Ideal plastic flows constitute a class of solutions in the classical theory of plasticity based on, especially for bulk forming cases, Tresca’s yield criterion without hardening and its associated flow rule. They are defined by the condition that all material elements follow the minimum plastic work path, a condition which is believed to be advantageous for forming processes. Thus, the ideal flow theory has been proposed as the basis of procedures for the direct preliminary design of forming processes, which mainly involve plastic deformation. The aim of the present review is to provide a summary of both the theory of ideal flows and its applications. The theory includes steady and nonsteady flows, which are divided into three sections, respectively: plane-strain flows, axisymmetric flows, and three-dimensional flows. The role of the method of characteristics, including the computational aspect, is emphasized. The theory of ideal membrane flows is also included but separately because of its advanced applications based on finite element numerical codes. For membrane flows, restrictions on the constitutive behavior of materials are significantly relaxed so that more sophisticated anisotropic constitutive laws with hardening are accounted for. In applications, the ideal plastic flow theory provides not only process design guidelines for current forming processes under realistic tool constraints, but also proposes new ultimate optimum process information for futuristic processes.

1.
Chung
,
K.
, and
Richmond
,
O.
, 1994, “
The Mechanics of Ideal Forming
,”
ASME J. Appl. Mech.
0021-8936,
61
, pp.
176
181
.
2.
Hill
,
R.
, 1957, “
Stability of Rigid-Plastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
6
, pp.
1
8
.
3.
Nadai
,
A.
, 1963,
Theory of Flow and Fracture of Solids
,
McGraw-Hill
,
New York
, Vol.
2
.
4.
Damamme
,
G.
, 1978, “
Minimum de la Déformation Généralisée d’un Élément de Matiére, Pour les Chemins de Déformation Passant d’un état Initial à un État Final Donnés
,”
Comptes Rendus Mathematique
,
287
, pp.
895
898
.
5.
Hill
,
R.
, 1986, “
Extremal Paths of Plastic Work and Deformation
,”
J. Mech. Phys. Solids
0022-5096,
34
, pp.
511
523
.
6.
Chung
,
K.
, and
Richmond
,
O.
, 1992, “
Ideal Forming—I. Homogeneous Deformation with Minimum Plastic Work
,”
Int. J. Mech. Sci.
0020-7403,
34
, pp.
575
591
.
7.
Richmond
,
O.
,
Morrison
,
H. L.
, and
Devenpeck
,
M. L.
, 1979, “
Ideal Metal Forming
,”
Proceedings of IUTAM Symposium on Metal Forming Plasticity
,
H.
Lippmann
, ed.,
Springer-Verlag
,
Berlin
, pp.
223
226
.
8.
Chung
,
K.
,
Lee
,
M.-G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
, and
Barlat
,
F.
, 2004, “
Spring-Back Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions, Part I: Theory and Formulation
,”
Int. J. Plast.
0749-6419,
21
, pp.
861
882
.
9.
Stören
,
S.
, and
Rice
,
J. R.
, 1975, “
Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
0022-5096,
23
, pp.
421
441
.
10.
Wienecke
,
H. A.
, and
Richmond
,
O.
, 1992, “
Ideal Flow of Isotropic Solids
,”
ASME J. Appl. Mech.
0021-8936, to be published.
11.
Richmond
,
O.
, and
Alexandrov
,
S.
, 2002, “
The Theory of General and Ideal Plastic Deformations of Tresca Solids
,”
Acta Mech.
0001-5970,
158
, pp.
33
42
.
12.
Casey
,
J.
, 1996, “
On Materiality Criteria for Vector Fields and Vector-Lines
,”
Math. Mech. Solids
1081-2865,
1
, pp.
219
226
.
13.
Hill
,
R.
, 1967, “
Ideal Forming Operations for Perfectly Plastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
15
, pp.
223
227
.
14.
Ivlev
,
D. D.
, 1958, “
On the General Equations of the Theory of Perfect Plasticity and Soil
,”
Prikl. Mat. Mekh.
0032-8235,
22
, pp.
90
96
.
15.
Richmond
,
O.
, and
Devenpeck
,
M. L.
, 1962, “
A Die Profile for Maximum Efficiency in Strip Drawing
,”
Proceedings of the Fourth U.S. National Congress Applied Mechanics
,
R. M.
Rosenberg
, ed.,
ASME
,
New York
, Vol.
2
, pp.
1053
1057
.
16.
Alexandrov
,
S.
, 1999, “
Steady Planar Streamlined Plastic Flows: General and Special Analytical Solutions
,”
Proceedings of the Conference on 70th Birthday of Dr. Owen Richmond “The Integration of Material, Process and Product Design
,”
N.
Zabaras
,
R.
Becker
,
L.
Lalli
, and
S.
Ghosh
, eds.,
Balkema
,
Rotterdam
, pp.
103
110
.
17.
Alexandrov
,
S.
, and
Richmond
,
O.
, 1998, “
The General Analytical Solution in the Theory of Ideal Unsteady Plastic Flows Under Conditions of Plane Deformation
,”
Dokl. Phys.
1028-3358,
43
, pp.
105
107
.
18.
Richmond
,
O.
, and
Alexandrov
,
S.
, 2000, “
Nonsteady Planar Ideal Plastic Flow: General and Special Analytical Solutions
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
1735
1759
.
19.
Alexandrov
,
S.
, and
Richmond
,
O.
, 1999, “
The Mechanics of Nonsteady Axisymmetric Ideal Plastic Flow
,”
Proceedings of the Seventh International Symposium on Plasticity and Its Current Applications
,
A. S.
Khan
, ed.,
NEAT
,
Fulton
, pp.
285
288
.
20.
Butler
,
D. S.
, 1962, “
The Numerical Solution of Hyperbolic Systems of Partial Differential Equations in Three Independent Variables
,”
Proc. R. Soc. London, Ser. A
1364-5021,
255
, pp.
232
252
.
21.
Roe
,
P. L.
, 1986, “
Characteristic-Based Schemes for the Euler Equations
,”
Annu. Rev. Fluid Mech.
0066-4189,
18
, pp.
337
365
.
22.
Druyanov
,
B. A.
, and
Nepershin
,
R. I.
, 1994,
Problems of Technological Plasticity
,
Elsevier
,
Amsterdam
.
23.
Alexandrov
,
S.
, 2003, “
Fracture Prediction in Steady Ideal Plastic Flows
,”
Acta Mech.
0001-5970,
163
, pp.
127
138
.
24.
Richmond
,
O.
, and
Morrison
,
H. L.
, 1967, “
Streamlined Wire Drawing Dies of Minimum Length
,”
J. Mech. Phys. Solids
0022-5096,
15
, pp.
195
203
.
25.
Richmond
,
O.
, 1968, “
Theory of Streamlined Dies for Drawing and Extrusion
,”
Mechanics of the Solid State
,
F. P. J.
Rimrott
and
J.
Schwaighofer
, eds.,
University of Toronto Press
,
Toronto
, pp.
154
167
.
26.
Nepershin
,
R. I.
, 1971, “
Optimal Die Profile for Extrusion
,”
Investigation of Metal Plastic Flow Processes
,
A. D.
Tomlenov
, ed.,
Nauka
,
Moscow
, pp.
46
52
(in Russian).
27.
Weinberger
,
H. F.
, 1997, “
On the Nonexistence of Certain Ideal Forming Operations for Extrusion and Drawing Dies
,”
J. Mech. Phys. Solids
0022-5096,
45
, pp.
1275
1280
.
28.
Radaev
,
Y. N.
, 1990, “
Canonical Poincare Transformations and Invariants of the Equations of Plastic Equilibrium
,”
Mech. Solids
0025-6544,
25
, pp.
90
98
.
29.
Lippmann
,
H.
, 1962, “
Principal Line Theory of Axially-Symmetric Plastic Deformation
,”
J. Mech. Phys. Solids
0022-5096,
10
, pp.
111
122
.
30.
Besdo
,
D.
, 1971, “
Principal- and Slip-Line Methods of Numerical Analysis in Plane and Axially-Symmetric Deformations of Rigid/Plastic Media
,”
J. Mech. Phys. Solids
0022-5096,
19
, pp.
313
328
.
31.
Weinberger
,
H. F.
, 2003, “
Necessary Conditions for the Optimality of an Extrusion Die for a Rigid-Plastic Material
,”
Meccanica
0025-6455,
38
, pp.
547
554
.
32.
Weinberger
,
H. F.
, 1998, “
On Optimal Extrusion Dies for Rigid-Plastic Materials
,”
Q. Appl. Math.
0033-569X,
56
, pp.
543
552
.
33.
Kuusela
,
M.
, 1986, “
Ideal Plastic Flow in Volume Preserving Orthogonal Coordinate
,” Ph.D. thesis, Duke University, Durhan, NC.
34.
Chung
,
K.
,
Lee
,
W.
,
Kang
,
T. J.
, and
Youn
,
J. R.
, 2002, “
Nonsteady Plane-Strain Ideal Forming Without Elastic Dead Zone
,”
Fibers Polym.
1229-9197,
3
, pp.
120
127
.
35.
Chakrabarty
,
J.
, 1998,
Theory of Plasticity
,
2nd ed.
,
McGraw-Hill
,
Singapore
.
36.
Alexandrov
,
S.
,
Lee
,
W.
, and
Chung
,
K.
, 2004, “
Kinematics of a Nonsteady Axi-Symmetric Ideal Plastic Flow Process
,”
Fibers Polym.
1229-9197,
5
, pp.
209
212
.
37.
Alexandrov
,
S.
,
Lee
,
W.
, and
Chung
,
K.
, 2004, “
Effect of Constitutive Laws on Plane Strain Ideal Flow Design: An Analytical Example
,”
Acta Mech.
0001-5970,
173
, pp.
49
63
.
38.
Chung
,
K.
,
Lee
,
W.
,
Richmond
,
O.
, and
Alexandrov
,
S.
, 2004, “
Nonsteady Plane-Strain Ideal Plastic Flow
,”
Int. J. Plast.
0749-6419,
21
, pp.
1322
1345
.
39.
Druyanov
,
B. A.
, and
Pirumov
,
A. R.
, 1979, “
Optimal Dies for Dynamic Extrusion of Hardening Material
,”
Izvestiya Vuzov. Mashinostroenie
,
6
, pp.
117
122
(in Russian).
40.
Hill
,
R.
, 1985, “
On the Kinematics of Steady Plane Flows in Elastoplastic Media
,”
Metal Forming and Impact Mechanics
,
S. R.
Reid
, ed.,
Pergamon
,
Oxford
, pp.
3
17
.
41.
Koistinen
,
D. P.
, and
Wang
,
N. M.
, 1978,
Mechanics of Sheet Metal Forming: Material Behavior and Deformation Analysis
,
Plenum
,
New York
.
42.
Kobayashi
,
S.
,
Oh
,
S.-I.
, and
Altan
,
T.
, 1989,
Metal Forming and the Finite-Element Method
,
Oxford University Press
,
New York
.
43.
Gerdeen
,
J. C.
, 1974, “
Analysis of Axisymmetric Sheet Metal Forming
,”
Proceedings of the NAMRC-II
, pp.
350
354
.
44.
Gerdeen
,
J. C.
, and
Chen
,
P.
, 1989, “
Geometric Mapping Method of Computer Modeling of Sheet Metal Forming
,”
Proceedings of the Third International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM, 89)
,
E. G.
Thompson
, ed.,
Balkema
,
Rotterdam
, pp.
437
444
.
45.
Sowerby
,
R.
,
Chu
,
E.
, and
Duncan
,
J. L.
, 1982, “
Determination of Large Strains in Metal Forming
,”
J. Strain Anal. Eng. Des.
0309-3247,
17
, pp.
95
101
.
46.
Levy
,
S.
,
Shin
,
C. F.
,
Wilkinson
,
J. P. D.
,
Stine
,
P.
, and
McWilson
,
R. C.
, 1978, “
Analysis of Sheet Metal Forming to Axisymmetric Shapes
,”
Formability Topics-Metallic Materials
,
ASTM
,
Philadelphia
,
ASTM STP 647
, pp.
238
260
.
47.
Hencky
,
H.
, 1924, “
Zur Theorie Plastischer Deformationen und der Hierdurch Hervorgerufenen Nachspannunger
,”
Z. Angew. Math. Mech.
0044-2267,
4
, pp.
323
334
.
48.
Chung
,
K.
, and
Lee
,
D.
, 1984, “
Computer-Aided Analysis of Sheet Material Forming Processes
,”
Proceedings of the First International Conference on Advanced Technology of Plasticity
, Vol.
I
, pp.
660
665
.
49.
Sklad
,
M. P.
, 1986, “
The Numerical Analysis of the Influence of the Material Hardening Behavior on Strain Distribution in Drawing a Sheet Metal Part of Complex Shape
,”
Proceedings of the Congress International Deep Drawing Research Group
, pp.
464
468
.
50.
Batoz
,
J. L.
,
Duroux
,
P.
,
Guo
,
Y. Q.
, and
Detraux
,
J. M.
, 1989, “
An Efficient Algorithm to Estimate the Large Strains in Deep Drawing
,”
Proceedings of the Third International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM, 89)
,
E. G.
Thompson
, ed.,
Balkema
,
Rotterdam
, pp.
383
388
.
51.
Guo
,
Y. Q.
,
Batoz
,
J. L.
,
Detraux
,
J. M.
, and
Duroux
,
P.
, 1990, “
Finite Element Procedures for Strain Estimations of Sheet Metal Forming Parts
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
1385
1401
.
52.
Majlessi
,
S. A.
, and
Lee
,
D.
, 1993, “
Deep Drawing of Square-Shaped Sheet Metal Parts, Part 1: Finite Element Analysis
,”
ASME J. Eng. Ind.
0022-0817,
115
, pp.
102
109
.
53.
Majlessi
,
S. A.
, and
Lee
,
D.
, 1993, “
Deep Drawing of Square-Shaped Sheet Metal Parts, Part 2: Experimental Study
,”
ASME J. Eng. Ind.
0022-0817,
115
, pp.
110
117
.
54.
Batoz
,
J. L.
,
Guo
,
Y. Q.
, and
Mercier
,
F.
, 1995, “
The Inverse Approach Including Bending Effects for the Analysis and Design of Sheet Metal Forming Parts
,”
Proceedings of the Fifth International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 95)
,
S. F.
Shen
and
P. R.
Dawson
, eds.,
Balkema
,
Rotterdam
, pp.
661
667
.
55.
Batoz
,
J. L.
,
Naceur
,
H.
, and
Guo
,
Y. Q.
, 2005, “
Formability Predictions in Stamping and Process Parameter Optimization Based on the Inverse Approach Code FasṯStamp
,”
Proceedings of the Sixth International Conference Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (NUMISHEET 2005)
,
L. M.
Smith
,
F.
Pouboghrat
, and
J. W.
Yoon
, eds.,
AIP
,
New York
, pp.
831
836
.
56.
Ayed
,
L. B.
,
DelaméZièRe
,
A.
, and
Batoz
,
J. L.
, 2005, “
Optimization of the Blankholder Dorce Distribution With Application to the Stamping of a Car Front Door Panel (Numisheet, 99)
,”
Proceedings of the Sixth International Conference Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (NUMISHEET 2005)
,
L. M.
Smith
,
F.
Pouboghrat
, and
J. W.
Yoon
, eds.,
AIP
,
New York
, pp.
849
854
.
57.
Oudjene
,
M.
,
Mercier
,
F.
,
Penazzi
,
L.
, and
Batoz
,
J. L.
, 2005, “
Finite Element Analysis of Laminated Tools for Sheet Metal Stamping
,”
Proceedings of the Eighth ESAFORM Conference on Material Forming (ESAFORM 2005
,
D.
Banabic
, ed.,
The Publishing House of the Romanian Academy
,
Bucharest
, pp.
695
698
.
58.
Hutchinson
,
J. W.
, 1974, “
Plastic Buckling
,”
Adv. Appl. Mech.
0065-2156,
14
, pp.
67
144
.
59.
Wang
,
N. M.
, and
Shammamy
,
M. R.
, 1969, “
On the Plastic Bulging of a Circular Diaphragm by Hydrostatic Pressure
,”
J. Mech. Phys. Solids
0022-5096,
17
, pp.
43
61
.
60.
Chung
,
K.
, and
Richmond
,
O.
, 1993, “
A Deformation Theory of Plasticity Based on Minimum Work Path
,”
Int. J. Plast.
0749-6419,
9
, pp.
907
920
.
61.
Chung
,
K.
, and
Richmond
,
O.
, 1992, “
Ideal Forming-II. Sheet Forming With Optimum Deformation
,”
Int. J. Mech. Sci.
0020-7403,
34
, pp.
617
633
.
62.
Chung
,
K.
, and
Richmond
,
O.
, 1992, “
Sheet Forming Process Design on Ideal Forming Theory
,”
Proceedings of the Fourth International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 92)
,
J. L.
Chenot
,
R. D.
Wood
, and
O. C.
Zienkiewicz
, eds.,
Balkema
,
Rotterdam
, pp.
455
460
.
63.
Chung
,
K.
,
Yoon
,
J. W.
, and
Richmond
,
O.
, 2000, “
Ideal Sheet Forming With Frictional Constraints
,”
Int. J. Plast.
0749-6419,
16
, pp.
595
610
.
64.
Ziegler
,
H.
, 1977,
An Introduction to Thermodynamics
,
North-Holland
,
Amsterdam
.
65.
Hill
,
R.
, 1987, “
Constitutive Dual Potentials in Classical Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
35
, pp.
23
33
.
66.
Hill
,
R.
, 1948, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London, Ser. A
1364-5021.
193
, pp.
281
297
.
67.
Hill
,
R.
, 1979, “
Theoretical Plasticity of Textured Aggregates
,”
Math. Proc. Cambridge Philos. Soc.
0305-0041,
193
, pp.
179
191
.
68.
Barlat
,
F.
,
Lege
,
D. J.
, and
Brem
,
J. C.
, 1991, “
A Six-Component Yield Function for Anisotropic Materials
,”
Int. J. Plast.
0749-6419,
7
, pp.
693
712
.
69.
Barlat
,
F.
,
Chung
,
K.
, and
Richmond
,
O.
, 1993, “
Strain Rate Potential for Metals and Its Application to Minimum Plastic Work Path Calculations
,”
Int. J. Plast.
0749-6419,
9
, pp.
51
63
.
70.
Barlat
,
F.
, and
Chung
,
K.
, 1993, “
Anisotropic Potentials for Plastically Deforming Metals
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
1
, pp.
403
416
.
71.
Barlat
,
F.
,
Maeda
,
Y.
,
Chung
,
K.
,
Yanagawa
,
M.
,
Brem
,
J. C.
,
Hayashida
,
Y.
,
Lege
,
D. J.
,
Matsui
,
K.
,
Murtha
,
S. J.
,
Hattori
,
S.
,
Becker
,
R. C.
, and
Makosey
,
S.
, 1997, “
Yield Function Development for Aluminum Alloy Sheets
,”
J. Mech. Phys. Solids
0022-5096,
45
, pp.
1727
1763
.
72.
Chung
,
K.
,
Barlat
,
F.
,
Yoon
,
J. W.
,
Richmond
,
O.
,
Brem
,
J. C.
, and
Lege
,
D. J.
, 1998, “
Yield and Strain Rate Potentials for Aluminum Alloy Sheet Forming Design
,”
Met. Mater. (Soeul, Rep. Korea)
1225-9438,
4
, pp.
931
938
.
73.
Barlat
,
F.
,
Brem
,
J. C.
,
Yoon
,
J. W.
,
Chung
,
K.
,
Dick
,
R. E.
,
Choi
,
S.-H.
,
Pourboghrat
,
F.
,
Chu
,
E.
, and
Lege
,
D. J.
, 2003, “
Plane Stress Yield Function for Aluminum Alloy Sheets-Part I: Theory
,”
Int. J. Plast.
0749-6419,
19
, pp.
1297
1319
.
74.
Kim
,
D.
,
Chung
,
K.
,
Barlat
,
F.
,
Youn
,
J. R.
, and
Kang
,
T. J.
, 2003, “
Non-Quadratic Plane-Stress Anisotropic Strain-Rate Potential
,”
Proceedings of the Sixth International Symposium on Microstructures and Mechanical Properties of New Engineering Materials
,
B.
Xu
, ed.,
Tsinghua University Press
,
Beijing
, pp.
46
51
.
75.
Barlat
,
F.
,
Aretz
,
H.
,
Yoon
,
J. W.
,
Karabin
,
M. E.
,
Brem
,
J. C.
, and
Dick
,
R. E.
, 2005, “
Linear Transformation Based Anisotropic Yield Functions
,”
Int. J. Plast.
0749-6419,
21
, pp.
1009
1039
.
76.
Barlat
,
F.
, and
Chung
,
K.
, 2005, “
Anisotropic Strain Rate Potential for Aluminum Alloy Plasticity
,”
Proceedings of the Eighth ESAFORM Conference on Material Forming (ESAFORM 2005)
,
D.
Banabic
, ed.,
The Publishing House of the Romanian Academy
,
Bucharest
, pp.
415
418
.
77.
Cazacu
,
O.
, and
Barlat
,
F.
, 2004, “
A Criterion for Description of Anisotropy and Yield Differential Effects in Pressure-Insensitive Metals
,”
Int. J. Plast.
0749-6419,
20
, pp.
2027
2045
.
78.
Cazacu
,
O.
,
Plunkett
,
B.
, and
Barlat
,
F.
, 2006, “
Orthotropic Yield Criterion for Hexagonal Closed Packed Metals
,”
Int. J. Plast.
0749-6419,
22
, pp.
1171
1194
.
79.
Marciniak
,
Z.
, and
Kuczynski
,
K.
, 1967, “
Limit Strains in the Processes of Stretch-Forming Sheet Metal
,”
Int. J. Mech. Sci.
0020-7403,
9
, pp.
609
625
.
80.
Stoughton
,
T. B.
, 2000, “
A General Forming Limit Criterion for Sheet Metal Forming
,”
Int. J. Mech. Sci.
0020-7403,
42
, pp.
1
27
.
81.
Barlat
,
F.
,
Chung
,
K.
, and
Richmond
,
O.
, 1994, “
Anisotropic Potentials for Polycrystals and Application to the Design of Optimum Blank Shapes in Sheet Forming
,”
Metall. Mater. Trans. A
1073-5623,
25
, pp.
1209
1216
.
82.
Chung
,
K.
,
Barlat
,
F.
,
Brem
,
J. C.
,
Lege
,
D. J.
, and
Richmond
,
O.
, 1997, “
Blank Shape Design for a Planar Anisotropic Sheet Based on Ideal Sheet Forming Design Theory, and F. E. M. Analysis
,”
Int. J. Mech. Sci.
0020-7403,
39
, pp.
105
120
.
83.
Chung
,
K.
,
Barlat
,
F.
,
Yoon
,
J. W.
, and
Richmond
,
O.
, 1999, “
Blank Design for a Sheet Forming Application Using the Anisotropic Strain-Rate Potential Srp98
,”
Proceedings of the Material, Process and Product Design
,
N.
Zabaras
,
R.
Becker
,
S.
Ghosh
, and
L.
Lalli
, eds.,
Balkema
,
Rotterdam
, pp.
213
219
.
84.
Barlet
,
O.
,
Batoz
,
J. L.
,
Guo
,
Y. Q.
,
Mercier
,
F.
,
Naceur
,
H.
, and
Knopf-Lenoir
,
C.
, 1996, “
The Inverse Approach and Mathematical Programming Techniques for Optimum Design of Sheet Forming Parts
,”
Proceedings of the Third Biennal European Joint Conference on Engineering Systems Design and Analysis
,
ASME
,
New York
, Vol.
3
, pp.
227
232
.
85.
Batoz
,
J. L.
,
Guo
,
Y. Q.
, and
Mercier
,
F.
, 1998, “
The Inverse Approach With Simple Triangular Shell Elements for Large Strain Predictions of Sheet Metal Forming Parts
,”
Eng. Comput.
0264-4401,
15
, pp.
864
892
.
86.
Lee
,
C. H.
, and
Huh
,
H.
, 1998, “
Blank Design and Strain Estimation for Sheet Metal Forming Processes by a Finite Element Inverse Approach With Initial Guess of Linear Deformation
,”
J. Mater. Process. Technol.
0924-0136,
82
, pp.
145
155
.
87.
Park
,
S. H.
,
Yoon
,
J. W.
,
Yang
,
D. Y.
, and
Kim
,
Y. H.
, 1999, “
Optimum Blank Design in Sheet Metal Forming by the Deformation Path Iteration Method
,”
Int. J. Mech. Sci.
0020-7403,
41
, pp.
1217
1232
.
88.
Guo
,
Y. Q.
,
Batoz
,
J. L.
,
Naceur
,
H.
,
Bouabdallah
,
S.
,
Mercier
,
F.
, and
Barlet
,
O.
, 2000, “
Recent Developments on the Analysis and Optimum Design of Sheet Metal Forming Parts Using the Simplified Inverse Approach
,”
Comput. Struct.
0045-7949,
78
, pp.
133
148
.
89.
El Mouatassim
,
M.
,
Thomas
,
B.
,
Jameux
,
J. P.
, and
Di Pasquale
,
E.
, 1995, “
An Industrial Finite Element Code For One Step Simulation of Sheet Metal Forming
,”
Proceedings of the Fifth International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 95)
,
S. F.
Shen
and
P. R.
Dawson
, eds.,
Balkema
,
Rotterdam
, pp.
761
766
.
90.
Liu
,
S. D.
, and
Assempoor
,
A.
, 1995, “
Development of FAST 3D—a Design-Oriented One Step FEM in Sheet Metal Forming
,”
Proceedings of the Fourth International Conference on Computational Plasticity
,
D. R. J.
Owen
and
E.
Onate
, eds.,
Pineridge Press
,
Swansea
, pp.
1515
1526
.
91.
Yoon
,
J. W.
,
Kim
,
S. K.
,
Chung
,
K.
,
Youn
,
J. R.
, and
Yeon
,
E. J.
, 2001, “
Blank Design for a Sheet Product Based on Direct Design Method, and FEM Analysis
,”
J. Mater. Process. Technol.
0924-0136, to be published.
92.
Naceur
,
H.
,
Guo
,
Y. Q.
,
Batoz
,
J. L.
, and
Knopf-Lenoir
,
C.
, 2001, “
Optimization of Drawbead Restraining Forces and Drawbead Design in Sheet Metal Forming Process
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
2407
2434
.
93.
Ryou
,
H.
,
Chung
,
K.
,
Yoon
,
J. W.
,
Han
,
C.-S.
,
Youn
,
J. R.
, and
Kang
,
T. J.
, 2005, “
Incorporation of Sheet Forming Effects in Crash Simulations Using Ideal Theory and Hybrid Membrane/Shell Method
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
182
192
.
94.
Yoon
,
J. W.
,
Pourboghrat
,
F.
,
Chung
,
K.
, and
Yang
,
D. Y.
, 2002, “
Springback Prediction for Sheet Metal Forming Process Using a 3D Hybrid Membrane/Shell Method
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
2133
2153
.
95.
Yoon
,
J. W.
,
Chung
,
K.
,
Pourboghrat
,
F.
, and
Barlat
,
F.
, 2004, “
Preform Design for Hydroform Design for Hydroforming Processes Based on Ideal Forming Design Theory
,”
Eur. J. Mech. A/Solids
0997-7538, submitted.
96.
Dessenberger
,
R. B.
, and
Tucker
,
C. L.
III
, 2003, “
Ideal Forming Analysis for Random Fiber Performs
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
146
153
.
97.
Chung
,
K.
,
Yoon
,
H. S.
, and
Dick
,
R. E.
, 2004, “
Development of a Design Software to Optimize Blank Shapes and Multi-Stage Can Forming for Wrinkling and Fracture Control
,” Alcoa Technical Report.
98.
Wang
,
N. M.
, 1982, “
A Rigid-Plastic Rate Sensitive Finite Element Procedure for Sheet Metal Forming Processes
,”
Proceedings of the International Conference on Numerical Methods in Industrial Forming Processes
,
J. F. T.
Pittman
,
R. D.
Wood
,
J. M.
Alexander
, and
O. C.
Zienkiewicz
, eds.,
Pineridge Press
,
Swansea
, pp.
797
806
.
99.
Braudel
,
H. J.
,
Abouaf
,
M.
, and
Chenot
,
J. L.
, 1986, “
An Implicit and Incrementally Objective Formulation for Solving Elastoplastic Problems at Finite Strain by the FEM Application to Cold Forging
,”
Proceedings of the Second International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 86)
,
K.
Mattiasson
,
A.
Samuelsson
,
R. D.
Wood
, and
O. C.
Zienkiewicz
, eds.,
Balkema
,
Rottedam
, pp.
225
260
.
100.
Germain
,
Y.
,
Chung
,
K.
, and
Wagoner
,
R. H.
, 1989, “
A Rigid-Visco-Plastic Finite Element Program for Sheet Metal Forming Analysis
,”
Int. J. Mech. Sci.
0020-7403,
31
, pp.
1
24
.
101.
Chung
,
K.
,
Richmond
,
O.
,
Germain
,
Y.
, and
Wagoner
,
R. H.
, 1989, “
An Incremental Approach to Plasticity and Its Application to Finite Element Modeling
,”
Proceedings of the Third International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM, 89)
,
E. G.
Thompson
,
R. D.
Wood
,
O. C.
Zienkiewicz
, and
A.
Samuelsson
, eds.,
Balkema
,
Rotterdam
, pp.
129
134
.
102.
Yoon
,
J. W.
,
Song
,
I. S.
,
Yang
,
D. Y.
,
Chung
,
K.
, and
Barlat
,
F.
, 1995, “
Finite Element Method for Sheet Forming Based on an Anisotropic Strain-Rate Potential and the Convected Coordinate System
,”
Int. J. Mech. Sci.
0020-7403,
37
, pp.
733
752
.
103.
Chung
,
K.
,
Lee
,
S. Y.
,
Barlat
,
F.
,
Keum
,
Y. T.
, and
Park
,
J. M.
, 1996, “
Finite Element Simulation of Sheet Forming Based on a Planar Anisotropic Strain-Rate Potential
,”
Int. J. Plast.
0749-6419,
12
, pp.
93
115
.
104.
Lee
,
S. Y.
,
Keum
,
Y. T.
,
Chung
,
K.
,
Park
,
J. M.
, and
Barlat
,
F.
, 1997, “
3-D FEM Simulations of Stamping Processes for Planar Anisotropic Sheet Metals
,”
Int. J. Mech. Sci.
0020-7403,
39
, pp.
1181
1198
.
105.
Chung
,
K.
, and
Shah
,
K.
, 1992, “
Finite Element Simulation of Sheet Metal Forming for Planar Anisotropic Metals
,”
Int. J. Plast.
0749-6419,
8
, pp.
453
476
.
106.
Yoon
,
J. W.
,
Yang
,
D. Y.
, and
Chung
,
K.
, 1999, “
Elasto-Plastic Finite Element Method Based on Incremental Deformation Theory and Continuum Based Shell Elements for Planar Anisotropic Sheet Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
174
, pp.
23
56
.
107.
Yoon
,
J. W.
,
Yang
,
D. Y.
, and
Chung
,
K.
, 1999, “
A General Elasto-Plastic Finite Element Formulation Based on Incremental Deformation Theory for Planar Anisotropy and Its Application to Sheet Metal Forming
,”
Int. J. Plast.
0749-6419,
15
, pp.
35
68
.
108.
Yoon
,
J. W.
,
Barlat
,
F.
,
Chung
,
K.
,
Pourboghrat
,
F.
, and
Yang
,
D. Y.
, 2000, “
Earring Prediction Based on Asymmetric Nonquadratic Yield Function
,”
Int. J. Plast.
0749-6419,
16
, pp.
1075
1104
.
109.
Yoon
,
J. W.
,
Barlat
,
F.
,
Dick
,
R. E.
,
Chung
,
K.
, and
Kang
,
T. J.
, 2004, “
Plane Stress Yield Function for Aluminum Alloy Sheets-Part II: Formulation and Its Implementation
,”
Int. J. Plast.
0749-6419,
20
, pp.
495
522
.
110.
Lee
,
M.-G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
, and
Chung
,
K.
, 2005, “
Spring-Back Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions-Part III: Applications
,”
Int. J. Plast.
0749-6419,
21
, pp.
915
953
.
111.
Shabara
,
M. A.
,
El-Domiaty
,
A. A.
, and
Kandil
,
A.
, 1996, “
Validity Assessment of Ductile Fracture Criteria in Cold Forming
,”
J. Mater. Eng. Perform.
1059-9495,
5
, pp.
478
488
.
112.
Atkins
,
A. G.
, 1996, “
Fracture in Forming
,”
J. Mater. Process. Technol.
0924-0136,
56
, pp.
609
618
.
You do not currently have access to this content.