In this article, we review from the mathematical and numerical points of view some of the recent progresses in the area of flow control.

1.
Alekseev
,
V. M.
,
Tikhomirov
,
V. M.
, and
Fomin
,
S. V.
, 1987,
Optimal Control
,
Consultants Bureau
,
New York
.
2.
Gad-El-Hak
,
M.
, 1989, “
Flow control
,”
Appl. Mech. Rev.
0003-6900,
42
, pp.
262
292
.
3.
Gunzburger
,
M.
, 1995, “
A Prehistory of Flow Control and Optimization
,”
Flow Control
,
Springer
,
New York
, pp.
185
195
.
4.
Gad-El-Hak
,
M.
, 2000,
Flow Control Passive, Active, and Reactive Flow Management
,
Cambridge University Press
,
Cambridge
.
5.
Gad-El-Hak
,
M.
, 2007,
Large-Scale Disasters: Prediction, Control and Mitigation
,
Cambridge University Press
,
Cambridge
.
6.
Gad-El-Hak
,
M.
, 2006,
MEMS: Introduction and Fundamentals
,
Taylor & Francis
,
Boca Roton, FL
.
7.
Gad-El-Hak
,
M.
, 2006,
MEMS: Applications
,
Taylor & Francis
,
Boca Roton, FL
.
8.
Gad-El-Hak
,
M.
, 2006,
MEMS: Design and Fabrication
,
Taylor & Francis
,
Boca Roton, FL
.
9.
Sritharan
,
S.
, 1998,
Optimal Control of Viscous Flow
,
SIAM
,
Philadelphia
.
10.
Bewley
,
T.
, 2001, “
Flow Control: New Challenges for a New Renaissance
,”
Prog. Aerosp. Sci.
0376-0421,
37
, pp.
21
58
.
11.
1995,
Flow Control
,
Gunzburger
,
M.
, ed.,
Springer
,
New York
.
12.
Gunzburger
,
M.
, 1995, “
Flow Control and Optimization
,”
Computational Fluid Dynamics Review
,
Wiley
,
West Sussex
, pp.
548
566
.
13.
Gunzburger
,
M.
, 1998, “
Sensitivities in Computational Methods for Optimal Flow Control
,”
Computational Methods for Optimal Design and Control
,
Birkhauser
,
Boston
, pp.
197
236
.
14.
Gunzburger
,
M.
, 1999, “
Sensitivities, Adjoints, and Flow Optimization
,”
Int. J. Numer. Methods Fluids
0271-2091,
31
, pp.
53
78
.
15.
Gunzburger
,
M.
, 2000, “
Adjoint Equation-Based Methods for Control Problems in Viscous Incompressible Flows
,”
Flow, Turbul. Combust.
1386-6184,
65
, pp.
249
272
.
16.
Menaldi
,
J. L.
, and
Sritharan
,
S.
, 2003, “
Impulse Control of Stochastic Navier-Stokes Equations
,”
Nonlinear Anal. Theory, Methods Appl.
0362-546X,
52
(
2
), pp.
357
381
.
17.
Menaldi
,
J. L.
, and
Sritharan
,
S.
, 2002, “
Optimal Stopping Time and Impulse Control Problems for the Stochastic Navier-Stokes Equations
,”
Stochastic Partial Problems for the Stochastic Navier-Stokes Equations
,
Dekker
,
New York
, pp.
389
404
.
18.
Gozzi
,
F.
,
Sritharan
,
S.
, and
Swiech
,
A.
, 2005, “
Bellman Equations Associated to the Optimal Feedback Control of Stochastic Navier-Stokes Equations
,”
Commun. Pure Appl. Math.
0010-3640,
58
(
5
), pp.
671
700
.
19.
Gozzi
,
F.
,
Sritharan
,
S.
, and
Swiech
,
A.
, 2002, “
Viscosity Solutions of Dynamic-Programming Equations for the Optimal Control of the Two-Dimensional Navier-Stokes Equations
,”
Arch. Ration. Mech. Anal.
0003-9527,
163
(
4
), pp.
295
327
.
20.
Temam
,
R.
, 1988,
Infinite Dimensional Systems in Mechanics and Physics
,
Applied Mathematical Sciences
, Vol.
68
,
2nd. ed.
,
Springer-Verlag
,
New York
.
21.
Temam
,
R.
, 2001,
Navier-Stokes Equations
,
AMS-Chelsea Series, AMS
,
Providence
.
22.
Lions
,
J. L.
,
Temam
,
R.
, and
Wang
,
S.
, 1992, “
On the Equations of Large-Scale Ocean
,”
Nonlinearity
0951-7715,
5
, pp.
1007
1053
.
23.
Pedlosky
,
J.
, 1987,
Geophysical Fluid Dynamics
,
2nd. ed.
,
Springer-Verlag
,
New York
.
24.
Peixoto
,
J. P.
, and
Oort
,
A. H.
, 1992,
Physics of Climate
,
American Institute of Physics
,
New York
.
25.
Lions
,
J. L
,
Temam
,
R.
, and
Wang
,
S.
, 1993, “
Models of the Coupled Atmosphere and Ocean., (CAO I)
,”
Acta Tech. Acad. Sci. Hung.
0001-7035,
1
, pp.
3
54
.
26.
Lions
,
J. L.
,
Temam
,
R.
, and
Wang
,
S.
, 1993, “
Numerical Analysis of the Coupled Atmosphere and Ocean Models, (CAO. II)
,”
Acta Tech. Acad. Sci. Hung.
0001-7035,
1
, pp.
55
120
.
27.
Lions
,
J. L.
,
Temam
,
R.
, and
Wang
,
S.
, 1995, “
Mathematical Study of the Coupled Models of Atmosphere and Ocean (CAO III)
,”
J. Math. Pures Appl.
0021-7824,
73
, pp.
105
163
.
28.
Temam
,
R.
, and
Ziane
,
R.
, 2004, “
Some Mathematical Problems in Geophysical Fluid Dynamics
,”
Handbook of Mathematical Fluid Dynamics
,
North-Holland
,
Amsterdam
, Vol.
3
, pp.
535
657
.
29.
Talagrand
,
O.
, 1981, “
On the Mathematics of Data Assimilation
,”
Tellus
0040-2826,
33
(
4
), pp.
321
339
.
30.
Talagrand
,
O.
, and
Courtier
,
P.
, 1987, “
Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equations I: Theory
,”
Q. J. R. Meteorol. Soc.
0035-9009,
113
, pp.
1311
1328
.
31.
Moin
,
P.
, and
Bewley
,
T.
, 1994, “
Feedback Control of Turbulence
,”
Appl. Mech. Rev.
0003-6900,
47
, pp.
S3
S13
.
32.
Bewley
,
T.
,
Moin
,
P.
, and
Temam
,
R.
, 2001, “
DNS-Based Predictive Control of Turbulence: An Optimal Benchmark of Feedback Algorithms
,”
J. Fluid Mech.
0022-1120,
477
, pp.
179
225
.
33.
Fursikov
,
A.
, 1982, “
Control Problems and Theorems Concerning the Unique Solvability of a Mixed Boundary Value Problem for the Three-Dimensional Navier-Stokes and Euler Systems
,”
Math. USSR. Sb.
0025-5734,
43
, pp.
251
273
.
34.
Gunzburger
,
M.
,
Hou
,
L.
, and
Svobodny
,
T.
, 1990, “
A Numerical Method for Drag Minimization Via Suction and Injection of Mass Through the Boundary
,”
Stabilization of Flexible Structures
,
Springer
,
Berlin
, pp.
312
321
.
35.
Sritharan
,
S.
, 1992, “
An Optimal Control Problem in Exterior Hydrodynamics
,”
Proc. R. Soc. London, Ser. A
1364-5021,
12
(
1–2
), pp.
5
33
.
36.
Aamo
,
O.
,
Krstic
,
M.
, and
Bewley
,
T.
, 2003, “
Control of Mixing by Boundary Feedback in 2D Flow
,”
Automatica
0005-1098,
39
, pp.
1597
1606
.
37.
Lions
,
J. L.
, 1971, “
Optimal Control of Systems Governed by Partial Differential Equations
,”
Springer-Verlag
,
New York
.
38.
LeDimet
,
F. X.
, and
Shutyaev
,
V.
, 2001, “
On Data Assimilation for Quasilinear Parabolic Problems
,”
Russian J. Numer. Anal. Math. Modeling
,
16
(
3
), pp.
247
259
.
39.
Lee
,
K.
,
Cortelezzi
,
L.
,
Kim
,
J.
, and
Speyer
,
J.
, 2001, “
Application of Robust Reduced-Order Controller of Wall-Bounded Turbulent Flow
,”
Phys. Fluids
1070-6631,
13
, pp.
1321
1330
.
40.
LeDimet
,
F. X.
,
Ngnepieba
,
P.
, and
Shutyaev
,
V.
, 2002, “
On Error Analysis in Data Assimilation Problems
,”
Russian J. Numer. Anal. Math. Modeling
,
17
(
1
), pp.
71
97
.
41.
Glowinski
,
R.
, and
He
,
J.
, 1998, “
On Shape Optimization and Relates Issues
,”
Computational Methods for Optimal Design and Control
,
Birkhauser
,
Basel
, pp.
151
180
.
42.
Abergel
,
F.
, and
Temam
,
R.
, 1990, “
On Some Control Problems in Fluid Mechanics
,”
Theor. Comput. Fluid Dyn.
0935-4964,
1
, pp.
303
325
.
43.
Bewley
,
T.
, and
Moin
,
P.
, 1994, “
Optimal Control of Turbulent Channel Flows
,”
Active Control of Vibration and Noise
,
K. W.
Wang
,
A. H.
Von Flotow
,
R.
Shoureshi
,
E. W.
Hendricks
, and
T. W.
Farabee
, eds.,
ASME
, New York, DE-Vol.
75
, pp.
221
227
.
44.
Bewley
,
T.
,
Moin
,
P.
, and
Temam
,
R.
, 1997, “
Optimal and Robust Control Approaches for Linear and Nonlinear Regulation Problems in Fluid Mechanics
,” AIAA Paper No. 97-1872.
45.
Chang
,
Y.
, and
Collis
,
S.
, 1999, “
Active Control of Turbulent Channel Flows Based on Large Eddy Simulation
,” ASME Paper No. FEDSM-99-6929, pp.
1
8
.
46.
Choi
,
H.
,
Temam
,
R.
, and
Moin
,
P.
, 1993, “
Feedback Control for Unsteady Flow and Its Application to the Stochastic Burgers Equation
,”
J. Fluid Mech.
0022-1120,
253
, pp.
509
543
.
47.
Bewley
,
T.
, and
Liu
,
S.
, 1998, “
Optimal and Robust Control and Estimation of Linear Paths to Transition
,”
J. Fluid Mech.
0022-1120,
365
, pp.
305
349
.
48.
Bewley
,
T.
,
Temam
,
R.
, and
Moin
,
P.
, 1997, “
Control of Turbulent Flows
,”
in Proceedings of the 18th IFIP TC7 Conference on System Modeling and Optimization
,
Detroit
.
49.
Bilić
,
N.
, 1988, “
Necessary Conditions for an Optimal Distributed Control Problem Governed by Generalized Nonstationary Navier-Stokes Equations
,”
Glas. Mat. Serija III
,
23
(
1
), pp.
119
133
.
50.
Fursikov
,
A.
, 1998, “
Optimal Control Problems for the Navier-Stokes System With Distributed Control Function
,”
Optimal Control of Viscous Flow
,
S.
Sritharan
, ed.,
SIAM
,
Philadelphia
, pp.
109
150
.
51.
Gunzburger
,
M.
,
Hou
,
L.
, and
Svobodny
,
T.
, 1991, “
Analysis and Finite Element Approximations of Optimal Control Problems for the Stationary Navier-Stokes Equations With Distributed and Neumann Controls
,”
Math. Comput.
0025-5718,
57
, pp.
123
151
.
52.
Hou
,
L.
, and
Yan
,
Y.
, 1997, “
Dynamics for Controlled Navier-Stokes Systems With Distributed Controls
,”
SIAM J. Control Optim.
0363-0129,
35
, pp.
654
677
.
53.
Okumara
,
H.
, and
Kawahara
,
M.
, 2000, “
Shape Optimization of Body Located in Incompressible Navier-Stokes Flow Based on Optimal Control Theory
,”
Comput. Model. Eng. Sci.
1526-1492,
1
(
2
), pp.
71
77
.
54.
Gunzburger
,
M.
, and
Manservisi
,
S.
, 1999, “
The Velocity Tracking Problem for the Navier-Stokes Flow With Bounded Distributed Controls
,”
SIAM J. Control Optim.
0363-0129,
37
, pp.
1913
1945
.
55.
Gunzburger
,
M.
, and
Manservisi
,
S.
, 2000, “
Analysis and Approximation of the Velocity Tracking Problem for the Navier-Stokes Flows With Distributed Controls
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
37
, pp.
1481
1512
.
56.
Gunzburger
,
M.
, and
Manservisi
,
S.
, 2000, “
The Velocity Tracking Problem for the Navier-Stokes Flow With Boundary Control
,”
SIAM J. Control Optim.
0363-0129,
39
, pp.
594
634
.
57.
Gunzburger
,
M.
,
Hou
,
L.
, and
Svobodny
,
T.
, 1993, “
Heating and Cooling Control of Temperature Distributions Along Boundaries of Flow Domain
,”
J. Math. Systems Estim. Control
,
3
, pp.
147
172
.
58.
Gunzburger
,
M.
,
Hou
,
L.
, and
Svobodny
,
T.
, 1999, “
Control of Temperature Distributions Along Boundary of Engine Components
,”
Numerical Methods in Laminar and Turbulent Flow VII
,
Pineridge
,
Swansea, UK
, pp.
765
773
.
59.
Ito
,
K.
, 1994, “
Boundary Temperature Control for Thermally Coupled Navier-Stokes Equations
,”
Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena (Vorau, 1993)
,
Birkhauser
,
Basel
, Vol.
118
, pp.
211
230
.
60.
Ito
,
K.
, and
Ravindran
,
S. S.
, 1998, “
Optimal Control of Thermally Convected Flows
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
19
, pp.
1847
1869
.
61.
Gunzburger
,
M.
,
Hou
,
L.
, and
Svobodny
,
T.
, 1992, “
Boundary Velocity Control of Incompressible Flow With an Application to Viscous Drag Reduction
,”
SIAM J. Control Optim.
0363-0129,
30
, pp.
167
181
.
62.
Gunzburger
,
M.
, and
Kim
,
H.
, 1998, “
Existence of an Optimal Solution of a Shape Control Problem for the Stationary Navier-Stokes
,”
SIAM J. Control Optim.
0363-0129,
36
, pp.
895
909
.
63.
Arian
,
E.
, and
Ta’asan
,
S.
, 1995, “
Shape Optimization in One Shot
,”
Optimal Design and Control
,
Birkhauser
,
Boston
, pp.
23
40
.
64.
Armugan
,
G.
, and
Pironneau
,
O.
, 1989, “
On the Problem of Riblets as a Drag Reduction Device
,”
Opt. Control Appl. Methods
0143-2087,
10
, pp.
93
112
.
65.
Borggaard
,
J.
, and
Burns
,
J.
, 1995, “
A Sensitivity Equation Approach to Shape Optimization in Fluid Flows
,”
Flow Control
,
Springer
,
New York
, pp.
49
78
.
66.
Burkardt
,
J.
,
Gunzburger
,
M.
, and
Peterson
,
J.
, 1995, “
Discretization of Cost Functionals and Sensitivities in Shape Optimization
,”
Computation and Control IV
,
Birkhauser
,
Basel
, pp.
43
56
.
67.
Dziri
,
R.
, and
Zolesio
,
J. P.
, 1999, “
Dynamical Shape Control in Non-Cylindrical Navier-Stokes Equations
,”
J. Convex Anal.
0944-6532,
6
, pp.
293
318
.
68.
Glowinski
,
R.
,
Kearsley
,
A.
,
Pan
,
T.
, and
Periaux
,
J.
, 1995, “
Numerical Simulation and Optimal Shape for Viscous Flow by a Fictitious Domain Methods
,”
Int. J. Numer. Methods Fluids
0271-2091,
20
, pp.
695
711
.
69.
Glowinski
,
R.
, and
Pironneau
,
O.
, 1976, “
Toward the Computation of Minimum Drag Profile in Viscous Laminar Flow
,”
Appl. Math. Model.
0307-904X,
1
, pp.
58
66
.
70.
Gunzburger
,
M.
,
Kim
,
H.
, and
Manservisi
,
S.
, 2000, “
On a Shape Control Problem for the Stationary Navier-Stokes Equations
,”
Math. Modell. Numer. Anal.
0764-583X,
34
, pp.
1233
1258
.
71.
Gunzburger
,
M.
, and
Peterson
,
J.
, 1992, “
Issues in Shape Optimization for the Navier-Stokes Equations
,”
Proceedings of 31st IEEE Conference Decision and Control
, pp.
3390
3392
.
72.
Kim
,
H. C.
, 2001, “
Penalized Approach and Analysis of an Optimal Shape Control Problem for the Stationary Navier-Stokes Equations
,”
J. Korean Math. Soc.
0304-9914,
38
, pp.
1
23
.
73.
Mohammadi
,
B.
, 1998, “
Mesh Adaptation and Automatic Differentiation for Optimal Shape Design
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
10
, pp.
199
211
.
74.
Mohammadi
,
B.
, 1998, “
Shape Optimization for the 3D Turbulent Flows Using Automatic Differentiation
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
11
, pp.
27
50
.
75.
Pironneau
,
O.
, 1974, “
On Optimal Design in Fluid Mechanics
,”
J. Fluid Mech.
0022-1120,
64
, pp.
97
110
.
76.
Svobodny
,
T.
, 1995, “
Shape Optimization and Control of Separating Flow in Hydrodynamics
,”
Flow Control
,
Springer
,
New York
, pp.
325
339
.
77.
Fursikov
,
A. V.
,
Gunzburger
,
M. D.
, and
Hou
,
L. S.
, 1998, “
Boundary Value Problems and Optimal Boundary Control for the Navier-Stokes System: The Two-Dimensional Case
,”
SIAM J. Control Optim.
0363-0129,
36
, pp.
852
894
.
78.
Ekeland
,
I.
, and
Temam
,
R.
, 1999,
Convex Analysis and Variational Problems
,
Series Classics in Applied Mathematics
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
79.
Abergel
,
F.
, and
Casas
,
E.
, 1993, “
Some Optimal Control Problems Associated to the Stationary Navier-Stokes Equations
,”
Mathematics, Climate and Environment
,
Masson
,
Paris, France
, pp.
213
220
.
80.
Fursikov
,
A.
,
Gunzburger
,
M.
, and
Hou
,
L.
, 2005, “
Optimal Boundary Control for the Evolutionary Navier-Stokes System: The Three-Dimensional Case
,”
SIAM J. Control Optim.
0363-0129,
43
(
6
), pp.
2191
2232
.
81.
Marchuk
,
G.
,
Agoshkov
,
V. I.
, and
Shutyaev
,
V. P.
, 1996,
Adjoint Equations and Perturbation Algorithms in Nonlinear Problems
,
CRC
,
Boca Roton, FL
.
82.
Fursikov
,
A.
,
Gunzburger
,
M.
, and
Hou
,
L. S.
, 2000, “
Optimal Control Problems for the Navier-Stokes Equations
,”
Lectures on Applied Mathematics (Munich, 1999)
,
Springer
,
Berlin
, pp.
143
155
.
83.
He
,
J.
,
Chevalier
,
M. P.
,
Glowinski
,
R.
,
Metacalfe
,
R.
,
Nordlander
,
A.
, and
Periaux
,
J.
, 2000, “
Drag Reduction by Active Control for Flow Past Cylinders
,”
Computational Mathematics Driven by Industrial Problems (Martina Franca, 1999)
,
Lecture Notes in Mathematics
Vol.
1739
, pp.
287
363
.
84.
He
,
J.
,
Glowinski
,
R.
,
Metacalfe
,
R.
,
Nordlander
,
A.
, and
Periaux
,
J.
, 2000, “
Active Control and Drag Optimization for Flow Past a Circular Cylinder
,”
J. Comput. Phys.
0021-9991,
163
(
1
), pp.
83
117
.
85.
He
,
J.
,
Glowinski
,
R.
,
Metacalfe
,
R.
, and
Periaux
,
J.
, 1998, “
A Numerical Approach to the Control and Stabilization of Advection-Diffusion Systems: Application to Viscous Drag Reduction
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
11
(
1–2
), pp.
131
156
.
86.
Fursikov
,
A.
,
Gunzburger
,
M.
, and
Hou
,
L.
, 1998, “
Optimal Dirichlet Control and Inhomogeneous Boundary Value Problems for the Unsteady Navier-Stokes
,”
Control of Partial Differential Differential Equations
,
ESAIM
,
Paris
, pp.
97
116
.
87.
Fursikov
,
A.
,
Gunzburger
,
M.
, and
Hou
,
L.
, 1999, “
Optimal Boundary Control of the Navier-Stokes With Bounds on the Control
,”
Proceedings of the Korean Advanced Institute for Science and Technology Mathematics Workshop on Finite Elements
, pp.
41
60
.
88.
Gunzburger
,
M.
,
Hou
,
L.
, and
Svobodny
,
T.
, 1990, “
Optimal Boundary Control for the Nonsteady Incompressible Flow: An Application to Viscous Drag Reduction
,”
Proceedings of the 29th IEEE Conference Decision and Control, IEEE
, pp.
377
378
.
89.
Gunzburger
,
M.
,
Hou
,
L.
, and
Svobodny
,
T.
, 1994, “
Boundary Control of Incompressible Flows
,”
Computational Fluid Dynamics Techniques
,
Harwood
,
Harrow, UK
, pp.
839
846
.
90.
Hou
,
L.
, and
Meir
,
A.
, 1995, “
Boundary Optimal Control for MHD Flows
,”
Appl. Math. Optim.
0095-4616,
32
, pp.
143
162
.
91.
Hou
,
L.
, and
Ravindran
,
S.
, 1996, “
Computations of Boundary Optimal Control Problems for Electrically Conducting Flows
,”
J. Comput. Phys.
0021-9991,
128
, pp.
319
330
.
92.
Hou
,
L.
, and
Ravindran
,
S.
, 1998, “
Penalty Methods for Numerical Approximations of Optimal Boundary Flow Control Problems
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
11
, pp.
157
167
.
93.
Hou
,
L.
, and
Ravindran
,
S.
, 1999, “
Numerical Approximation of Optimal Flow Control Problems by a Penalty Method: Error Estimates and Numerical Results
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
20
, pp.
1753
1777
.
94.
Hou
,
L.
, and
Svobodny
,
T.
, 1993, “
Optimization Problems for the Navier-Stokes Equations With Regular Boundary Controls
,”
J. Math. Anal. Appl.
0022-247X,
177
, pp.
342
367
.
95.
Lee
,
H. C.
, and
Imanuvilov
,
O.
, 2000, “
Analysis of Neuman Boundary Optimal Control Problems for the Stationary Boussinesq Equations Including Solid Media
,”
SIAM J. Control Optim.
0363-0129,
39
, pp.
457
477
.
96.
Sahrapour
,
A.
, and
Ahmed
,
N.
, 1994, “
Boundary Control of Navier-Stokes Equations With Potential Applications to Artificial Hearts
,”
Proceedings of the CFD Society of Canada
, pp.
387
393
.
97.
Vedantham
,
R.
, 2000, “
Optimal Control of the Viscous Burgers Equation Using an Equivalent Index Method
,”
J. Global Optim.
0925-5001,
18
(
3
), pp.
255
263
.
98.
Volkwein
,
S.
, 2001, “
Distributed Control Problems for the Burgers Equation
,”
Comput. Optim. Appl.
0926-6003,
18
(
2
), pp.
115
140
.
99.
Volkwein
,
S.
, 2002, “
Boundary Control for the Burgers Equation: Optimality Condition and Reduced-Order Approach
,”
Optimal Control of Complex Structures (Oberwolfach, 2000)
,
International Series of Numerical Mathematics
Vol.
139
,
Birkhauser
,
Basel
, pp.
267
278
.
100.
Abergel
,
F.
, and
Casas
,
E.
, 1993, “
Some Optimal Control Problems of Multiscale Equations Appearing in Fluid Mechanics
,”
Model. Math. Anal. Numer.
0764-583X,
27
, pp.
223
247
.
101.
Casas
,
E.
, 1998, “
An Optimal Control Problem Governed by the Evolution Navier-Stokes Equations
,”
Optimal Control of Viscous Flow
,
S.
Sritharan
, ed.,
79
107
,
SIAM
,
Philadelphia
.
102.
Desai
,
M.
, and
Ito
,
K.
, 1994, “
Optimal Control of Navier-Stokes Equations
,”
SIAM J. Control Optim.
0363-0129,
32
, pp.
1428
1446
.
103.
Fattorini
,
H.
, and
Sritharan
,
S.
, 1992, “
Existence of Optimal Controls for Viscous Flow Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
39
, pp.
81
102
.
104.
Fattorini
,
H.
, and
Sritharan
,
S.
, 1994, “
Necessary and Sufficient Conditions for Optimal Control in Viscous Flow Problems
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math.
0308-2105,
124A
, pp.
211
251
.
105.
Fursikov
,
A.
, 1980, “
On Some Optimal Control Problems and Results Concerning the Unique Solvability of a Mixed Boundary Value Problem for the Three-Dimensional Navier-Stokes and Euler Systems
,”
Sov. Math. Dokl.
0197-6788,
21
, pp.
889
893
.
106.
Fursikov
,
A.
, 1982, “
Properties of Solutions of Controls that are Connected With the Navier-Stokes Equations
,”
Sov. Math. Dokl.
0197-6788,
25
, pp.
40
45
.
107.
Fursikov
,
A.
, 1983, “
Properties of Solutions of Some Extremal Problems Connected With the Navier-Stokes Equations
,”
Math. USSR. Sb.
0025-5734,
46
, pp.
323
351
.
108.
Ghattas
,
O.
, and
Bark
,
J.
, 1997, “
Optimal Control of the Two- and the Three-Dimensional Incompressible Navier-Stokes Flow
,”
J. Comput. Phys.
0021-9991,
136
, pp.
231
244
.
109.
Hou
,
L. S.
, and
Ravindran
,
S. S.
, 1998, “
A Penalized Neumann Control Approach for Solving an Optimal Dirichlet Control Problem for the Navier-Stokes Equations
,”
SIAM J. Control Optim.
0363-0129,
36
, pp.
1795
1814
.
110.
Ito
,
K.
,
Scroggs
,
J.
, and
Tran
,
H.
, 1995, “
Optimal Control of Thermally Coupled Navier-Stokes Equations
,”
Optimal Design and Control
,
Birkhauser
,
Boston
, pp.
199
214
.
111.
Li
,
Z.
,
Navon
,
M.
,
Hussaini
,
M.
, and
Dimet
,
F.
, 2002, “
Optimal Control of the Unsteady Navier-Stokes Equations
,”
Comput. Fluids
0045-7930,
32
, pp.
149
171
.
112.
Imanuvilov
,
O. Y.
, 1992, “
On Some Optimal Control Problems Connected With the Navier-Stokes System
,”
J. Sov. Math.
0090-4104,
60
(
6
), pp.
1725
1741
.
113.
Lee
,
H. C.
, and
Imanuvilov
,
O.
, 2000, “
Analysis of Optimal Control Problems for the 2-D Stationary Boussinesq Equations
,”
J. Math. Anal. Appl.
0022-247X,
242
, pp.
191
211
.
114.
Lee
,
H. C.
, 1997, “
Existence of Boundary Optimal Control for the Boussinesq Equations
,”
Proceedings of the Korea-Japan Partial Differential Equations Conference (Taejon, 1996)
,
Lecture Notes Series
, 39,
Seoul National University
,
Seoul
.
115.
Lee
,
H.
, 2002, “
Dynamics for the Controlled 2-D Boussinesq Systems With Distributed Controls
,”
J. Math. Anal. Appl.
0022-247X,
273
(
2
), pp.
457
479
.
116.
LeDimet
,
F. X.
, and
Shutyaev
,
V.
, 2000, “
On Newton Method in Data Assimilation
,”
Russian J. Numer. Anal. Math. Modeling
,
15
(
5
), pp.
419
434
.
117.
Tachim Medjo
,
T.
, 2003, “
On the Newton Method in Robust Control of Fluid Flow
,”
Discrete Contin. Dyn. Syst.
1078-0947,
9
(
5
), pp.
1201
1222
.
118.
Parmuzin
,
E.
, and
Shutyaev
,
V.
, 1999, “
Numerical Analysis of Iterative Methods for Solving Evolution Data Assimilation Problems
,”
Russ. J. Numer. Anal. Math. Modelling
,
14
(
3
), pp.
275
289
.
119.
Shutyaev
,
V.
, 1991, “
An Algorithm for Computing Functionals for a Class of Nonlinear Problems Using the Conjugate Equation
,”
Russ. J. Numer. Anal. Math. Modelling
,
6
(
2
), pp.
169
178
.
120.
Shutyaev
,
V.
, 1995, “
Some Properties of the Control Operator in the Problem of Data Assimilation and Iterative Algorithms
,”
Russ. J. Numer. Anal. Math. Modelling
,
10
(
4
), pp.
357
371
.
121.
Shutyaev
,
V.
, 1999, “
Control Operators and Iterative Algorithms in Problems of Reconstructing Source Functions and Initial Data
,”
Russ. J. Numer. Anal. Math. Modelling
,
14
(
2
), pp.
137
176
.
122.
Marchuck
,
G.
, and
Shutyaev
,
V.
, 1994, “
Iterative Methods for Solving a Data Assimilation Problem
,”
Russ. J. Numer. Anal. Math. Modelling
,
9
(
3
), pp.
265
279
.
123.
Marchuk
,
G.
, 1975,
Methods of Numerical Mathematics
,
Springer-Verlag
,
New York
.
124.
Tachim Medjo
,
T.
, 2002, “
Iterative Methods for Robust Control Problems in Fluid Mechanics
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
39
(
5
), pp.
1625
1645
.
125.
Lebedev
,
V.
, and
Zabelin
,
V.
, 1990, “
On One Class of Three-Term Iterative Methods With Tchebyshev
,”
Russ. J. Numer. Anal. Math. Modelling
,
5
(
4–5
), pp.
275
298
.
126.
Bewley
,
T.
,
Temam
,
R.
, and
Ziane
,
M.
, 2000, “
A General Framework for Robust Control in Fluid Mechanics
,”
Physica D
0167-2789,
138
, pp.
360
392
.
127.
Afanasiev
,
K.
, and
Hinze
,
M.
, 1999, “
Adaptive Control of a Wake Flow Using Proper Orthogonal Decomposition
,” Tecnische Universitat Berlin, Report No. 648.
128.
Cortelezzi
,
L.
, and
Speyer
,
J.
, 1998, “
Robust Reduced-Order Controller of Transitional Layer Transition
,”
Phys. Rev. E
1063-651X,
58
, pp.
1906
1910
.
129.
Ito
,
K.
, and
Ravindran
,
S.
, 1998, “
A Reduced-Order Method for Simulation and Control of Fluid Flows
,”
J. Comput. Phys.
0021-9991,
143
, pp.
1403
1425
.
130.
Ito
,
K.
, and
Ravindran
,
S.
, 2001, “
Reduced Basis Method for Optimal Control of Unsteady Viscous Flows
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
15
, pp.
97
113
.
131.
Berggren
,
M.
, and
Heikenschloss
,
M.
, 1997, “
Parallel Solution of Optimal-Control Problems by Time-Domain Decomposition
,”
Computational Science for the 21st Century
,
Wiley
,
Chichester
, pp.
102
112
.
132.
Choi
,
H.
, 1995, “
Suboptimal Control of Turbulent Flow Using Control Theory
,”
Proceedings of the International Symposium on Mathematical Modelling of Turbulent Flows
,
Tokyo, Japan
.
133.
Hinze
,
M.
, and
Kunisch
,
K.
, 1997, “
Suboptimal Control Strategies for Backward Facing Step Flows
,”
Proceedings of the 15th IMACS World Congress on Scientific Computation, Modeling and Applied Mathematics
,
A.
Sydow
, ed.,
Berlin
, Vol.
3
, pp.
53
58
.
134.
Hinze
,
M.
, and
Kunisch
,
K.
, 1998, “
On Suboptimal Control Strategies for the Navier-Stokes Equations
,”
Control and Partial Differential Equations
,
ESAIM
,
Paris
,
181
198
.
135.
Hinze
,
M.
, and
Kunisch
,
K.
, 2000, “
Three Control Methods for Time-Dependent Fluid Flow
,”
Flow, Turbul. Combust.
1386-6184,
65
, pp.
273
298
.
136.
Hou
,
L. S.
, and
Yan
,
Y.
, 1997, “
Dynamics and Approximations of a Velocity Tracking Problem for the Navier-Stokes Equations With Piecewise Distributed Controls
,”
SIAM J. Control Optim.
0363-0129,
35
, pp.
1847
1885
.
137.
Lee
,
C.
,
Kim
,
J.
, and
Choi
,
H.
, 1998, “
Suboptimal Control of Turbulent Channel Flow for Drag Reduction
,”
J. Fluid Mech.
0022-1120,
358
, pp.
245
258
.
138.
Min
,
C.
, and
Choi
,
H.
, 1999, “
Suboptimal Feedback Control of Vortex Shedding at Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
401
, pp.
123
156
.
139.
Hinze
,
M.
, and
Volkwein
,
S.
, 2001, “
Analysis of Instantaneous Control for the Burgers Equation
,”
Nonlinear Anal. Theory, Methods Appl.
0362-546X,
50
(
1
), pp.
1
26
.
140.
Hinze
,
M.
, and
Kunisch
,
K.
, 1998, “
On Suboptimal Control Strategies for the Navier-Stokes Equations
,”
Control and Partial Differential Equations (Marseille-Luminy, 1997)
,
ESAIM
,
Paris
, Vol.
4
, pp.
181
198
.
141.
Gunzburger
,
M.
, and
Manservisi
,
S.
, 2000, “
Analysis and Approximation for Linear Feedback Control for Tracking the Velocity in Navier-Stokes Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
189
, pp.
803
823
.
142.
Ito
,
K.
, and
Kang
,
S.
, 1994, “
A Dissipative Feedback Control Synthesis for Systems Arising in Fluid Dynamics
,”
SIAM J. Control Optim.
0363-0129,
32
, pp.
831
854
.
143.
Ravindran
,
S.
, 2000, “
Proper Orthogonal Decomposition in Optimal Control of Fluids
,”
Int. J. Numer. Methods Fluids
0271-2091,
34
, pp.
425
448
.
144.
Ravindran
,
S.
, 2002, “
Adaptive Reduced-Order Controllers for a Thermal Flow System Using Proper Orthogonal Decomposition
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
23
, pp.
1924
1942
.
145.
Cortelezzi
,
L.
,
Kim
,
J.
, and
Speyer
,
J.
, 1998, “
Skin-Friction Drag Reduction Via Robust Reduction-Order Linear Feedback Control
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
11
, pp.
79
92
.
146.
Ito
,
K.
, and
Schroeter
,
J.
, 2001, “
Reduced Order Feedback Synthesis for Viscous Incompressible Flows
,”
Math. Comput. Modell.
0895-7177,
33
, pp.
173
192
.
147.
Ravindran
,
S.
, 2000, “
A Reduced Order Approach for Optimal Control of Fluid Flow Using Proper Orthogonal Decomposition
,”
Int. J. Numer. Methods Fluids
0271-2091,
34
, pp.
425
448
.
148.
Hinze
,
M.
, and
Kunisch
,
K.
, 2000, “
Three Control Methods for Time-Dependent Fluid Flow
,”
Flow, Turbul. Combust.
1386-6184,
65
(
3–4
), pp.
273
298
.
149.
Hinze
,
M.
, and
Kunisch
,
K.
, 2001, “
Second Methods for Optimal Control of Time-Dependent Fluid Flow
,”
SIAM J. Control Optim.
0363-0129,
40
(
3
), pp.
925
946
.
150.
Bischof
,
C.
,
Carle
,
A.
,
Corliss
,
G.
,
Griewnak
,
A.
, and
Hoveland
,
P.
, 1992, “
ADIFOR: Generating Derivative Codes From Fortran Programs
,”
Sci. Prog.
0036-8504,
1
, pp.
11
29
.
151.
Green
,
M.
, and
Limebeer
,
D. J. N.
, 1995,
Linear Robust Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
152.
Lagnese
,
J. E.
,
Russell
,
D. L.
, and
White
,
L. W.
, 1995,
Control and Optimal Design of Distributed Parameter Systems
,
The Institute for Mathematics and Its Application
Vol.
70
,
Springer
,
Berlin
.
153.
Tachim Medjo
,
T.
, 2002, “
Fixed-Point Iteration Method for Nonlinear Robust Control Problems in Fluid Mechanics
,”
Numer. Funct. Anal. Optim.
0163-0563,
23
(
7–8
), pp.
849
876
.
154.
Tachim Medjo
,
T.
, and
Tébou
,
L. R. T.
, 2003, “
Adjoint-Based Iterative Method for Robust Control Problems in Fluid Mechanics
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
42
(
1
), pp.
302
325
.
155.
Hu
,
C.
, and
Temam
,
R.
, 2001, “
Robust Control of the Kuramoto-Sivashinsky Equation
,”
Dyn. Contin. Discrete Impulsive Syst. Ser. B Appl. Algorithms
,
8
(
3
), pp.
315
338
.
156.
Barbu
,
V.
, and
Sritharan
,
S.
, 1998, “
H∞—Control Theory of Fluid Dynamics
,”
Proc. R. Soc. London, Ser. A
1364-5021,
454
(
1979
), pp.
3009
3033
.
157.
Tachim Medjo
,
T.
, 2001, “
Robust Control Problems in Fluid Mechanics
,”
Physica D
0167-2789,
149
(
4
), pp.
278
292
.
158.
Sritharan
,
S.
, 1995, “
Optimal Feedback Control of Hydrodynamics: A Progress Report
,”
Flow Control
,
Springer
,
New York
, pp.
257
274
.
159.
Ou
,
Y. H.
, 1998, “
Design of Feedback Compensators for Viscous Flow
,”
Optimal Control of Viscous Flow
,
S.
Sritharan
, ed.,
SIAM
,
Philadelphia
, pp.
151
180
.
160.
Doyle
,
J. C.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
, 1989, “
State-Space Solution to H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control
0018-9286,
34
(
8
), pp.
831
847
.
161.
Başar
,
T.
, and
Bernhard
,
P.
, 1991,
H∞—Optimal Control and Related Minmax Design Problems
,
Birkhäuser
,
Boston
.
162.
Keulen
,
B. V.
, 1993,
H∞—Control for Distributed Parameter Systems: A State Space Approach
,
Birkhäuser
,
Boston
.
163.
Armaou
,
A.
, and
Christofides
,
P. D.
, 2000, “
Feedback Control of the Kuramoto-Sivashinsky Equation
,”
Physica D
0167-2789,
137
(
1–2
), pp.
49
61
.
164.
Fursikov
,
A. V.
, 2002, “
Feedback Stabilization for the 2D Navier-Stokes Equations
,”
The Navier-Stokes Equations: Theory and Numerical Methods (Varenna, 2000)
,
Lecture Notes in Pure and Applied Math
,
Dekker
,
New York
, Vol.
223
, pp.
179
196
.
165.
Barbu
,
V.
, 1998, “
Feedback Control of Time Dependent Stokes Flows
,”
Optimal Control of Viscous Flow
,
S.
Sritharan
, ed.,
SIAM
,
Philadelphia
, pp.
63
77
.
166.
Barbu
,
V.
, and
Sritharan
,
S.
, 2000, “
Flow Invariance Preserving Feedback Controllers for the Navier-Stokes Equations
,”
J. Math. Anal. Appl.
0022-247X,
255
, pp.
281
307
.
167.
Bewley
,
T.
,
Moin
,
P.
, and
Temam
,
R.
, 1999, “
A Method for Optimizing Feedback Control Laws for Wall-Bounded Flows Based on Control Theory
,”
Proceedings of Engineering Division Conference, Part 2
,
ASME
,
New York
, FED-237.
168.
Burns
,
J.
,
King
,
B.
, and
Rubio
,
D.
, 1998, “
Feedback Control of a Thermal Fluid Using State Estimation
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
11
, pp.
93
112
.
169.
Cortelezzi
,
L.
, 1996, “
Nonlinear Feedback Control of the Wake Past a Plate With Suction Point on the Downstream Wall
,”
J. Fluid Mech.
0022-1120,
327
, pp.
303
324
.
170.
Cortelezzi
,
L.
,
Chen
,
Y.
, and
Chang
,
H.
, 1997, “
Nonlinear Feedback Control of the Wake Past a Plate: From a Low Order Model to a Higher Order Model
,”
Phys. Fluids
1070-6631,
9
, pp.
2009
2022
.
171.
Gunzburger
,
M.
, and
Lee
,
H. C.
, 1994, “
Feedback Control of Fluid Flows
,”
14th IMACS World Congress on Computational and Applied Mathematics
,
Georgia Tech., Atlanta
, pp.
716
719
.
172.
Gunzburger
,
M.
, and
Lee
,
H. C.
, 1996, “
Feedback Control of Karman Vortex Shedding
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
828
835
.
173.
Hu
,
H.
, and
Bau
,
H.
, 1994, “
Feedback Control to Delay or Advance Linear Loss of Stability in Planar Poiseuille Flow
,”
Proc. R. Soc. London, Ser. A
1364-5021,
447
, pp.
229
312
.
174.
Ito
,
K.
, and
Yan
,
Y.
, 1998, “
Viscous Scalar Conservation Law With Nonlinear Flux Feedback and Global Attractors
,”
J. Math. Anal. Appl.
0022-247X,
227
, pp.
271
299
.
175.
Joshi
,
S.
,
Speyer
,
J.
, and
Kim
,
J.
, 1997, “
A System Theory Approach to the Feedback Stabilization of Infinitesimal and Finite-Amplitude Disturbances in Plane Poiseuille Flow
,”
J. Fluid Mech.
0022-1120,
332
, pp.
157
184
.
176.
Lee
,
H. C.
, and
Shin
,
B.
, 2001, “
Dynamics for Linear Feedback Controller for the Two Dimensional Bernard Equations With Distributed Control
,”
Appl. Math. Optim.
0095-4616,
44
, pp.
163
175
.
177.
Park
,
D.
, 1994, “
Theoretical Analysis of Feedback Control of Karman Vortex Shedding at Slightly Supercritical Reynolds Numbers
,”
Eur. J. Mech. B/Fluids
0997-7546,
13
, pp.
387
399
.
178.
Park
,
D.
,
Ladd
,
D.
, and
Hendricks
,
E.
, 1994, “
Feedback Control of Karman Vortex Shedding Behind a Circular Cylinder at Low Reynolds Numbers
,”
Phys. Fluids
1070-6631,
6
, pp.
2390
2405
.
179.
Roussopoulos
,
K.
, 1993, “
Feedback Control of Vortex Shedding at Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
248
, pp.
267
296
.
180.
Leith
,
D. J.
, and
Leithhead
,
W. E.
, 2000, “
Survey of Gain-Scheduling Analysis and Design
,”
Int. J. Control
0020-7179,
73
(
11
), pp.
1001
1025
.
181.
Fernández-Cara
,
E.
, and
Zuazua
,
E.
, 2004, “
On the History and Perspectives of Control Theory
,”
Sb. Russ. Acad. Sci.
1064-5616,
74
, pp.
47
73
.
182.
Coron
,
J. M.
, 1996, “
On the Controllability of the 2D Incompressible Navier-Stokes Equations With Navier-Slip Boundary Conditions
,”
COCV
1292-8119,
1
, pp.
35
75
.
183.
Coron
,
J. M.
, and
Fursikov
,
A. V.
, 1996, “
Global Exact Controllability of the 2D Navier-Stokes Equations on a Manifold Without Boundary
,”
Russ. J. Math. Phys.
1061-9208,
4
(
4
), pp.
1
19
.
184.
Fernández-Cara
,
E.
,
Guerrero
,
S.
,
Imanuvilov
,
O. Y.
, and
Puel
,
J. P.
, 2004, “
Local Exact Controllability of the Navier-Stokes System
,”
J. Math. Pures Appl.
0021-7824,
83
, pp.
1501
1542
.
185.
Fursikov
,
A. V.
, 1995, “
Exact Boundary Zero Controllability of Three-Dimensional Navier-stokes Equations
,”
J. Dyn. Control Syst.
1079-2724,
1
(
3
), pp.
325
350
.
186.
Fursikov
,
A. V.
, and
Imanuvilov
,
O. Y.
, 1994, “
On Exact Boundary Zero-Controllability of Two-Dimensional Navier-Stokes Equations: Mathematical Problems for Navier-Stokes Equations (Centro, 1993)
,”
Acta Appl. Math.
0167-8019,
37
(
1–2
), pp.
67
76
.
187.
Fernández-Cara
,
E.
, and
Guerrero
,
S.
, 2006, “
Global Carleman Inequalities for Parabolic Systems and Applications to Controllability
,”
SIAM J. Control Optim.
0363-0129,
45
(
4
), pp.
1399
1446
.
188.
Havârneanu
,
T.
,
Popa
,
C.
, and
Sritharan
,
S.
, 2005, “
Exact Controllability for the Three-Dimensional Navier-stokes Equations With the Navier Slip Boundary Conditions
,”
Indiana Univ. Math. J.
0022-2518,
54
(
5
), pp.
1303
1350
.
189.
Imanuvilov
,
O. Y.
, 1997, “
Local Exact Controllability for the 2-D Navier-Stokes Equations With the Navier Slip Boundary Conditions
,”
Turbulence Modeling and Vortex Dynamics (Istanbul, 1996)
,
Lecture Notes in Physics
Vol.
491
,
Springer
,
Berlin
, pp.
148
168
.
190.
Imanuvilov
,
O. Y.
, 1993, “
On Exact Controllability for the Navier-Stokes Equations
,”
COCV
1292-8119,
3
, pp.
97
131
.
191.
Imanuvilov
,
O. Y.
, 2001, “
Remark on Exact Controllability for the Navier-Stokes Equations
,”
COCV
1292-8119,
6
, pp.
39
72
.
192.
Barbu
,
V.
,
Havârneanu
,
T.
,
Popa
,
C.
, and
Sritharan
,
S.
, 2005, “
Local Exact Controllability for the Magnetohydrodynamic Equations Revisited
,”
Adv. Differ. Equ.
1079-9389,
10
(
5
), pp.
481
504
.
193.
Barbu
,
V.
,
Havârneanu
,
T.
,
Popa
,
C.
, and
Sritharan
,
S.
, 2003, “
Exact Controllability for the Magnetohydrodynamic Equations
,”
Commun. Pure Appl. Math.
0010-3640,
56
(
6
), pp.
732
783
.
194.
Havârneanu
,
T.
,
Popa
,
C.
, and
Sritharan
,
S.
, 2005, “
Exact Controllability for the Three-Dimensional Navier-Stokes Equations With the Navier Slip Boundary Conditions
,”
Indiana Univ. Math. J.
0022-2518,
54
(
5
), pp.
1303
1350
.
195.
Fursikov
,
A. V.
, and
Imanuvilov
,
O. Y.
, 1997, “
Local Exact Boundary Controllability of the Navier-Stokes System
,”
Contemp. Math.
0271-4132,
209
, pp.
115
129
.
196.
Coron
,
J. M.
, 1996, “
Global Exact Controllability of the 2D Navier-Stokes Equations on a Manifold Without Boundary
,”
Russ. J. Math. Phys.
1061-9208,
4
, pp.
429
448
.
197.
Coron
,
J. M.
, 1996, “
On the Controllability of the 2-D Incompressible Navier-Stokes Equations With the Navier Slip Condition
,”
COCV
1292-8119,
1
, pp.
35
75
.
198.
Fursikov
,
A.
, 1995, “
Exact Boundary Zero Controllability of Three-Dimensional Navier-Stokes Equations
,”
J. Dyn. Control Syst.
1079-2724,
1
, pp.
325
350
.
199.
Fursikov
,
A.
, and
Imanuvilov
,
O.
, 1994, “
On Exact Boundary Zero-Controllability of Two-Dimensional Navier-Stokes Equations
,”
Acta Appl. Math.
0167-8019,
36
, pp.
1
10
.
200.
Fursikov
,
A.
, and
Imanuvilov
,
O. Y.
, 1995, “
On Controllability of Certain Systems Simulating a Fluid Flow
,”
Flow Control
,
Springer
,
New York
, pp.
149
184
.
201.
Fursikov
,
A.
, and
Imanuvilov
,
O. Y.
, 1996, “
Exact Local Controllability for 2-D Navier-Stokes Equations
,”
Sbornik Math.
,
187
, pp.
1355
1390
.
202.
Fursikov
,
A.
, and
Imanuvilov
,
O. Y.
, 1996, “
Local Exact Controllability of the Navier-Stokes Equations
,”
C. R. Acad. Sci., Ser. I: Math.
0764-4442,
323
, pp.
275
280
.
203.
Fursikov
,
A.
, and
Imanuvilov
,
O. Y.
, 1997, “
Local Exact Controllability of the Navier-Stokes Equations
,”
Contemp. Math.
0271-4132,
209
, pp.
115
129
.
204.
Imanuvilov
,
O. Y.
, 1997, “
On Exact Controllability for the Navier-Stokes Equations
,”
COCV
1292-8119,
3
, pp.
97
131
.
205.
Lions
,
J. L.
, 1988,
Contrôlabilité exacte, perturbations et stabilisation de systémes distribués
,
Masson
,
Paris
, Tome 1.
206.
Fursikov
,
A.
, and
Imanuvilov
,
O. Y.
, 1998, “
Local Exact Boundary Controllability of the Boussinesq Equations
,”
SIAM J. Control Optim.
0363-0129,
36
, pp.
391
421
.
207.
Fursikov
,
A. V.
, and
Imanuvilov
,
O. Y.
, 1999, “
Exact Controllability for the Navier-Stokes and Boussinesq Equations
,”
Russ. Math. Surveys
0036-0279,
54
(
3
), pp.
565
618
.
208.
Fursikov
,
A. V.
, and
Imnuvilov
,
O. Y.
, 1996,
Controllability of Evolution Equations
,
Lecture Notes Series 34
, Seoul National University, Research Institute of Mathematics,
Global Analysis Research Center
,
Seoul
.
209.
Barbu
,
V.
,
Havârneanu
,
T.
,
Popa
,
C.
, and
Sritharan
,
S.
, 2003, “
Exact Controllability for the Magnetohydrodynamic Equations
,”
Commun. Pure Appl. Math.
0010-3640,
56
(
6
), pp.
732
783
.
You do not currently have access to this content.