This paper presents a review of the principal developments in functionally graded materials (FGMs) with an emphasis on the recent work published since 2000. Diverse areas relevant to various aspects of theory and applications of FGM are reflected in this paper. They include homogenization of particulate FGM, heat transfer issues, stress, stability and dynamic analyses, testing, manufacturing and design, applications, and fracture. The critical areas where further research is needed for a successful implementation of FGM in design are outlined in the conclusions.

1.
Pindera
,
M.-J.
,
Arnold
,
S. M
,
Aboudi
,
J
, and
Hui
,
D.
, 1994, “
Use of Composites in Functionally Graded Materials
,”
Composites Eng.
0961-9526
4
, pp.
1
145
.
2.
Pindera
,
M.-J.
,
Aboudi
,
J
,
Arnold
,
S. M
, and
Jones
,
W. F.
, 1995, “
Use of Composites in Multi-Phased and Functionally Graded Materials
,”
Composites Eng.
0961-9526,
5
, pp.
743
974
.
3.
Markworth
,
A. J.
,
Ramesh
,
K. S.
, and
Parks
,
W. P.
, 1995, “
Review: Modeling Studies Applied to Functionally Graded Materials
,”
J. Mater. Sci.
0022-2461,
30
, pp.
2183
2193
.
4.
Pindera
,
M.-J.
,
Aboudi
,
J
,
Glaeser
,
A. M.
, and
Arnold
,
S. M
, 1997, “
Use of Composites in Multi-Phased and Functionally Graded Materials
,”
Composites, Part B
1359-8368
28
, pp.
1
175
.
5.
Suresh
,
S.
, and
Mortensen
,
A.
, 1998,
Fundamentals of Functionally Graded Materials
,
IOM Communications
,
London
.
6.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
, 1999,
Functionally Graded Materials: Design, Processing and Applications
,
Kluwer Academic
,
Dordrecht
.
7.
Paulino
,
G. H.
,
Jin
,
Z. H.
, and
Dodds
,
R. H.
, Jr
, 2003, “
Failure of Functionally Graded Materials
,”
Comprehensive Structural Integrity
,
B.
Karihallo and
,
W. G.
Knauss
, eds.,
Elsevier Science
,
New York
, Vol.
2
, Chap. 13, pp.
607
644
.
8.
Noda
,
N.
, 1999, “
Thermal Stresses in Functionally Graded Material
,”
J. Therm. Stresses
0149-5739,
22
, pp.
477
512
.
9.
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum, Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
eds.,
Trans Tech Publications Ltd, Uetikon-Zuerich
,
Switzerland
.
10.
Birman
,
V.
, 1995, “
Stability of Functionally Graded Hybrid Composite Plates
,”
Composites Eng.
0961-9526,
5
, pp.
913
921
.
11.
Birman
,
V.
, 1997, “
Stability of Functionally Graded Shape Memory Alloy Sandwich Panels
,”
Smart Mater. Struct.
0964-1726,
6
, pp.
278
286
.
12.
Yin
,
H. M.
,
Sun
,
L. Z.
, and
Paulino
,
G. H.
, 2004, “
Micromechanics-Based Elastic Model for Functionally Graded Materials With Particle Interactions
,”
Acta Mater.
1359-6454,
52
, pp.
3535
3543
.
13.
Vel
,
S. S.
, and
Batra
,
R. C.
, 2002, “
Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates
,”
AIAA J.
0001-1452,
40
, pp.
1421
1433
.
14.
Kaysser
,
W. A.
, and
Ilschner
,
B.
, 1995, “
FGM Research Activities in Europe
,”
MRS Bull.
0883-7694,
20
, pp.
22
26
.
15.
Nemat-Alla
,
M.
, 2003, “
Reduction of Thermal Stresses by Developing Two-Dimensional Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
7339
7356
.
16.
Zuiker
,
J. R.
, 1995, “
Functionally Graded Materials: Choice of Micromechanics Model and Limitations in Property Variations
,”
Composites Eng.
0961-9526,
5
, pp.
807
819
.
17.
Reuter
,
T.
,
Dvorak
,
G. J.
, and
Tvergaard
,
V.
, 1997, “
Micromechanical Models for Graded Composite Materials
,”
J. Mech. Phys. Solids
0022-5096,
45
, pp.
1281
1302
.
18.
Reuter
,
T.
, and
Dvorak
,
G. J.
, 1998, “
Micromechanical Models for Graded Composite Materials: II. Thermomechanical Loading
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1655
1673
.
19.
Cho
,
J. R.
, and
Ha
,
D. Y.
, 2001, “
Averaging and Finite Element Discretization Approaches in the Numerical Analysis of Functionally Graded Materials
,”
Mater. Sci. Eng., A
0921-5093,
302
,
187
196
.
20.
Pal
,
R.
, 2005, “
New Models for Effective Young’S Modulus of Particulate Composites
,”
Composites, Part B
1359-8368,
36
, pp.
513
523
.
21.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
, 1999, “
Higher-Order Theory for Functionally Graded Materials
,”
Composites, Part B
1359-8368,
30
, pp.
777
832
.
22.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
, 2003, “
Higher-Order Theory for Periodic Multiphase Materials With Inelastic Phases
,”
Int. J. Plast.
0749-6419,
19
, pp.
805
847
.
23.
Zhong
,
Y.
, and
Pindera
,
M.-J.
, 2002, “
Efficient Reformulation of HOTFGM: Heat Conduction With Variable Thermal Conductivity
,” Report No. NASA/CR 2002-211910.
24.
Biner
,
S. B.
, 2001, “
Thermo-Elastic Analysis of Functionally Graded Materials Using Voronoi Elements
,”
Mater. Sci. Eng., A
0921-5093,
315
, pp.
136
146
.
25.
Yin
,
H. M.
,
Paulino
,
G. H.
,
Buttlar
,
W. G.
, and
Sun
,
L. Z.
, 2005, “
Effective Thermal Conductivity of Two-Phase Functionally Graded Particulate Composites
,”
J. Appl. Phys.
0021-8979,
98
(
6
), p.
063704
.
26.
Liu
,
G. R.
,
Han
,
X.
,
Xu
,
Y. G.
, and
Lam
,
K. Y.
, 2001, “
Material Characterization of Functionally Graded Materials by Means of Elastic Waves and a Progressive-Learning Neural Network
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
1401
1411
.
27.
Han
,
X.
,
Du
,
D.
, and
Liu
,
G. R.
, 2003, “
A Computational Inverse Technique for Material Characterization of a Functionally Graded Cylinder Using a Progressive Neural Network
,”
Neurocomputing
0925-2312,
51
, pp.
341
360
.
28.
Giannakopoulos
,
E.
, and
Suresh
,
S.
, 1997, “
Indentation of Solids With Gradients in Elastic Properties: Part II. Axisymmetric Indenters
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2393
2428
.
29.
Nakamura
,
T.
, and
Sampath
,
S.
, 2000, “
Determination of, FGM Properties by Inverse Analysis
,”
Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
,
K.
Trumble
,
K.
Bowman
,
I.
Reimanis
, and
S.
Sampath
, eds.,
The American Ceramic Society
,
Westerville, OH
, pp.
521
528
.
30.
Jin
,
Z.-H.
, 2002, “
An Asymptotic Solution of Temperature Field in a Strip of a Functionally Graded Material
,”
Int. Commun. Heat Mass Transfer
0735-1933,
29
, pp.
887
895
.
31.
Ootao
,
Y.
, and
Tanigawa
,
Y.
, 2004, “
Transient Thermoelastic Problem of Functionally Graded Thick Strip Due to Nonuniform Heat Supply
,”
Compos. Struct.
0263-8223,
63
, pp.
139
146
.
32.
Sladek
,
J.
,
Sladek
,
V.
, and
Zhang
,
Ch.
, 2003, “
Transient Heat Conduction Analysis in Functionally Graded Materials by the Meshless Local Boundary Integral Equation Method
,”
Comput. Mater. Sci.
0927-0256,
28
, pp.
494
504
.
33.
Chen
,
J.
,
Liu
,
Z.
, and
Zou
,
Z.
, 2002, “
Transient Internal Crack Problem for a Nonhomogeneous Orthotropic Strip (Mode I)
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
1761
1774
.
34.
Chen
,
B.
, and
Tong
,
L.
, 2004, “
Sensitivity Analysis of Heat Conduction for Functionally Graded Materials
,”
Mater. Des.
0264-1275,
25
, pp.
663
672
.
35.
Sutradhar
,
A.
, and
Paulino
,
G. H.
, 2004, “
The Simple Boundary Element Method for Transient Heat Conduction in Functionally Graded Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
4511
4539
.
36.
Sutradhar
,
A.
,
Paulino
,
G. H.
, and
Gray
,
L. J.
, 2005, “
On Hypersingular Surface Integral in the Symmetric Galerkin Boundary Element Method: Application to Heat Conduction in Exponentially Graded Materials
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
, pp.
122
157
.
37.
Sankar
,
B. V.
, and
Tzeng
,
J. T.
, 2002, “
Thermal Stresses in Functionally Graded Beams
,”
AIAA J.
0001-1452,
40
, pp.
1228
1232
.
38.
Sankar
,
B. V.
, 2001, “
An Elasticity Solution for Functionally Graded Beams
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
689
696
.
39.
Apetre
,
N. A.
,
Sankar
,
B. V.
, and
Ambur
,
D. R.
, 2006, “
Low-Velocity Impact of Sandwich Beams With Functionally Graded Core
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
2479
2496
.
40.
Bhangale
,
R. K.
, and
Ganesan
,
N.
, 2006, “
Thermoelastic Buckling and Vibration Behavior of a Functionally Graded Sandwich Beam With Constrained Viscoelastic Core
,”
J. Sound Vib.
0022-460X,
295
, pp.
294
316
.
41.
Conde
,
Y.
,
Pollien
,
A.
, and
Mortensen
,
A.
, 2006, “
Functional Grading of Metal Foam Cores for Yield-Limited Lightweight Sandwich Beams
,”
Scr. Mater.
1359-6462,
54
, pp.
539
543
.
42.
Chakraborty
,
A.
,
Gopalakrishnan
,
S.
, and
Reddy
,
J. N.
, 2003, “
A New Beam Finite Element for the Analysis of Functionally Graded Materials
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
519
539
.
43.
Chakraborty
,
A.
, and
Gopalakrishnan
,
S.
, 2003, “
A Spectrally Formulated Finite Element for Wave Propagation Analysis in Functionally Graded Beam
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
2421
2448
.
44.
Ching
,
H. K.
, and
Yen
,
S. C.
, 2006, “
Transient Thermoelastic Deformation of 2-D Functionally Graded Beams Under Nonuniformly Convective Heat Supply
,”
Compos. Struct.
0263-8223,
73
, pp.
381
393
.
45.
Tsukamoto
,
H.
, 2003, “
Analytical Method of Inelastic Thermal Stresses in a Functionally Graded Material Plate by a Combination of Micro- and Macromechanical Approaches
,”
Composites, Part B
1359-8368,
34
, pp.
561
568
.
46.
Ootao
,
Y.
, and
Tanigawa
,
Y.
, 1999, “
Three-Dimensional Transient Thermal Stresses of Functionally Graded Rectangular Plate Due to Partial Heating
,”
J. Therm. Stresses
0149-5739,
22
, pp.
35
55
.
47.
Zimmerman
,
R. W.
, and
Lutz
,
M. P.
, 1999, “
Thermal Stresses and Thermal Expansion in a Uniformly Heated Functionally Graded Cylinder
,”
J. Therm. Stresses
0149-5739,
22
, pp.
178
188
.
48.
Pitakthapanaphong
,
S.
, and
Busso
,
E. P.
, 2002, “
Self-Consistent Elastoplastic Stress Solutions for Functionally Graded Material Systems Subjected to Thermal Gradients
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
695
716
.
49.
Reddy
,
J. N.
, 2000, “
Analysis of Functionally Graded Plates
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
, pp.
663
684
.
50.
Reddy
,
J. N.
, and
Cheng
,
Z.-Q.
, 2001, “
Three-Dimensional Thermomechanical Deformations of Functionally Graded Rectangular Plates
,”
Eur. J. Mech. A/Solids
0997-7538,
20
, pp.
841
855
.
51.
Reddy
,
J. N.
, and
Chen
,
C. D.
, 1998, “
Thermomechanical Analysis of Functionally Graded Cylinders and Plates
,”
J. Therm. Stresses
0149-5739,
21
, pp.
593
626
.
52.
Praveen
,
G. N.
, and
Reddy
,
J. N.
, 1998, “
Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
4457
4476
.
53.
Loy
,
C. T.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
, 1999, “
Vibration of Functionally Graded Cylindrical Shells
,”
Int. J. Mech. Sci.
0020-7403,
41
, pp.
309
324
.
54.
Praveen
,
G. N.
,
Chin
,
C. D.
, and
Reddy
,
J. N.
, 1999, “
Thermoelastic Analysis of Functionally Graded Ceramic-Metal Cylinder
,”
J. Eng. Mech.
0733-9399,
125
, pp.
1259
1267
.
55.
Pradhan
,
S. C.
,
Loy
,
C. T.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
, 2000, “
Vibration Characteristics of Functionally Graded Cylindrical Shells Under Various Boundary Conditions
,”
Appl. Acoust.
0003-682X,
61
, pp.
119
129
.
56.
Reddy
,
J. N.
,
Wang
,
C. M.
, and
Kitipornchai
,
S.
, 1999, “
Axysimmetric Bending of Functionally Graded Circular and Annular Plates
,”
Eur. J. Mech. A/Solids
0997-7538,
18
, pp.
185
199
.
57.
Vel
,
S. S.
, and
Batra
,
R. C.
, 2004, “
Three Dimensional Exact Solution for the Vibration of Functionally Graded Rectangular Plates
,”
J. Sound Vib.
0022-460X,
272
, pp.
703
730
.
58.
Vel
,
S. S.
, and
Batra
,
R. C.
, 2003, “
Three-Dimensional Analysis of Transient Thermal Stresses in Functionally Graded Plates
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
7181
7196
.
59.
Qian
,
L. F.
, and
Batra
,
R. C.
, 2004, “
Transient Thermoelastic Deformations of a Thick Functionally Graded Plate
,”
J. Therm. Stresses
0149-5739,
27
, pp.
705
740
.
60.
Qian
,
L. F.
,
Batra
,
R. C.
, and
Chen
,
L. M.
, 2004, “
Static and Dynamic Deformation of Thick Functionally Graded Elastic Plates by Using Higher-Order Shear and Normal Deformable Plate Theory and Meshless Local Petrov–Galerkin Method
,”
Composites, Part B
1359-8368,
35
, pp.
685
697
.
61.
Kashtalyan
,
M.
, 2004, “
Three Dimensional Elasticity Solution for Bending of Functionally Graded Rectangular Plates
,”
Eur. J. Mech. A/Solids
0997-7538,
23
, pp.
853
864
.
62.
Elishakoff
,
I.
, and
Gentilini
,
C.
, 2005, “
Three-Dimensional Flexure of Rectangular Plates Made of Functionally Graded Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
788
791
.
63.
Pan
,
E.
, 2003, “
Exact Solution for Functionally Graded Anisotropic Elastic Composite Laminates
,”
J. Compos. Mater.
0021-9983,
37
, pp.
1903
1919
.
64.
Soldatos
,
K. P.
, 2004, “
Complex Potential Formalisms for Bending of Inhomogeneous Monoclinic Plates Including Transverse Shear Deformations
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
341
357
.
65.
Croce
,
L. D.
, and
Venini
,
P.
, 2004, “
Finite Elements for Functionally Graded Reissner-Mindlin Plates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
705
725
.
66.
Bilgili
,
E.
,
Bernstein
,
B.
, and
Arastoopour
,
H.
, 2003, “
Effect of Material Non-Homogeneity on the Inhomogeneous Shearing Deformations of a Gent Slab Subjected to a Temperature Gradient
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
1351
1368
.
67.
Cheng
,
Z.-Q.
, 2001, “
Nonlinear Bending of Inhomogeneous Plates
,”
Eng. Struct.
0141-0296,
23
, pp.
1359
1363
.
68.
Ramirez
,
F.
,
Heyliger
,
P. R.
, and
Pan
,
E.
, 2005, “
Static Analysis of Functionally Graded Elastic Anisotropic Plates Using a Discrete Layer Approach
,”
Composites, Part B
1359-8368,
37
, pp.
10
20
.
69.
Na
,
K.-S.
, and
Kim
,
J.-H.
, 2006, “
Nonlinear Bending Response of Functionally Graded Plates Under Thermal Loads
,”
J. Therm. Stresses
0149-5739,
29
, pp.
245
261
.
70.
Chi
,
S.-H.
, and
Chung
,
Y.-L.
, 2006, “
Mechanical Behavior of Functionally Graded Material Under Transverse Load—Part I: Analysis
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
3657
3674
.
71.
Chi
,
S.-H.
, and
Chung
,
Y.-L.
, 2006, “
Mechanical Behavior of Functionally Graded Material Under Transverse Load—Part II: Numerical Results
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
3675
3691
.
72.
Yang
,
J.
,
Liew
,
K. M.
, and
Kitipornchai
,
S.
, 2006, “
Stochastic Analysis of Computationally Graded Plates With System Randomness Under Static Loading
,”
Int. J. Solids Struct.
0020-7683,
47
, pp.
1519
1541
.
73.
Zenkour
,
A. M.
, 2005, “
A Comprehensive Analysis of Functionally Graded Sandwich Plates: Part 1—Deflections and Stresses
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
5224
5242
.
74.
Zenkour
,
A. M.
, 2005, “
A Comprehensive Analysis of Functionally Graded Sandwich Plates: Part 2—Buckling and Free Vibration
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
5243
5258
.
75.
Woo
,
J.
, and
Meguid
,
S. A.
, 2001, “
Nonlinear Analysis of Functionally Graded Plates and Shallow Shells
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7409
7421
.
76.
Liew
,
K. M.
,
Kitipornchai
,
S.
,
Zhang
,
X. Z.
, and
Lim
,
C. W.
, 2003, “
Analysis of the Thermal Stress Behaviour of Functionally Graded Hollow Circular Cylinders
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
2355
2380
.
77.
Jabbari
,
M.
,
Sohrabpor
,
S.
, and
Eslami
,
M. R.
, 2002, “
Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads
,”
Int. J. Pressure Vessels Piping
0308-0161,
79
, pp.
493
497
.
78.
Tarn
,
J.-Q.
, 2001, “
Exact Solutions for Functionally Graded Anisotropic Cylinders Subjected to Thermal and Mechanical Loads
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
8189
8206
.
79.
Tutuncu
,
N.
, and
Ozturk
,
M.
, 2001, “
Exact Solutions for Stresses in Functionally Graded Pressure Vessels
,”
Composites, Part B
1359-8368,
32
, pp.
683
686
.
80.
Ruhi
,
M.
,
Angoshtari
,
A.
, and
Naghdabadi
,
R.
, 2005, “
Thermoelastic Analysis of Thick-Walled Finite-Length Cylinders of Functionally Graded Materials
,”
J. Therm. Stresses
0149-5739,
28
, pp.
391
408
.
81.
Shao
,
Z. S.
, and
Wang
,
T. J.
, 2006, “
Three-Dimensional Solutions for the Stress Fields in Functionally Graded Cylindrical Panel with Finite Length and Subjected to Thermal/Mechanical Loads
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
3856
3874
.
82.
Pelletier
,
J. L.
, and
Vel
,
S. S.
, 2006, “
An Exact Solution for the Steady-State Thermoelastic Response of Functionally Graded Orthotropic Cylindrical Shells
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
1131
1158
.
83.
Eraslan
,
A. N.
, and
Akis
,
T.
, 2006, “
On the Plane Strain and Plane Stress Solutions of Functionally Graded Rotating Solid Shaft and Solid Disk Problems
,”
Acta Mech.
0001-5970,
181
, pp.
43
63
.
84.
Javaheri
,
R.
, and
Eslami
,
M. R.
, 2002, “
Thermoelastic Buckling of Rectangular Plates Made of Functionally Graded Materials
,”
AIAA J.
0001-1452,
40
, pp.
162
169
.
85.
Javaheri
,
R.
, and
Eslami
,
M. R.
, 2002, “
Buckling of Functionally Graded Plates Under In-Plane Compressive Loading
,”
ZAMM
0044-2267,
82
, pp.
277
283
.
86.
Javaheri
,
R.
, and
Eslami
,
M. R.
, 2002, “
Thermal Buckling of Functionally Graded Plates Based on Higher-Order Theory
,”
J. Therm. Stresses
0149-5739,
25
, pp.
603
625
.
87.
Na
,
K.-S.
, and
Kim
,
J.-H.
, 2004, “
Three-Dimensional Thermal Buckling Analysis of Functionally Graded Materials
,”
Composites, Part B
1359-8368,
35
, pp.
429
437
.
88.
Na
,
K.-S.
, and
Kim
,
J.-H.
, 2006, “
Three-Dimensional Thermomechanical Buckling Analysis for Functionally Graded Composite Plates
,”
Compos. Struct.
0263-8223,
73
, pp.
413
422
.
89.
Na
,
K.-S.
, and
Kim
,
J.-H.
, 2006, “
Thermal Postbuckling Investigations of Functionally Graded Plates Using 3-D Finite Element Method
,”
Finite Elem. Anal. Design
0168-874X,
42
, pp.
749
756
.
90.
Ganapathi
,
M.
, and
Prakash
,
T.
, 2006, “
Thermal Buckling of Simply Supported Functionally Graded Skew Plates
,”
Compos. Struct.
0263-8223,
74
, pp.
247
250
.
91.
Yang
,
J.
,
Liew
,
K. M.
, and
Kitipornchai
,
S.
, 2005, “
Second-Order Statistics of the Elastic Buckling of Functionally Graded Rectangular Plates
,”
Compos. Sci. Technol.
0266-3538,
65
, pp.
1165
1175
.
92.
Najafizadeh
,
M. M.
, and
Eslami
,
M. R.
, 2002, “
First-Order-Theory Based Thermoelastic Stability of Functionally Graded Material Circular Plates
,”
AIAA J.
0001-1452,
40
, pp.
1444
1450
.
93.
Najafizadeh
,
M. M.
, and
Eslami
,
M. R.
, 2002, “
Buckling Analysis of Circular Plates of Functionally Graded Material Under Uniform Radial Compression
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
2479
2493
.
94.
Ma
,
L. S.
, and
Wang
,
T. J.
, 2004, “
Relationships Between Axisymmetric Bending and Buckling Solutions of, FGM Circular Plates Based on Third-Order and Classical Plate Theories
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
85
101
.
95.
Chen
,
X. L.
, and
Liew
,
K. M.
, 2004, “
Buckling of Rectangular Functionally Graded Material Plates Subjected to Nonlinearly Distributed In-Plane Edge Loads
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
1430
1437
.
96.
Yang
,
J.
, and
Shen
,
H.-S.
, 2003, “
Non-Linear Analysis of Functionally Graded Plates Under Transverse and In-Plane Loads
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
467
482
.
97.
Yang
,
J.
, and
Shen
,
H.-S.
, 2003, “
Nonlinear Bending Analysis of Shear Deformable Functionally Graded Plates Subjected to Thermo-Mechanical Loads Under Various Boundary Conditions
,”
Composites, Part B
1359-8368,
34
, pp.
103
115
.
98.
Shen
,
H.-S.
, 2002, “
Nonlinear Bending Response of Functionally Graded Plate Subjected to Transverse Loads and in Thermal Environments
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
561
584
.
99.
Yang
,
J.
, and
Shen
,
H.-S.
, 2002, “
Vibration Characteristics and Transient Response of Shear-Deformable Graded Plates in Thermal Environments
,”
J. Sound Vib.
0022-460X,
255
, pp.
579
602
.
100.
Huang
,
X.-L.
, and
Shen
,
H.-S.
, 2004, “
Nonlinear Vibration and Dynamic Response of Functionally Graded Plates in Thermal Environments
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
2403
2427
.
101.
Shen
,
H.-S.
, 2002, “
Postbuckling Analysis of Axially Loaded Functionally Graded Cylindrical Panels in Thermal Environments
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
5991
6010
.
102.
Shen
,
H.-S.
, and
Leung
,
A. Y. T.
, 2003, “
Postbuckling of Pressure-Loaded Functionally Graded Cylindrical Panels in Thermal Environments
,”
J. Eng. Mech.
0733-9399,
129
, pp.
414
425
.
103.
Shen
,
H.-S.
, 2002, “
Postbuckling Analysis of Axially Loaded Functionally Graded Cylindrical Shells in Thermal Environments
,”
Compos. Sci. Technol.
0266-3538,
62
, pp.
977
987
.
104.
Shen
,
H.-S.
, 2004, “
Postbuckling Analysis of Pressure-Loaded Functionally Graded Cylindrical Shells in Thermal Environments
,”
Eng. Struct.
0141-0296,
25
, pp.
487
497
.
105.
Birman
,
V.
,
Chona
,
R.
,
Byrd
,
L. W.
, and
Haney
,
M. A.
, 2007, “Response of Spacially Tailored Structures to Thermal Loading,” J. Eng. Math., in press.
106.
Shen
,
H.-S.
, 2004, “
Thermal Postbuckling Behavior of Functionally Graded Cylindrical Shells with Temperature-Dependent Properties
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
1961
1974
.
107.
Shen
,
H.-S.
, and
Noda
,
N.
, 2005, “
Postbuckling of, FGM Cylindrical Shells Under Combined Axial and Radial Mechanical Loads in Thermal Environments
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
4641
4662
.
108.
Shahsiah
,
R.
, and
Eslami
,
M. R.
, 2003, “
Thermal Buckling of Functionally Graded Cylindrical Shell
,”
J. Therm. Stresses
0149-5739,
26
, pp.
277
294
.
109.
Lanhe
,
W.
, 2004, “
Thermal Buckling of a Simply Supported Moderately Thick Rectangular, FGM Plate
,”
Compos. Struct.
0263-8223,
64
, pp.
211
218
.
110.
Park
,
J.-S.
, and
Kim
,
J.-H.
, 2005, “
Thermal Postbuckling and Vibration Analysis of Functionally Graded Plates
,”
J. Sound Vib.
0022-460X,
289
, pp.
77
93
.
111.
Woo
,
J.
,
Meguid
,
S. A.
,
Stranart
,
J. C.
, and
Liew
,
K. M.
, 2006, “
Thermomechanical Postbuckling Analysis of Moderately Thick Functionally Graded Plates and Shallow Shells
,”
Int. J. Mech. Sci.
0020-7403,
47
, pp.
1147
1171
.
112.
Kadoli
,
R.
, and
Ganesan
,
N.
, 2006, “
Buckling and Free Vibration Analysis of Functionally Graded Cylindrical Shells Subjected to a Temperature-Specified Boundary Condition
,”
J. Sound Vib.
0022-460X,
289
, pp.
450
480
.
113.
Ma
,
L. S.
, and
Wang
,
T. J.
, 2003, “
Nonlinear Bending and Post-Buckling of a Functionally Graded Circular Plate Under Mechanical and Thermal Loadings
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
3311
3330
.
114.
Bhangale
,
R. K.
,
Ganesan
,
N.
, and
Padmanabhan
,
C.
, 2006, “
Linear Thermoelastic Buckling and Free Vibration Behavior of Functionally Graded Truncated Conical Shells
,”
J. Sound Vib.
0022-460X,
292
, pp.
341
371
.
115.
Yang
,
J.
,
Liew
,
K. M.
,
Wu
,
Y. F.
, and
Kitipornchai
,
S.
, 2006, “
Thermo-Mechanical Post-Buckling Of, FGM Cylindrical Panels With Temperature-Dependent Properties
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
307
324
.
116.
Liew
,
K. M.
,
Yang
,
J.
, and
Kitipornchai
,
S.
, 2004, “
Thermal Post-Buckling of Laminated Plates Comprising Functionally Graded Materials with Temperature-Dependent Properties
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
839
850
.
117.
Lefebvre
,
J.
,
Zhang
,
V.
,
Gazalet
,
J.
,
Gryba
,
T.
, and
Sadaune
,
V.
, 2001, “
Acoustic Wave Propagation in Continuous Functionally Graded Plates: An Extension of the Legendre Polynomial Approach
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
48
, pp.
1332
1340
.
118.
Liu
,
G. R.
,
Han
,
K.
, and
Lam
,
K. Y.
, 2001, “
An Integration Technique for Evaluating Confluent Hypergeometric Functions and Its Application to Functionally Graded Materials
,”
Comput. Struct.
0045-7949,
79
, pp.
1039
1047
.
119.
Berezovski
,
A.
,
Engelbrecht
,
Ju.
, and
Maugin
,
G. A.
, 2003, “
Numerical Simulation of Two-Dimensional Wave Propagation in Functionally Graded Materials
,”
Eur. J. Mech. A/Solids
0997-7538,
22
, pp.
257
265
.
120.
Han
,
X.
,
Liu
,
G. R.
,
Xi
,
Z. C.
, and
Lam
,
K. Y.
, 2000, “
Transient Waves in a Functionally Graded Cylinder
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
3037
3021
.
121.
Han
,
X.
,
Xu
,
D.
, and
Liu
,
G. R.
, 2002, “
Transient Responses in a Functionally Graded Cylindrical Shell to a Point Load
,”
J. Sound Vib.
0022-460X,
251
, pp.
783
805
.
122.
Kitipornchai
,
S.
,
Yang
,
J.
, and
Liew
,
K. M.
, 2004, “
Semi-Analytical Solution for Nonlinear Vibration of Laminated, FGM Plates with Geometric Imperfections
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
2235
2257
.
123.
Yang
,
J.
, and
Shen
,
H.-S.
, 2001, “
Dynamic Response of Initially Stressed Functionally Graded Rectangular Thin Plates
,”
Comput. Struct.
0045-7949,
54
, pp.
497
508
.
124.
Prakash
,
T.
, and
Ganapathi
,
M.
, 2006, “
Supersonic Flutter Characteristics of Functionally Graded Flat Panels Including Thermal Effects
,”
Comput. Struct.
0045-7949,
72
, pp.
10
18
.
125.
Bhangale
,
R. K.
, and
Ganesan
,
N.
, 2006, “
Free Vibration of Simply Supported Functionally Graded and Layered Magneto-Electro-Elastic Plates by Finite Element Method
,”
J. Sound Vib.
0022-460X,
294
, pp.
1016
1038
.
126.
Bhangale
,
R. K.
, and
Ganesan
,
N.
, 2006, “
Static Analysis of Simply Supported Functionally Graded and Layered Magneto-Electro-Elastic Plates
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
3230
3253
.
127.
Kitipornchai
,
S.
,
Yang
,
J.
, and
Liew
,
K. M.
, 2006, “
Random Vibration of the Functionally Graded Laminates in Thermal Environments
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
1075
1095
.
128.
Gong
,
S. W.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
, 1999, “
The Elastic Response of Functionally Graded Cylindrical Shells to Low-Velocity Impact
,”
Int. J. Impact Eng.
0734-743X,
22
, pp.
397
417
.
129.
Ng
,
T. Y.
,
Lam
,
K. Y.
,
Liew
,
K. M.
, and
Reddy
,
J. N.
, 2001, “
Dynamic Stability Analysis of Functionally Graded Cylindrical Shells Under Periodic Axial Loading
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
1295
1309
.
130.
Sofiyev
,
A. H.
, 2004, “
The Stability of Functionally Graded Truncated Conical Shells Subjected to Aperiodic Impulsive Loading
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3411
3424
.
131.
Tylikowski
,
A.
, 2005, “
Dynamic Stability of Functionally Graded Plate Under In-Plane Compression
,”
Math. Probl. Eng.
1024-123X,
4
, pp.
411
424
.
132.
Yang
,
J.
,
Liew
,
K. M.
, and
Kitipornchari
,
S.
, 2004, “
Dynamic Stability of Laminated FGM Plates Based on Higher-Order Shear Deformation Theory
,”
Comput. Mech.
0178-7675,
33
, pp.
305
315
.
133.
Anderson
,
T. D.
, 2003, “
A 3-D Elasticity Solution for a Sandwich Composite With Functionally Graded Core Subjected to Transverse Loading by a Rigid Sphere
,”
Compos. Struct.
0263-8223,
60
, pp.
265
274
.
134.
Tanigawa
,
Y.
,
Morishita
,
H.
, and
Ogaki
,
S.
, 1999, “
Derivation of Systems of Fundamental Equation for Three-Dimensional Thermoelastic Field With Nonhomogeneous Material Properties and Its Application to a Semi-Infinite Body
,”
J. Therm. Stresses
0149-5739,
22
, pp.
689
711
.
135.
Pindera
,
M. J.
,
Aboudi
,
J.
, and
Arnold
,
S. M.
, 2002, “
Analysis of Spallation Mechanism in Thermal Barrier Coatings With Graded Bond Coats Using the Higher Order Theory for FGMs
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1587
1606
.
136.
Wang
,
J.-P.
,
Yang
,
S.-Y.
, and
Liu
,
L.-S.
, 2005, “
Creep Response of Ceramic/Metal Functionally Graded Thermal Barrier Coating
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
,
Materials Science Forum
Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
495
500
.
137.
Zhai
,
P.-C.
,
Chen
,
G.
, and
Zhang
,
Q.-J.
, 2005, “
Creep Property of Functionally Graded Materials
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
,
Materials Science Forum
Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
599
604
.
138.
Singh
,
S. B.
, and
Ray
,
S.
, 2003, “
Creep Analysis of an Isotropic Rotating Disc of Al–SiC Composite
,”
J. Mater. Process. Technol.
0924-0136,
143–144
, pp.
616
622
.
139.
Wang
,
J.-P.
,
Chen
,
G.
, and
Zhai
,
P.-C.
, 2005, “
Optimization of Material Composition of, FGM Coatings Under Steady Heat Flux Loading by Micro-Generic Algorithms
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
,
Materials Science Forum
Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
441
446
.
140.
Nadeau
,
J. C.
, and
Ferrari
,
M.
, 1999, “
Multistructural Optimization of a Functionally Graded Transversely Isotropic Layer
,”
Mech. Mater.
0167-6636,
31
, pp.
637
651
.
141.
Cho
,
J. R.
, and
Oden
,
J. T.
, 2000, “
Functionally Graded Material: A Parametric Study on Thermal-Stress Characteristics Using the Crank–Nicolson–Galerkin Scheme
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
188
, pp.
17
38
.
142.
Cho
,
J. R.
, and
Shin
,
S. W.
, 2004, “
Material Composition Optimization for Heat-Resisting, FGM by Artificial Neural Network
,”
Composites, Part A
1359-835X,
35
, pp.
585
594
.
143.
Lipton
,
R.
, 2002, “
Design of Functionally Graded Composite Structures in the Presence of Stress Constraints
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2575
2586
.
144.
Cho
,
J. R.
, and
Ha
,
D. Y.
, 2002, “
Optimal Tailoring of 2D Volume-Fraction Distribution for Heat-Resisting Functionally Graded Materials Using, FGM
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
3195
3211
.
145.
Cho
,
J. R.
, and
Ha
,
D. Y.
, 2002, “
Volume Fraction Optimization for Minimizing Thermal Stresses in Ni–Al2O3 Functionally Graded Materials
,”
Mater. Sci. Eng., A
0921-5093,
334
, pp.
147
155
.
146.
Parashkevola
,
L.
,
Ivanova
,
J.
, and
Bontcheva
,
N.
, 2004, “
Optimal Design of Functionally Graded Plates With Thermo-Elastic Plastic Behaviour
,”
C. R. Mec.
1631-0721,
332
, pp.
493
498
.
147.
Cho
,
J. R.
, and
Choi
,
J. H.
, 2004, “
A Yield-Criteria Tailoring of the Volume Fraction in Metal-Ceramic Functionally Graded Material
,”
Eur. J. Mech. A/Solids
0997-7538,
23
, pp.
271
281
.
148.
Cho
,
J. R.
, and
Park
,
H. J.
, 2003, “
Effective Volume-Fraction Optimization for Thermal Stress Reduction in FGMS Utilizing Irregular H-Refinements
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
, pp.
749
770
.
149.
Turteltaub
,
S.
, 2002, “
Functionally Graded Materials for Prescribed Field Evolution
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
2283
2296
.
150.
Turteltaub
,
S.
, 2002, “
Optimal Control and Optimization of Functionally Graded Materials for Thermomechanical Processes
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3175
3197
.
151.
Chen
,
G.
,
Zhai
,
P.-C.
, and
Zhang
,
Q.-J.
, 2003, “
Optimization of Material Composition Of, FGM Coating Under Thermal Loading by Micro Genetic Algorithms
,”
Functionally Graded Materials VII, Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000)
,
Materials Science Forum
Vols.
423–425
,
W.
Pan
,
J.
Gong
,
L.
Zhang
, and
L.
Chen
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
713
718
.
152.
Qian
,
L. F.
, and
Batra
,
R. C.
, 2005, “
Design of Bidirectional Functionally Graded Plate for Optimal Natural Frequencies
,”
J. Sound Vib.
0022-460X,
280
, pp.
415
424
.
153.
Batra
,
R. C.
, and
Jin
,
J.
, 2005, “
Natural Frequencies of a Functionally Graded Anisotropic Rectangular Plate
,”
J. Sound Vib.
0022-460X,
282
, pp.
509
516
.
154.
Kieback
,
B.
,
Neubrand
,
A.
, and
Riedel
,
H.
, 2003, “
Processing Techniques for Functionally Graded Materials
,”
Mater. Sci. Eng., A
0921-5093,
362
, pp.
81
105
.
155.
Put
,
S.
,
Vleugels
,
J.
, and
Van der Biest
,
O.
, 2003, “
Microstructural Engineering of Functionally Graded Materials by Electrophoretic Deposition
,”
J. Mater. Process. Technol.
0924-0136,
143–144
, pp.
572
577
.
156.
Vanmeensel
,
K.
,
Anne
,
G.
,
Jiang
,
D.
,
Vleugels
,
J.
, and
Van der Biest
,
O.
, 2005, “
Processing of a Graded Cutting Tool in the Al2O3–Zro2–Ti(C, N) System by Electrophoretic Deposition
,”
Mater. Sci. Forum
0255-5476,
492–493
, pp.
705
710
.
157.
Kim
,
J. I.
,
Kim
,
W.-J.
,
Choi
,
D. J.
,
Park
,
J. Y.
, and
Ryu
,
W.-S.
, 2005, “
Design of a C∕SiC Functionally Graded Coating for the Oxidation Protection of C∕C Composites
,”
Carbon
0008-6223,
43
, pp.
1749
1757
.
158.
Shen
,
Z. J.
, and
Nygren
,
M.
, 2002, “
Laminated and Functionally Graded Materials Prepared by Spark Plasma Sintering
,”
Key Eng. Mater.
1013-9826,
206
, pp.
2155
2158
.
159.
Tokita
,
M.
, 2003, “
Large-Size-WC∕Co Functionally Graded Materials Fabricated by Spark Plasma Sintering (SPS) Method
,”
Functionally Graded Materials VII, Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000)
,
Materials Science Forum
Vols.
423–425
,
W.
Pan
,
J.
Gong
,
L.
Zhang
, and
L.
Chen
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
39
44
.
160.
Biesheuvel
,
P. M.
, and
Verweij
,
H.
, 2000, “
Calculation of the Composition Profile of a Functionally Graded Material Produced by Centrifugal Casting
,”
J. Am. Ceram. Soc.
0002-7820,
83
, pp.
743
749
.
161.
Velhinto
,
A.
,
Sequeira
,
P. D.
,
Fernanzes
,
F. M. B.
,
Botas
,
J. D.
, and
Rocha
,
L. S.
, 2003, “
Al∕SiCp Functionally Graded Meta-Matrix Composites Produced by Centrifugal Casting: Effect of Particle Grain size on Reinforcement Distribution
,”
Functionally Graded Materials VII, Proceedings of the Seventh International Symposium on Functionally Graded Materials
(FGM2000), Materials Science Forum Vols.
423–425
,
W.
Pan
,
J.
Gong
,
L.
Zhang
, and,
L.
Chen
eds.,
Trans Tech Publications Ltd., Uetikon-Zuerich
,
Switzerland
, pp.
257
262
.
162.
Carrilo-Heian
,
E. M.
,
Carpenter
,
R. D.
,
Paulino
,
G. H.
,
Gibeling
,
J. G.
, and
Munir
,
Z. A.
, 2001, “
Dense Layered Molybdenum Disilicide-Silicon Carbide Functionally Graded Composites Formed by Field-Activated Synthesis
,”
J. Am. Ceram. Soc.
0002-7820,
84
, pp.
962
968
.
163.
Lambros
,
A.
,
Narayanaswamy
,
A.
,
Santare
,
M. H.
, and
Anlas
,
G.
, 1999, “
Manufacturing and Testing of a Functionally Graded Material
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
, pp.
488
493
.
164.
Bakshi
,
S.
,
Chattopadhyay
,
K.
, and
Kumar
,
S.
, 2005, “
Studies of the Mechanical Behaviour of a Newly Developed Al–4.6Cu Functionally Graded Material
,”
Mater. Forum
0883-2900,
29
, pp.
467
470
.
165.
Fukui
,
Y.
,
Okada
,
H.
,
Kumazawa
,
N.
, and
Watanabe
,
Y.
, 2000, “
Near-Net-Shape Forming of Al–Al3Ni Functionally Graded Material over Eutectic Melting Temperature
,”
Metall. Mater. Trans. A
1073-5623,
31
, pp.
2627
2636
.
166.
Okada
,
H.
,
Fukui
,
Y.
,
Sako
,
R.
, and
Kumazawa
,
N.
, 2003, “
Numerical Analysis on Near Net Shape Forming of Al–Al3Ni Functionally Graded Material
,”
Composites, Part A
1359-835X,
34
, pp.
371
382
.
167.
Tiegs
,
T. N.
,
Santella
,
M. L.
,
Blue
,
C. A.
,
Menchhofer
,
P. A.
, and
Coranson
,
F.
, 2000, “
FGM Fabrication by Surface Thermal Treatments of TiC–Ni3Al Composites
,”
Functionally Graded Materials Proceedings of the Sixth International Symposium on Functionally Graded Materials
,
K.
Trumble
,
K.
Bowman
,
I.
Reimanis and
,
S.
Sampath
eds.,
The American Ceramic Society
,
Westerville, OH
, pp.
357
363
.
168.
Wang
,
Y.
,
Chen
,
M.
,
Qi
,
L. Z.
,
Liu
,
Z. L.
,
Yao
,
K. L.
, and
Wang
,
Q. L.
, 2003, “
A New Application of Pulsed Laser Deposition to Produce Functionally Graded Material Thin Films
,”
Functionally Graded Materials, VII Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000)
, Materials Science Forum Vols.
423–425
,
W.
Pan
,
J.
Gong
,
L.
Zhang
, and,
L.
Chen
eds.,
Trans Tech Publications Ltd., Uetikon-Zuerich
,
Switzerland
, pp.
573
576
.
169.
Jedamzik
,
R.
,
Neubrand
,
A.
, and
Rodel
,
J.
, 2000, “
Functionally Graded Materials by Electrochemical Processing and Infiltration: Application to Tungsten/Copper Composites
,”
J. Mater. Sci.
0022-2461,
35
, pp.
477
486
.
170.
Pines
,
M. L.
, and
Bruck
,
H. A.
, 2006, “
Pressureless Sintering of Particle-Reinforced Metal-Ceramic Composites for Functionally Graded Materials: Part I. Porosity Reduction Models
,”
Acta Mater.
1359-6454,
54
, pp.
1457
1465
.
171.
Pines
,
M. L.
, and
Bruck
,
H. A.
, 2006, “
Pressureless Sintering of Particle-Reinforced Metal-Ceramic Composites for Functionally Graded Materials: Part II. Sintering Model
,”
Acta Mater.
1359-6454,
54
, pp.
1467
1474
.
172.
Chen
,
K.-Z.
, and
Feng
,
X.-A.
, 2003, “
Computer-Aided Design Method for the Components Made of Heterogeneous Materials
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
453
466
.
173.
Chen
,
K.-Z.
, and
Feng
,
X.-A.
, 2004, “
CAD Modeling for the Components Made of Multi Heterogeneous Materials and Smart Materials
,”
Comput.-Aided Des.
0010-4485,
36
, pp.
51
63
.
174.
Qian
,
X.
, and
Dutta
,
D.
, 2004, “
Feature-based design for heterogeneous objects
,”
Comput.-Aided Des.
0010-4485,
36
, pp.
1263
1278
.
175.
Qian
,
X.
, and
Dutta
,
D.
, 2003, “
Heterogeneous Object Modeling Through Direct Face Neighborhood Alteration
,”
Comput. Graphics
0097-8493,
27
, pp.
943
961
.
176.
Siu
,
Y. K.
, and
Tan
,
S. T.
, 2002, “
Source-Based Heterogeneous Solid Modeling
,”
Comput.-Aided Des.
0010-4485,
34
, pp.
41
55
.
177.
Banks-Sills
,
L.
,
Eliasi
,
R.
, and Berlin Yu 2002, “
Modeling of Functionally Graded Materials in Dynamic Analyses
,”
Composites, Part B
1359-8368
33
, pp.
7
15
.
178.
Zhang
,
B.
, and
Gasik
,
M.
, 2005, “
Machining, FGM: residual stress redistribution
,” Functionally Graded Materials VIII (FGM2004),
Proceedings of the Eigth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
eds.,
Trans Tech Publications Ltd., Uetikon-Zuerich
,
Switzerland
, pp.
415
420
.
179.
Qian
,
X.
, and
Dutta
,
D.
, 2003, “
Design of Heterogeneous Turbine Blades
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
319
329
.
180.
Stump
,
F. V.
,
Paulino
,
G. H.
, and
Silva
,
E. C. N.
, 2005, “
Material Distribution Design of Functionally Graded Rotating Discs with Stress Constraint
,”
Proceedings, Sixth World Congress of Structural and Multidisciplinary Optimization
,
Rio de Janeiro
, May 30–Jun. 3.
181.
Sugano
,
Y.
,
Chiba
,
R.
,
Hirose
,
K.
, and
Takahashi
,
K.
, 2004, “
Material Design for Reduction of Thermal Stress in a Functionally Graded Material Rotating Disc
,”
JSME Int. J., Ser. A
1340-8046,
47
, pp.
189
197
.
182.
Shabana
,
Y. M.
, and
Noda
,
N.
, 2001, “
Thermo-Elasto-Plastic Stresses in Functionally Graded Materials Subjected to Thermal Loading Taking Residual Stresses of the Fabrication Process Into Consideration
,”
Composites, Part B
1359-8368
32
, pp.
111
121
.
183.
Hudnut
,
S.
,
Almajid
,
A.
, and
Taya
,
M.
, 2000, “
Functionally Graded Piezoelectric Bimorph Type Actuator,”
Proc. SPIE
0277-786X
3992
, pp.
376
386
.
184.
Li
,
X.
,
Vartuli
,
J. S.
,
Milius
,
D. L.
,
Aksay
,
I. A.
,
Shih
,
W. Y.
, and
Shih
,
W. H.
, 2001, “
Electromechanical Properties of a Ceramic D31-Gradient Flextensional Actuator
,”
J. Am. Ceram. Soc.
0002-7820,
84
, pp.
996
1003
.
185.
Alexander
,
P. W.
, and
Brei
,
D.
, 2003, “
The Design Tradeoffs of Linear Functionally Graded Piezoceramic Actuators
,”
Proceedings of IMECE 2003-2003 ASME International Mechanical Engineering Congress and Exposition
, ASME Paper No. IMECE2003–42723.
186.
Takagi
,
K.
,
Li
,
J.-F.
,
Yokogama
,
S.
, and
Watanabe
,
R.
, 2003, “
Fabrication and Evaluation of PZT/Pt Piezoelectric Composites and Functionally Graded Actuators
,”
J. Eur. Ceram. Soc.
0955-2219,
23
, pp.
1577
1583
.
187.
Jin
,
D.
, and
Meng
,
Z.
, 2003, “
Functionally Graded PZT/Zno Piezoelectric Composites
,”
J. Mater. Sci. Lett.
0261-8028,
22
, pp.
971
974
.
188.
Li
,
J.-F.
,
Takagi
,
K.
,
Ono
,
M.
,
Pan
,
W.
,
Watanabe
,
R.
,
Almajid
,
A.
, and
Taya
,
M.
, 2003, “
Fabrication and Evaluation of Porous Piezoelectric Ceramics and Porosity-Graded Actuators
,”
J. Am. Ceram. Soc.
0002-7820,
86
, pp.
1094
1098
.
189.
Alexander
,
P. W.
,
Brei
,
D.
, and
Halloran
,
J. W.
, 2005, “
DEPP Co-Extruded Functionally Graded Piezoceramics
,”
Proceedings of IMECE 2005—2005 ASME International Mechanical Engineering Congress and Exposition
, ASME Paper No. IMECE2005–80217.
190.
Alexander
,
P. W.
,
Brei
,
D.
, and
Halloran
,
J. W.
, 2005, “
The Force-Deflection Behavior of Functionally Graded Piezoceramic Actuators
,”
Proceedings of the 2005 AIAA/ASME/AHS Adaptive Structures Conference
.
191.
Butcher
,
R. J.
,
Rousseau
,
C.-E.
, and
Tippur
,
H. V.
, 1999, “
A Functionally Graded Particulate Composite: Preparation, Measurements and Failure Analysis
,”
Acta Mater.
1359-6454,
47
, pp.
259
268
.
192.
Velhinho
,
A.
,
Vignoles
,
G. L.
,
Cloetens
,
P.
,
Thibault
,
X.
,
Boller
,
E.
,
Fernandes
,
F. B.
,
Rocha
,
L. A.
, and
Botas
,
J. D.
, 2005, “
Evaluation of Sic-Particle Connectivity in Functionally Graded Al∕Sicp Composites by Synchrotron Radiation Holographic Microtomography
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, eds.,
Trans Tech Publications Ltd, Uetikon-Zuerich
,
Switzerland
, pp.
621
626
.
193.
Cannillo
,
V.
,
Manfredini
,
T.
,
Montorsi
,
M.
,
Siligardi
,
C.
, and
Sola
,
A.
, 2005, “
Experimental Characterization and Computational Simulation of Glass-Alumina Functionally Graded Surfaces
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
,
Materials Science Forum Vols. 492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
647
652
.
194.
Dantz
,
D.
,
Genzel
,
Ch.
,
Reimers
,
W.
, and
Buslaps
,
T.
, 2000, “
Investigations of the Residual Stress State in Microwave Sintered Functionally Graded Materials
,”
Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
,
K.
Trumble
,
K.
Bowman
,
I.
Reimanis
, and
S.
Sampath
, eds.,
The American Ceramic Society
,
Westerville, OH
, pp.
563
570
.
195.
Anne
,
G.
,
Vanmeensel
,
K.
,
Vleugels
,
J.
, and
Van der Biest
,
O.
, 2005, “
Stress Relaxation on Polished Sections of Al2O3∕ZrO2, FGM Discs Measured by Raman Spectroscopy
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
,
Materials Science Forum Vols. 492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
641
646
.
196.
Kucuk
,
A.
,
Dambra
,
C. G.
,
Berndt
,
C. C.
,
Senturk
,
U.
, and
Lima
,
R. S.
, 2000, “
Cracking Behavior of NiCrAIZ∕YSZ Thermal Barrier Coatings Under Four Point Bending Loads
,”
Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
,
K.
Trumble
,
K.
Bowman
,
I.
Reimanis
, and
S.
Sampath
, eds.,
The American Ceramic Society
,
Westerville, OH
, pp.
177
186
.
197.
Neubrand
,
A.
,
Kawasaki
,
A.
, and
Yang
,
Y. Y.
, 2000, “
Thermal Cycling Behavior of Cu∕Al2O3 Functionally Graded Material
,”
Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
,
K.
Trumble
,
K.
Bowman
,
I.
Reimanis
, and
S.
Sampath
, eds.,
The American Ceramic Society
,
Westerville, OH
, pp.
705
712
.
198.
Balke
,
H.
,
Bahr
,
H.-A.
,
Semenov
,
A. S.
,
Hofinger
,
I.
,
Hauser
,
C.
,
Kirchhof
,
G.
, and
Weiss
,
H.-J.
, 2000, “
Graded Thermal Barrier Coatings: Cracking Due to Laser Irradiation and Determining of Interface Toughness
,”
Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
,
K.
Trumble
,
K.
Bowman
,
I.
Reimanis
, and
S.
Sampath
, eds.,
The American Ceramic Society
,
Westerville, OH
, pp.
205
212
.
199.
Marks
,
R.
,
Zaretsky
,
E.
,
Frage
,
N.
,
Tevet
,
O.
,
Greenberg
,
Y.
, and
Dariel
,
M. P.
, 2000, “
Ultrasonic Characterization of the Elastic Properties of Ceramic-Metal Graded Composites
,”
Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
,
K.
Trumble
,
K.
Bowman
,
I.
Reimanis
, and
S.
Sampath
, eds.,
The American Ceramic Society
,
Westerville, OH
, pp.
587
594
.
200.
Quin
,
X.
, and
Dutta
,
D.
, 2004, “
Feature-Based Design for Heterogeneous Objects
,”
Comput.-Aided Des.
0010-4485,
36
, pp.
1263
1278
.
201.
Schiller
,
C.
,
Siedler
,
M.
,
Peters
,
F.
, and
Epple
,
M.
, 2000, “
Functionally Graded Materials of Biodegradable Polyesters and Bone-Like Calcium Phosphates for Bone Replacement
,”
Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
,
K.
Trumble
,
K.
Bowman
,
I.
Reimanis
, and
S.
Sampath
, eds.,
The American Ceramic Society
,
Westerville, OH
, pp.
97
108
.
202.
Leushake
,
U.
,
Krell
,
T.
, and
Schulz
,
U.
, 2004, “
Graded Thermal Barrier Coating Systems for Gas Turbine Applications
,”
Materialwiss. Werkstofftech.
0933-5137,
28
, pp.
391
394
.
203.
Cho
,
J. R.
, and
Park
,
H. J.
, 2002, “
High Strength, FGM Cutting Tools: Finite Element Analysis on Thermoelastic Characteristics
,”
J. Mater. Process. Technol.
0924-0136,
130–131
, pp.
351
356
.
204.
Li
,
J. F.
,
Takagi
,
K.
,
Ono
,
M.
,
Pan
,
W.
,
Watanabe
,
R.
,
Almajid
,
A.
, and
Taya
,
M.
, 2003, “
Fabrication and Evaluation of Porous Piezoelectric Ceramics and Porosity Graded Piezoelectric Actuators
,”
J. Am. Ceram. Soc.
0002-7820,
86
, pp.
1094
1098
.
205.
Liu
,
L. S.
,
Zhang
,
Q.-J.
, and
Zhai
,
P.-C.
, 2003, “
The Optimization Design on Metal/Ceramic, FGM Armor With Neural Net and Conjugate Gradient Method
,” Functionally Graded Materials, VII Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000),
Materials Science Forum Vols. 423–425
,
W.
Pan
,
J.
Gong
,
L.
Zhang
, and
L.
Chen
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
791
802
.
206.
Cooley
,
W. G.
, and
Palazotto
,
A.
, 2005, “
Finite Element Analysis of Functionally Graded Shell Panels Under Thermal Loading
,”
Proceedings of the 2005 ASME International Congress and Exhibition
, Paper No. IMECE2005–85778.
207.
Takeuch
,
K.
,
Kawazoe
,
M.
, and
Kanayama
,
K.
, 2003, “
Design of Functionally Graded Wood-Based Board for Floor Heating System With Higher Energy Efficiency
,”
Functionally Graded Materials, VII Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000)
,
Materials Science Forum Vols. 423–425
,
W.
Pan
,
J.
Gong
,
L.
Zhang
, and
L.
Chen
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
819
824
.
208.
Oh
,
S.-Y.
,
Librescu
,
L.
, and
Song
,
O.
, 2003, “
Thermoelastic Modeling and Vibration of Functionally Graded Thin-Walled Rotating Blades
,”
AIAA J.
0001-1452,
41
, pp.
2051
2061
.
209.
Oh
,
S.-Y.
,
Librescu
,
L.
, and
Song
,
O.
, 2003, “
Vibration of Turbomachinery Rotating Blades Made-Up of Functionally Graded Materials and Operating in a High Temperature Field
,”
Acta Mech.
0001-5970,
166
, pp.
69
87
.
210.
Librescu
,
L.
,
Oh
,
S.-Y.
, and
Song
,
O.
, 2004, “
Spinning Thin-Walled Beams Made of Functionally Graded Materials: Modeling, Vibration and Instability
,”
Eur. J. Mech. A/Solids
0997-7538,
23
, pp.
499
515
.
211.
Oh
,
S.-Y.
,
Librescu
,
L.
, and
Song
,
O.
, 2005, “
Vibration and Instability of Functionally Graded Circular Cylindrical Spinning Thin-Walled Beams
,”
J. Sound Vib.
0022-460X,
285
, pp.
1071
1091
.
212.
Librescu
,
L.
, and
Song
,
S.-Y.
, 2005, “
Thin-Walled Beams Made of Functionally Graded Materials and Operating in a High Temperature Environment: Vibration and Stability
,”
J. Therm. Stresses
0149-5739,
28
, pp.
649
712
.
213.
Ootao
,
Y.
, and
Tanigawa
,
Y.
, 2000, “
Three-Dimensional Transient Piezothermoelasticity in Functionally Graded Rectangular Plate Bonded to a Piezoelectric Plate
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
4377
4401
.
214.
Lim
,
C. W.
, and
He
,
L. H.
, 2001, “
Exact Solution of a Compositionally Graded Piezoelectric Layer Under Uniform Stretch, Bending and Twisting
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
2479
2492
.
215.
Wang
,
B. L.
, and
Noda
,
N.
, 2001, “
Design of a Smart Functionally Graded Thermopiezoelectric Composite Structure
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
189
193
.
216.
Liew
,
K. M.
,
He
,
X. Q.
,
Ng
,
T. Y.
, and
Sivashanker
,
S.
, 2001, “
Active Control Of, FGM Plates Subjected to a Temperature Gradient: Modeling Via Finite Element Method Based on FSDT
,”
Int. J. Numer. Methods Eng.
0029-5981,
52
, pp.
1253
1271
.
217.
He
,
T. Y.
,
Ng
,
S.
,
Sivashanker
,
S.
, and
Liew
,
K. M.
, 2001, “
Active Control Of, FGM Plates With Integrated Piezoelectric Sensors and Actuators
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
1641
1655
.
218.
Liew
,
K. M.
,
Lim
,
H. K.
, and
Tan
,
X. Q.
, 2002, “
Analysis of Laminated Composite Beams and Plates With Piezoelectric Patches Using the Element-Free Galerkin Method
,”
Comput. Mech.
0178-7675,
29
, pp.
486
497
.
219.
Chen
,
W. Q.
, and
Ding
,
H. J.
, 2002, “
On Free Vibration of a Functionally Graded Piezoelectric Rectangular Plate
,”
Acta Mech.
0001-5970,
153
, pp.
207
216
.
220.
Reddy
,
J. N.
, and
Cheng
,
Z.-Q.
, 2001, “
Three-Dimensional Solution of Smart Functionally Graded Plates
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
234
241
.
221.
Wu
,
X. H.
,
Chen
,
C.
,
Shen
,
Y. P.
, and
Tian
,
X. G.
, 2002, “
A Higher Order Theory for Functionally Graded Piezoelectric Shells
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
5325
5344
.
222.
Zhong
,
Z.
, and
Shang
,
E. T.
, 2003, “
Three-Dimensional Exact Analysis of a Simply Supported Functionally Gradient Piezoelectric Plate
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
5335
5352
.
223.
Almajid
,
A.
,
Taya
,
M.
, and
Hudnet
,
S.
, 2001, “
Analysis of Out-of-Plane Displacement and Stress Field in a Piezoelectric Composite With Functionally Graded Microstructure
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
3377
3391
.
224.
Ding
,
H. J.
,
Wang
,
H. M.
, and
Chen
,
W. Q.
, 2003, “
Dynamic Responses of a Functionally Graded Pyroelectric Hollow Sphere for Spherically Symmetric Problems
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
1029
1051
.
225.
Joshi
,
S.
,
Mukherjee
,
A.
, and
Schmauder
,
S.
, 2003, “
Numerical Characterization of Functionally Graded Active Materials Under Electrical and Thermal Fields
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
571
579
.
226.
Lu
,
P.
,
Lee
,
H. P.
, and
Lu
,
C.
, 2006, “
Exact Solutions for Simply Supported Functionally Graded Piezoelectric Laminates by Stroh-Like Formalism
,”
Compos. Struct.
0263-8223,
72
, pp.
352
363
.
227.
Yang
,
J.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2003, “
Large Amplitude Vibration of Thermo-Electro-Mechanically Stressed, FGM Laminated Plates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
3861
3885
.
228.
Liew
,
K. M.
,
Yang
,
J.
, and
Kitipornchai
,
S.
, 2003, “
Postbuckling of Piezoelectric, FGM Plates Subject to Thermo-Electro-Mechanical Loading
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
3869
3892
.
229.
Yang
,
J.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2004, “
Non-Linear Analysis of the Thermo-Electro-Mechanical Behaviour of Shear Deformable, FGM Plates With Piezoelectric Actuators
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
, pp.
1605
1632
.
230.
Huang
,
X.-L.
and
Shen
,
H.-S.
, 2006, “
Vibration and Dynamic Response of Functionally Graded Plates With Piezoelectric Actuators in Thermal Environments
,”
J. Sound Vib.
0022-460X,
289
, pp.
25
53
.
231.
Shen
,
H.-S.
, 2005, “
Postbuckling of, FGM Plates With Piezoelectric Actuators Under Thermo-Electro-Mechanical Loading
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
6101
6121
.
232.
Shen
,
H.-S.
, 2005, “
Postbuckling of Axially Loaded, FGM Hybrid Cylindrical Shells in Thermal Environments
,”
Compos. Sci. Technol.
0266-3538,
65
, pp.
1675
1690
.
233.
Kapuria
,
S.
,
Bhattacharyya
,
M.
, and
Kumar
,
A. N.
, 2006, “
Assessment of Coupled 1D Models for Hybrid Piezoelectric Layered Functionally Graded Beams
,”
Compos. Struct.
0263-8223,
72
, pp.
455
468
.
234.
Ray
,
M. C.
, and
Sachade
,
H. M.
, 2006, “
Exact Solutions for the Functionally Graded Plates Integrated With a Layer of Piezoelectric Fiber-Reinforced Material
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
622
632
.
235.
Miyazaki
,
E.
, and
Watanabe
,
Y.
, 2003, “
Development of Shape Memory Alloy Fiber Reinforced Smart Fgms
,”
Functionally Graded Materials VII, Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000)
,
Materials Science Forum
Vols.
423–425
,
W.
Pan
,
J.
Gong
,
L.
Zhang
, and
L.
Chen
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
107
112
.
236.
Ivosevic
,
M.
,
Knight
,
R.
,
Kalidindi
,
S. R.
,
Palmese
,
G. R.
, and
Sutter
,
J. K.
, 2006, “
Solid Particle Erosion Resistance of Thermally Sprayed Functionally Graded Coatings for Polymer Matrix Composites
,”
Surf. Coat. Technol.
0257-8972,
200
, pp.
5145
5151
.
237.
Rangaraj
,
S.
, and
Kokini
,
K.
, 2003, “
Interface Thermal Fracture in Functionally Graded Zirconia-Mullite-Bond Coat Alloy Thermal Barrier Coatings
,”
Acta Mater.
1359-6454,
51
, pp.
251
267
.
238.
Kim
,
J. H.
,
Kim
,
M. C.
, and
Park
,
C. G.
, 2003, “
Evaluation of Functionally Graded Thermal Barrier Coatings Fabricated by Detonation Gun Spray Technique
,”
Surf. Coat. Technol.
0257-8972,
168
, pp.
275
280
.
239.
Widjaja
,
S.
,
Limarga
,
A. M.
, and
Yip
,
T. H.
, 2003, “
Modeling of Residual Stresses in a Plasma-Sprayed Zirconia/Alumina Functionally Graded-Thermal Barrier Coating
,”
Thin Solid Films
0040-6090,
434
, pp.
216
227
.
240.
Widjaja
,
S.
,
Limarga
,
A. M.
, and
Yip
,
T. H.
, 2002, “
Oxidation Behavior of a Plasma-Sprayed Functionally Graded ZrO2∕Al2O3 Thermal Barrier Coating
,”
Mater. Lett.
0167-577X,
57
, pp.
628
634
.
241.
Limarga
,
A. M.
,
Widjaja
,
S.
, and
Yip
,
T. H.
, 2005, “
Mechanical Properties and Oxidation Resistance of Plasma-Sprayed Multilayered ZrO2∕Al2O3 Thermal Barrier Coatings
,”
Surf. Coat. Technol.
0257-8972,
197
, pp.
93
102
.
242.
Zhang
,
X. C.
,
Xu
,
B. S.
,
Wang
,
H. D.
,
Jiang
,
Y.
, and
Wu
,
Y. X.
, 2006, “
Modeling of Thermal Residual Stresses in Multilayer Coatings With Graded Properties and Compositions
,”
Thin Solid Films
0040-6090,
497
, pp.
223
231
.
243.
Pindera
,
M.-J.
,
Aboudi
,
J.
, and
Arnold
,
S. M.
, 2002, “
Analysis of Spallation Mechanism in Thermal Barrier Coatings With Graded Bond Coats Using the Higher-Order Theory for FGMS
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1587
1606
.
244.
Pindera
,
M.-J.
,
Aboudi
,
J.
, and
Arnold
,
S. M.
, 2005, “
Analysis of Spallation Mechanism Suppression in Plasma-Sprayed TBCs Through the Use of Heterogeneous Bond Coat Architectures
,”
Int. J. Plast.
0749-6419,
21
, pp.
1061
1096
.
245.
Khor
,
K. A.
, and
Gu
,
Y. W.
, 2000, “
Thermal Properties of Plasma-Sprayed Functionally Graded Thermal Barrier Coatings
,”
Thin Solid Films
0040-6090,
372
, pp.
104
113
.
246.
Bahr
,
H.-A.
,
Balke
,
H.
,
Fett
,
T.
,
Hofinger
,
I.
,
Kirchhoff
,
G.
,
Munz
,
D.
,
Neubrand
,
A.
,
Semenov
,
A. S.
,
Weiss
,
H.-J.
, and
Yang
,
Y. Y.
, 2003, “
Cracks in Functionally Graded Materials
,”
Mater. Sci. Eng., A
0921-5093,
362
, pp.
2
16
.
247.
Cetinel
,
H.
,
Uyulgan
,
B.
,
Tekmen
,
C.
,
Ozdemir
,
I.
, and
Celik
,
E.
, 2003, “
Wear Properties of Functionally Gradient Layers on Stainless Steel Substrates for High Temperature Applications
,”
Surf. Coat. Technol.
0257-8972,
174–175
, pp.
1089
1094
.
248.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2005, “
Mixed-Mode Crack Propagation in Functionally Graded materials
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
,
Materials Science Forum
Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, ed.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
409
414
.
249.
Comi
,
C.
, and
Mariani
,
S.
, 2005, “
Extended Finite Elements for Fracture Analysis of Functionally Graded Materials
,”
Proceedings of the VIII International Conference on Computational Plasticity, COMPLAS VIII
,
E.
Onate
and
D. R. J.
Owen
, eds.
CIMNE, Barcelona
.
250.
Vena
,
P.
,
Gastaldi
,
D.
, and
Contro
,
R.
, 2005, “
Effects of the Thermal Residual Stress Field on the Crack Propagation in Graded Alumina/Zirconia Ceramics
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
,
Materials Science Forum
Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich
,
Switzerland
, pp.
17
182
.
251.
Inan
,
O.
,
Dag
,
S.
, and
Erdogan
,
F.
, 2005, “
Three Dimensional Fracture Analysis of, FGM Coatings
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
,
Materials Science Forum
Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
373
378
.
252.
Kokini
,
K.
, and
Rangaraj
,
S. V.
, 2005, “
Time-Dependent Behavior and Fracture of Functionally Graded Thermal Barrier Coatings Under Thermal Shock
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
,
Materials Science Forum
Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich
,
Switzerland
, pp.
379
384
.
253.
Paulino
,
G. H.
, and
Zhang
,
Z.
, 2005, “
Dynamic Fracture of Functionally Graded Composites Using an Intrinsic Cohesive Zone Model
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
,
Materials Science Forum
Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, eds.,
Trans Tech Publications Ltd.
,
Uetikon-Zuerich
,
Switzerland
, pp.
447
452
.
254.
Tilbrook
,
M.
,
Rutgers
,
L.
,
Moon
,
R.
, and
Hoffman
,
M.
, 2005, “
Fracture and Fatigue Crack Propagation in Graded Composites
,”
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eight International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum Vols.
492–493
,
O.
Van der Biest
,
M.
Gasik
, and
J.
Vleugels
, eds.
Trans Tech Publications Ltd.
,
Uetikon-Zuerich, Switzerland
, pp.
573
580
.
255.
Paulino
,
G. H.
, and
Kim
,
J.-H.
, 2004, “
A New Approach to Compute T-Stress in Functionally Graded Materials by Means of the Interaction Integral Method
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
1907
1950
.
256.
Becker
,
T. L.
, Jr.
,
Cannon
,
R. M.
, and
Ritchie
,
R. O.
, 2001, “
Finite Crack Kinking and T-Stresses in Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
5545
5563
.
257.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2004, “
T-Stress in Orthotropic Functionally Graded Materials: Lekhnitskii and Stroh Formalisms
,”
Int. J. Fract.
0376-9429,
126
, pp.
345
384
.
258.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
The Interaction Integral for Fracture of Orthotropic Functionally Graded Materials: Evaluation of Stress Intensity Factors
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
3967
4001
.
259.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
An Accurate Scheme for Mixed-Mode Fracture Analysis of Functionally Graded Materials Using the Interaction Integral and Micromechanics Models
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
, pp.
1457
1497
.
260.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2005, “
Consistent Formulations of the Interaction Integral Method for Fracture of Functionally Graded Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
351
364
.
261.
Jin
,
Z.-H.
, 2005, “
Some Notes on the Linear Viscoelasticity of Functionally Graded Materials
,”
Math. Mech. Solids
1081-2865,
11
, pp.
216
224
.
262.
Mukherjiee
,
S.
, and
Paulino
,
G. H.
, 2003, “
The Elasto-Viscoelastic Correspondence Principle for Functionally Graded Materials
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
359
363
.
263.
Shul
,
C. W.
, and
Lee
,
K. Y.
, 2002, “
A Subsurface Eccentric Crack in a Functionally Graded Coating Layer on the Layered Half-Space Under an Anti-Plane Shear Impact Load
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2019
2029
.
264.
Li
,
C.
,
Weng
,
G. J.
, and
Duan
,
Z.
, 2001, “
Dynamic Behavior of a Cylindrical Crack in a Functionally Graded Interlayer Under Torsional Loading
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7473
7485
.
265.
Feng
,
W. J.
, and
Zou
,
Z. Z.
, 2003, “
Dynamic Stress Field for Torsional Impact of a Penny-Shaped Crack in a Transversely Isotropic Functionally Graded Strip
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
1729
1739
.
266.
Zhang
,
Z.
, and
Paulino
,
G. H.
, 2005, “
Cohesive Zone Modeling of Dynamic Failure in Homogeneous and Functionally Graded Materials
,”
Int. J. Plast.
0749-6419,
21
, pp.
1195
1254
.
267.
Jin
,
Z.-H.
, and
Paulino
,
G. H.
, 2001, “
Transient Thermal Stress Analysis of an Edge Crack in a Functionally Graded Material
,”
Int. J. Fract.
0376-9429,
107
, pp.
73
98
.
268.
Jin
,
Z.-H.
, and
Paulino
,
G. H.
, 2002, “
A Viscoelastic Functionally Graded Strip Containing a Crack Subjected to In-Plane Loading
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1769
1790
.
269.
Bahr
,
H.-A.
,
Balke
,
H.
,
Fett
,
T.
,
Hofinger
,
I.
,
Kirchhoff
,
G.
,
Munz
,
D.
,
Neubrand
,
A.
,
Semenov
,
A. S.
,
Weiss
,
H.-J.
, and
Yang
,
Y. Y.
, 2003, “
Cracks in Functionally Graded Materials
,”
Mater. Sci. Eng., A
0921-5093,
362
, pp.
2
16
.
270.
Zhou
,
Z. G.
,
Wang
,
B.
, and
Sun
,
Y.-G.
, 2004, “
Investigation of the Dynamic Behavior of a Finite Crack in the Functionally Graded Materials by the Use of the Schmidt Method
,”
Wave Motion
0165-2125,
39
, pp.
213
225
.
271.
Chen
,
J.
,
Liu
,
Z.
, and
Zou
,
Z.
, 2002, “
Transition Internal Crack Problem for a Nonhomogeneous Orthotropic Strip (Mode I)
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
1761
1774
.
272.
Kirugulige
,
M. S.
,
Kitey
,
R.
, and
Tippur
,
H. V.
, 2005, “
Dynamic Fracture Behavior of Model Sandwich Structures with Functionally Graded Core: A Feasibility Study
,”
Compos. Sci. Technol.
0266-3538,
65
, pp.
1052
1068
.
273.
Jain
,
N.
, and
Shukla
,
A.
, 2004, “
Displacements, Strains and Stresses Associated with Propagating Cracks in Materials with Continuously Varying Properties
,”
Acta Mech.
0001-5970,
171
, pp.
75
103
.
274.
Guo
,
L.-C.
,
Wu
,
L.-Z.
,
Zeng
,
T.
, and
Ma
,
L.
, 2005, “
The Dynamic Fracture Behavior of a Functionally Graded Coating-Substrate System
,”
Compos. Struct.
0263-8223,
64
, pp.
433
442
.
275.
Ueda
,
S.
, 2006, “
Transient Response of a Center Crack in a Functionally Graded Piezoelectric Strip Under Electromechanical Impact
,”
Eng. Fract. Mech.
0013-7944,
73
, pp.
1455
1471
.
276.
Afsar
,
A. M.
, and
Sekine
,
H.
, 2002, “
Inverse Problems of Material Distributions for Prescribed Apparent Toughness In, FGM Coatings Around a Circular Hole in Infinite Elastic Media
,”
Compos. Sci. Technol.
0266-3538,
62
, pp.
1063
1077
.
277.
Nemat-Alla
,
M.
, and
Noda
,
N.
, 2000, “
Edge Crack Problem in a Semi-Infinite, FGM Plate with a Bi-Directional Coefficient of Thermal Expansion Under Two-Dimensional Thermal Loading
,”
Acta Mech.
0001-5970,
114
, pp.
211
229
.
278.
El-Borgi
,
S.
,
Erdogan
,
F.
, and
Hidri
,
L.
, 2004, “
A Partially Insulated Embedded Crack in an Infinite Functionally Graded Medium Under Thermo-Mechanical Loading
,”
Int. J. Eng. Sci.
0020-7225,
42
, pp.
371
393
.
279.
Xiong
,
H.-P.
,
Kawasaki
,
A.
,
Kang
,
Y.-S.
, and
Watanabe
,
R.
, 2005, “
Experimental Study of Heat Insulation Performance of Functionally Graded Metal/Ceramic Coatings and Their Behavior at High Surface Temperature
,”
Surf. Coat. Technol.
0257-8972,
194
, pp.
203
214
.
280.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
Mixed-Mode J-Integral Formulation and Implementation Using Graded Elements for Fracture Analysis of Nonhomogeneous Orthotropic Materials
,”
Mech. Mater.
0167-6636,
35
, pp.
107
128
.
281.
Tvergaard
,
V.
, 2002, “
Theoretical Investigation of the Effect of Plasticity on Crack Growth Along a Functionally Graded Region Between Dissimilar Elastic-Plastic Solids
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1635
1645
.
282.
Guo
,
L.-C.
,
Wu
,
L.
, and
Ma
,
L.
, 2004, “
The Inverse Crack Problem Under a Concentrated Load for a Functionally Graded Coating-Substrate Composite System
,”
Compos. Struct.
0263-8223,
63
, pp.
397
406
.
283.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
T-Stress, Mixed-Mode Stress Intensity Factor, and Crack Initiation Angles in Functionally Graded Materials: A Unified Approach Using the Interaction Integral Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
1463
1494
.
284.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2004, “Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading,” International Journal of Mechanics and Materials in Design, 1, pp. 63–94.
285.
Kawasaki
,
A.
, and
Watanabe
,
R.
, 2002, “
Thermal Fracture Behavior of Metal/Ceramic Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1713
1728
.
286.
Forth
,
S. C.
,
Favrow
,
L. H.
,
Keat
,
W. D.
, and
Newman
,
J. A.
, 2003, “
Three-Dimensional Mixed-Mode Fatigue Crack Growth in a Functionally Graded Titanium Alloy
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
2175
2185
.
287.
Huang
,
G. Y.
, and
Wang
,
Y.-S.
, 2004, “
A New Model for Fracture Analysis of a Functionally Graded Interfacial Zone Under Harmonic Anti-Plane Loading
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
1841
1851
.
288.
Huang
,
G.-Y.
Wang
,
Y.-S.
, and
Yu
,
S.-W.
, 2004, “
Fracture Analysis of a Functionally Graded Interfacial Zone Under Plane Deformation
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
731
743
.
289.
Zhou
,
Z.-G.
,
Wang
,
B.
, and
Yang
,
L.-J.
2004, “
Investigation of the Behavior of an Interface Crack Between Two Half-Planes of Orthotropic Functionally Graded Materials by Using a New Method
,”
JSME Int. J., Ser. A
1340-8046,
47
, pp.
467
478
.
290.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Mixed-Mode Fracture of Orthotropic Functionally Graded Materials Using Finite Elements and the Modified Crack Closure Method
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1557
1586
.
291.
Guo
,
L.-C.
,
Wu
,
L.-Z.
,
Zeng
,
T.
, and
Ma
,
L.
, 2004, “
Mode, I Crack Problem for a Functionally Graded Orthotropic Strip
,”
Eur. J. Mech. A/Solids
0997-7538,
23
, pp.
219
234
.
292.
Noda
,
N.
, and
Wang
,
B. L.
, 2002, “
Transient Thermoelastic Responses of Functionally Graded Materials Containing Collinear Cracks
,”
Eng. Fract. Mech.
0013-7944,
9
, pp.
1791
1809
.
293.
Ueda
,
S.
, and
Shinto
,
Y.
, 2000, “
Cracking Kinking in Functionally Graded Materials Due to an Initial Strain Resulting from Stress Relaxation
,”
J. Therm. Stresses
0149-5739,
23
, pp.
285
290
.
294.
Xiao
,
H. T.
,
Yue
,
Z. Q.
,
Tham
,
L. G.
, and
Chen
,
Y. R.
, 2005, “
Stress Intensity Factors for Penny-Shaped Cracks Perpendicular to Graded Interfacial Zone of Bonded Bi-Materials
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
121
143
.
295.
Dolbow
,
J. E.
, and
Gosz
,
M.
, 2002, “
On the Computation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2557
2574
.
296.
Meguid
,
S. A.
,
Wang
,
X. D.
, and
Jiang
,
L. Y.
, 2002, “
On the Dynamic Propagation of a Finite Crack in Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1753
1768
.
297.
Becker
,
T. L.
,
Cannon
,
R. M.
, and
Ritchie
,
R. O.
, 2002, “
Statistical Fracture Modeling: Crack Path and Fracture Criteria with Applications to Homogeneous and Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1521
1555
.
298.
Walters
,
M. C.
,
Paulino
,
G. H.
, and
Dodds
,
R.
Jr.
, 2004, “
Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Under Mode, I.—Thermoelastic Loading
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
1081
1118
.
299.
Abanto-Bueno
,
J.
, and
Lamros
,
J.
, 2006, “
Parameters Controlling Fracture Resistance in Functionally Graded Materials Under Mode, I Loading
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
3920
3939
.
You do not currently have access to this content.