Half Zone Convection From Earth’s Gravity to Microgravity
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2517
2523
.
51.
Hu
,
W. R.
, and
Tang
,
Z. M.
, 2000, “
Onset Process of Thermocapillary Oscillatory Convection
,”
Microgravity and Space Station Utilization (Microgravity Quarterly)
,
1
, pp.
23
30
.
52.
Tang
,
Z. M.
,
Aa
,
Y.
,
Cao
,
Z. H.
, and
Hu
,
W. R.
, 2002, “
Two Bifurcation Transition Processes in Floating Half Zone Convection of Larger Prandtl Number Fluid
,”
Acta Mech. Sin.
0459-1879,
18
, pp.
328
336
.
53.
Hu
,
W. R.
, and
Tang
,
Z. M.
, 2003, “
Influence of Liquid Bridge Volume on the Floating Zone Convection
,”
Cryst. Res. Technol.
0232-1300,
38
, pp.
627
634
.
54.
Aa
,
Y.
,
Cao
,
Z. H.
,
Tang
,
Z. M.
, and
Hu
,
W. R.
, 2005, “
Experimental Study on the Transition Process to the Oscillatory Thermocapillary Convection in a Floating Half Zone, Microgravity Science and Technology
,”
Microgravity Sci. Technol.
0938-0108,
17
(
4
), pp.
5
12
.
55.
Smith
,
M. K.
, and
Davis
,
S. H.
, 1983, “
Instabilities of Dynamic Thermocapillary Liquid Layer. Part I. Convective Instabilities
,”
J. Fluid Mech.
0022-1120,
132
, pp.
119
131
.
56.
Smith
,
M. K.
, and
Davis
,
S. H.
, 1983, “
Instabilities of Dynamic Thermocapillary Liquid Layer. Part 2. Surface Wave Instability
,”
J. Fluid Mech.
0022-1120,
132
, pp.
132
144
.
57.
Xu
,
J. J.
, and
Davis
,
S. H.
, 1984, “
Convective Thermocapillary Instabilities in Liquid Bridge
,”
Phys. Fluids
0031-9171,
27
, pp.
1102
1107
.
58.
Chen
,
G.
,
Lizee
,
A.
, and
Roux
,
B.
, 1997, “
Bifurcation Analysis of Thermocapillary Convection in Cylindrical Liquid Bridges
,”
J. Cryst. Growth
0022-0248,
180
, pp.
638
647
.
59.
Neitzel
,
G. P.
,
Chang
,
K. T.
,
Jankowski
,
D. F.
, and
Mittelmann
,
H. D.
, 1993, “
Linear Stability Theory of Thermocapillary Convection in a Model of the Float-Zone Crystal-Growth Process
,”
Phys. Fluids A
0899-8213,
5
, pp.
108
114
.
60.
Kuhlmann
,
H. C.
, and
Rath
,
H. J.
, 1993, “
Hydrodynamic Instability in Cylindrical Thermocapillary Liquid Bridges
,”
J. Fluid Mech.
0022-1120,
247
, pp.
247
274
.
61.
Wanschura
,
M.
,
Shevtsova
,
V. M.
,
Kuhlmann
,
H. C.
, and
Rath
,
H. J.
, 1995, “
Convective Instability Mechanisms in Thermocapillary Liquid Bridge
,”
Phys. Fluids
1070-6631,
7
, pp.
912
925
.
62.
Sim
,
B. C.
, and
Zebib
,
A.
, 2004, “
Thermocapillary Convection in Cylindrical Liquid Bridge and Annuli
,”
C. R. Mec.
1631-0721,
332
, pp.
473
486
.
63.
Chen
,
Q. S.
, and
Hu
,
W. R.
, 1998, “
Influence of Liquid Bridge Volume on Instability of Floating Half Zone Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
825
837
.
64.
Chen
,
Q. S.
,
Hu
,
W. R.
, and
Prasad
,
V.
, 1999, “
Effect of Liquid Bridge Volume on the Instability in Small-Prandtl-Number Half Zone
,”
J. Cryst. Growth
0022-0248,
203
, pp.
261
268
.
65.
Nienhuser
,
C. H.
, and
Kuhlmann
,
H. C.
, 2002, “
Stability of Thermocapillary Flows in Non-Cylindrical Liquid Bridge
,”
J. Fluid Mech.
0022-1120,
458
, pp.
35
74
.
66.
Shen
,
Y.
,
Neitzed
,
G. P.
,
Jankowski
,
D. F.
, and
Mittelmann
,
H. D.
, 1990, “
Energy Instability of Thermocapillary Convection in a Model of the Floating-Zone Crystal Growth Process
,”
J. Fluid Mech.
0022-1120,
217
, pp.
639
660
.
67.
Neitzed
,
G. P.
,
Law
,
C. C.
,
Jankowski
,
D. F.
, and
Mittelmann
,
H. D.
, 1991, “
Energy Stability of Thermocapillary Convection in a Model of Floating-Zone Crystal-growth Process. II: Nonaxisymmetric Disturbances
,”
Phys. Fluids A
0899-8213,
3
, pp.
2841
2846
.
68.
Smith
,
M. K.
, 1986, “
Instability Mechanisms in Dynamic Thermocapillary Liquid Layer
,”
Phys. Fluids
0031-9171,
29
, pp.
3182
3186
.
69.
Davis
,
S. H.
, 1987, “
Thermocapillary Instability
,”
Annu. Rev. Fluid Mech.
0066-4189,
19
, pp.
403
435
.
70.
Kamotani
,
Y.
, and
Ostrach
,
S.
, 1998, “
Theoretical Analysis of Thermocapillary Flow in Cylindrical Columns of High Prandtl Number Fluids
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
758
767
.
71.
Kamotani
,
Y.
, and
Ostrach
,
S.
, 1999, “
Oscillatory Thermocapillary Flows in Open Cylindrical Containers Induced by CO2 Laser Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
555
564
.
72.
Kamotani
,
Y.
,
Ostrach
,
S.
, and
Pline
,
A.
, 1994, “
Analysis of Velocity Data Taken in Surface Tension Driven Convection Experiment in Microgravity
,”
Phys. Fluids
1070-6631,
6
, pp.
3601
3609
.
73.
Shevtosova
,
V.
, 2005, “
Thermal Convection in Liquid Bridge With Curved Free Surface: Benchmark of Numerical Solution
,”
J. Cryst. Growth
0022-0248,
280
, pp.
632
651
.
74.
Savino
,
R.
, and
Monti
,
R.
, 1996, “
Oscillatory Marangoni Convection in Cylindrical Liquid Bridge
,”
Phys. Fluids
1070-6631,
8
, pp.
2906
2922
.
75.
Leypoldt
,
J.
,
Kuhlmann
,
H. C.
, and
Rath
,
H. J.
, 2000, “
Three Dimensional Numerical Simulation of Thermocapillary Flows in Cylindrical Liquid Bridges
,”
J. Fluid Mech.
0022-1120,
414
, pp.
285
314
.
76.
Tang
,
Z. M.
, and
Hu
,
W. R.
, 1999, “
Influence of Liquid Bridge Volume on the Onset of Oscillation in Floating Zone Convection. III. Three Dimensional Model
,”
J. Cryst. Growth
0022-0248,
207
, pp.
239
246
.
77.
Tang
,
Z. M.
,
Hu
,
W. R.
, and
Imaishi
,
N.
, 2001, “
Two Bifurcation Transitions of the Floating Half Zone in a Fat Liquid Bridge of Large Pr
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1299
1307
.
78.
Yasushiro
,
S.
,
Imaishi
,
N.
,
Akiyama
,
Y.
,
Fujino
,
S.
, and
Yoda
,
S.
, 2004, “
Oscillatory Marangoni Flow in Half-Zone Liquid Bridge of Molten Tin
,”
J. Cryst. Growth
0022-0248,
262
, pp.
631
644
.
79.
Yasushiro
,
S.
,
Li
,
K.
,
Imaishi
,
N.
,
Akiyama
,
Y.
,
Natsui
,
H.
,
Matsumoto
,
S.
, and
Yoda
,
S.
, 2004, “
Oscillatory Thermocapillary Flow in a Half-Zone Liquid Bridge of Molten Tin
,”
J. Cryst. Growth
0022-0248,
266
, pp.
152
159
.
80.
Li
,
K.
,
Yasushiro
,
S.
,
Imaishi
,
N.
, and
Yoda
,
S.
, 2005, “
Marangoni Flow in Half-Zone Liquid Bridge of Molten Tin Under Ramped Temperature Difference
,”
J. Cryst. Growth
0022-0248,
280
, pp.
620
631
.
81.
Feigenbaum
,
M. J.
, 1979, “
The Onset Spectrum of Turbulence
,”
Phys. Lett.
0375-9601,
74A
, pp.
375
378
.
82.
Chun
,
Ch. H.
, 1984, “
Verification of Turbulence Developing From the Oscillatory Marangoni Convection in a Liquid Column
,”
Eur. Space Agency, [Spec. Publ.] ESA SP
0379-6566,
ESA SP-222
, pp.
271
280
.
83.
Tang
,
Z. M.
, and
Hu
,
W. R.
, 1995, “
Fractal Feature of Oscillatory Convection in Half-Floating Zone
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
3295
3300
.
84.
Aa
,
Y.
,
Cao
,
Z. H.
, and
Hu
,
W. R.
, 2004, “
Transition to Turbulence in the Floating Half Zone Convection
,”
54th International Astronautic Congress
,
Bremen, Germany
, Oct. 2003, Paper No. IAC-03-J.4.06.
85.
Schwabe
,
D.
, and
Frank
,
S.
, 1999, “
Experiments on the Transition to Chaotic Thermocapillary Flow in Floating Zones Under Microgravity
,”
Adv. Space Res.
0273-1177,
24
(
10
), pp.
1391
1396
.
86.
Kamotani
,
Y.
,
Wang
,
L.
,
Hatta
,
S.
,
Wang
,
A.
, and
Yoda
,
S.
, 2003, “
Free Surface Heat Loss Effect on Oscillatory Thermocapillary Flow in Liquid Bridge of High Prandtl Number Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3211
3220
.
87.
Selver
,
R.
, 2005, “
Experiments on the Transition From the Steady to the Oscillatory Marangoni Convection of a Floating-Zone Under Various Cold Wall Temperature and Various Ambient Air Temperature Effects
,”
Microgravity Sci. Technol.
0938-0108,
17
, pp.
25
35
.
88.
Kousaka
,
Y.
, and
Kawamura
,
H.
, 2006, “
Numerical Study on the Effect of Heat Loss Upon the Critical Marangoni Number in a Half-Zone Liquid Bridge
,”
Microgravity Sci. Technol.
0938-0108,
18
(
3–4
) pp.
141
145
.
89.
Melinikov
,
D. E.
, and
Shevtsova
,
V. M.
, 2006, “
Thermocapillary Convection in a Liquid Bridge Subjected to Interfacial Cooling
,”
Microgravity Sci. Technol.
0938-0108,
18
(
3–4
) pp.
128
131
.
90.
Doi
,
T.
, and
Koster
,
N.
, 1993, “
Thermocapillary Convection in a Two Immiscible Two Layers With Free Surface
,”
Phys. Fluids A
0899-8213,
5
, pp.
1914
1921
.
91.
Majima
,
S.
,
Kawamura
,
H.
,
Otsubo
,
F.
,
Kuwahara
,
K.
, and
Doi
,
T.
, 2001, “
Oscillatory Thermocapillary Flow in Encapsulated Liquid Column
,”
Phys. Fluids
1070-6631,
13
, pp.
1517
1520
.
92.
Tanaka
,
S.
,
Kawamura
,
H.
,
Ueno
,
I.
, and
Schwabe
,
D.
, 2006, “
Flow Structure and Dynamic Particle Accumulation in Thermocapillary Convection in a Liquid Bridge
,”
Phys. Fluids
1070-6631,
18
, pp.
067103
067103
.
93.
Schwabe
,
S.
,
Tanaka
,
S.
,
Mizev
,
A.
, and
Kawamura
,
H.
, 2006, “
Particle Accumulation Structure in Time-Dependent Thermocapillary Flow in a Liquid Bridge Under Microgravity
,”
Microgravity Sci. Technol.
0938-0108,
18
(
3–4
) pp.
117
127
.
You do not currently have access to this content.