This paper presents a review of the principal developments in functionally graded materials (FGMs) with an emphasis on the recent work published since 2000. Diverse areas relevant to various aspects of theory and applications of FGM are reflected in this paper. They include homogenization of particulate FGM, heat transfer issues, stress, stability and dynamic analyses, testing, manufacturing and design, applications, and fracture. The critical areas where further research is needed for a successful implementation of FGM in design are outlined in the conclusions.
Issue Section:
Review Articles
1.
Pindera
, M.-J.
, Arnold
, S. M
, Aboudi
, J
, and Hui
, D.
, 1994, “Use of Composites in Functionally Graded Materials
,” Composites Eng.
0961-9526 4
, pp. 1
–145
.2.
Pindera
, M.-J.
, Aboudi
, J
, Arnold
, S. M
, and Jones
, W. F.
, 1995, “Use of Composites in Multi-Phased and Functionally Graded Materials
,” Composites Eng.
0961-9526, 5
, pp. 743
–974
.3.
Markworth
, A. J.
, Ramesh
, K. S.
, and Parks
, W. P.
, 1995, “Review: Modeling Studies Applied to Functionally Graded Materials
,” J. Mater. Sci.
0022-2461, 30
, pp. 2183
–2193
.4.
Pindera
, M.-J.
, Aboudi
, J
, Glaeser
, A. M.
, and Arnold
, S. M
, 1997, “Use of Composites in Multi-Phased and Functionally Graded Materials
,” Composites, Part B
1359-8368 28
, pp. 1
–175
.5.
Suresh
, S.
, and Mortensen
, A.
, 1998, Fundamentals of Functionally Graded Materials
, IOM Communications
, London
.6.
Miyamoto
, Y.
, Kaysser
, W. A.
, Rabin
, B. H.
, Kawasaki
, A.
, and Ford
, R. G.
, 1999, Functionally Graded Materials: Design, Processing and Applications
, Kluwer Academic
, Dordrecht
.7.
Paulino
, G. H.
, Jin
, Z. H.
, and Dodds
, R. H.
, Jr, 2003, “Failure of Functionally Graded Materials
,” Comprehensive Structural Integrity
, B.
Karihallo and
, W. G.
Knauss
, eds., Elsevier Science
, New York
, Vol. 2
, Chap. 13, pp. 607
–644
.8.
Noda
, N.
, 1999, “Thermal Stresses in Functionally Graded Material
,” J. Therm. Stresses
0149-5739, 22
, pp. 477
–512
.9.
Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum, Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
eds., Trans Tech Publications Ltd, Uetikon-Zuerich
, Switzerland
.10.
Birman
, V.
, 1995, “Stability of Functionally Graded Hybrid Composite Plates
,” Composites Eng.
0961-9526, 5
, pp. 913
–921
.11.
Birman
, V.
, 1997, “Stability of Functionally Graded Shape Memory Alloy Sandwich Panels
,” Smart Mater. Struct.
0964-1726, 6
, pp. 278
–286
.12.
Yin
, H. M.
, Sun
, L. Z.
, and Paulino
, G. H.
, 2004, “Micromechanics-Based Elastic Model for Functionally Graded Materials With Particle Interactions
,” Acta Mater.
1359-6454, 52
, pp. 3535
–3543
.13.
Vel
, S. S.
, and Batra
, R. C.
, 2002, “Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates
,” AIAA J.
0001-1452, 40
, pp. 1421
–1433
.14.
Kaysser
, W. A.
, and Ilschner
, B.
, 1995, “FGM Research Activities in Europe
,” MRS Bull.
0883-7694, 20
, pp. 22
–26
.15.
Nemat-Alla
, M.
, 2003, “Reduction of Thermal Stresses by Developing Two-Dimensional Functionally Graded Materials
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 7339
–7356
.16.
Zuiker
, J. R.
, 1995, “Functionally Graded Materials: Choice of Micromechanics Model and Limitations in Property Variations
,” Composites Eng.
0961-9526, 5
, pp. 807
–819
.17.
Reuter
, T.
, Dvorak
, G. J.
, and Tvergaard
, V.
, 1997, “Micromechanical Models for Graded Composite Materials
,” J. Mech. Phys. Solids
0022-5096, 45
, pp. 1281
–1302
.18.
Reuter
, T.
, and Dvorak
, G. J.
, 1998, “Micromechanical Models for Graded Composite Materials: II. Thermomechanical Loading
,” J. Mech. Phys. Solids
0022-5096, 46
, pp. 1655
–1673
.19.
Cho
, J. R.
, and Ha
, D. Y.
, 2001, “Averaging and Finite Element Discretization Approaches in the Numerical Analysis of Functionally Graded Materials
,” Mater. Sci. Eng., A
0921-5093, 302
, 187
–196
.20.
Pal
, R.
, 2005, “New Models for Effective Young’S Modulus of Particulate Composites
,” Composites, Part B
1359-8368, 36
, pp. 513
–523
.21.
Aboudi
, J.
, Pindera
, M.-J.
, and Arnold
, S. M.
, 1999, “Higher-Order Theory for Functionally Graded Materials
,” Composites, Part B
1359-8368, 30
, pp. 777
–832
.22.
Aboudi
, J.
, Pindera
, M.-J.
, and Arnold
, S. M.
, 2003, “Higher-Order Theory for Periodic Multiphase Materials With Inelastic Phases
,” Int. J. Plast.
0749-6419, 19
, pp. 805
–847
.23.
Zhong
, Y.
, and Pindera
, M.-J.
, 2002, “Efficient Reformulation of HOTFGM: Heat Conduction With Variable Thermal Conductivity
,” Report No. NASA/CR 2002-211910.24.
Biner
, S. B.
, 2001, “Thermo-Elastic Analysis of Functionally Graded Materials Using Voronoi Elements
,” Mater. Sci. Eng., A
0921-5093, 315
, pp. 136
–146
.25.
Yin
, H. M.
, Paulino
, G. H.
, Buttlar
, W. G.
, and Sun
, L. Z.
, 2005, “Effective Thermal Conductivity of Two-Phase Functionally Graded Particulate Composites
,” J. Appl. Phys.
0021-8979, 98
(6
), p. 063704
.26.
Liu
, G. R.
, Han
, X.
, Xu
, Y. G.
, and Lam
, K. Y.
, 2001, “Material Characterization of Functionally Graded Materials by Means of Elastic Waves and a Progressive-Learning Neural Network
,” Compos. Sci. Technol.
0266-3538, 61
, pp. 1401
–1411
.27.
Han
, X.
, Du
, D.
, and Liu
, G. R.
, 2003, “A Computational Inverse Technique for Material Characterization of a Functionally Graded Cylinder Using a Progressive Neural Network
,” Neurocomputing
0925-2312, 51
, pp. 341
–360
.28.
Giannakopoulos
, E.
, and Suresh
, S.
, 1997, “Indentation of Solids With Gradients in Elastic Properties: Part II. Axisymmetric Indenters
,” Int. J. Solids Struct.
0020-7683, 33
, pp. 2393
–2428
.29.
Nakamura
, T.
, and Sampath
, S.
, 2000, “Determination of, FGM Properties by Inverse Analysis
,” Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
, K.
Trumble
, K.
Bowman
, I.
Reimanis
, and S.
Sampath
, eds., The American Ceramic Society
, Westerville, OH
, pp. 521
–528
.30.
Jin
, Z.-H.
, 2002, “An Asymptotic Solution of Temperature Field in a Strip of a Functionally Graded Material
,” Int. Commun. Heat Mass Transfer
0735-1933, 29
, pp. 887
–895
.31.
Ootao
, Y.
, and Tanigawa
, Y.
, 2004, “Transient Thermoelastic Problem of Functionally Graded Thick Strip Due to Nonuniform Heat Supply
,” Compos. Struct.
0263-8223, 63
, pp. 139
–146
.32.
Sladek
, J.
, Sladek
, V.
, and Zhang
, Ch.
, 2003, “Transient Heat Conduction Analysis in Functionally Graded Materials by the Meshless Local Boundary Integral Equation Method
,” Comput. Mater. Sci.
0927-0256, 28
, pp. 494
–504
.33.
Chen
, J.
, Liu
, Z.
, and Zou
, Z.
, 2002, “Transient Internal Crack Problem for a Nonhomogeneous Orthotropic Strip (Mode I)
,” Int. J. Eng. Sci.
0020-7225, 40
, pp. 1761
–1774
.34.
Chen
, B.
, and Tong
, L.
, 2004, “Sensitivity Analysis of Heat Conduction for Functionally Graded Materials
,” Mater. Des.
0264-1275, 25
, pp. 663
–672
.35.
Sutradhar
, A.
, and Paulino
, G. H.
, 2004, “The Simple Boundary Element Method for Transient Heat Conduction in Functionally Graded Materials
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 193
, pp. 4511
–4539
.36.
Sutradhar
, A.
, Paulino
, G. H.
, and Gray
, L. J.
, 2005, “On Hypersingular Surface Integral in the Symmetric Galerkin Boundary Element Method: Application to Heat Conduction in Exponentially Graded Materials
,” Int. J. Numer. Methods Eng.
0029-5981, 62
, pp. 122
–157
.37.
Sankar
, B. V.
, and Tzeng
, J. T.
, 2002, “Thermal Stresses in Functionally Graded Beams
,” AIAA J.
0001-1452, 40
, pp. 1228
–1232
.38.
Sankar
, B. V.
, 2001, “An Elasticity Solution for Functionally Graded Beams
,” Compos. Sci. Technol.
0266-3538, 61
, pp. 689
–696
.39.
Apetre
, N. A.
, Sankar
, B. V.
, and Ambur
, D. R.
, 2006, “Low-Velocity Impact of Sandwich Beams With Functionally Graded Core
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 2479
–2496
.40.
Bhangale
, R. K.
, and Ganesan
, N.
, 2006, “Thermoelastic Buckling and Vibration Behavior of a Functionally Graded Sandwich Beam With Constrained Viscoelastic Core
,” J. Sound Vib.
0022-460X, 295
, pp. 294
–316
.41.
Conde
, Y.
, Pollien
, A.
, and Mortensen
, A.
, 2006, “Functional Grading of Metal Foam Cores for Yield-Limited Lightweight Sandwich Beams
,” Scr. Mater.
1359-6462, 54
, pp. 539
–543
.42.
Chakraborty
, A.
, Gopalakrishnan
, S.
, and Reddy
, J. N.
, 2003, “A New Beam Finite Element for the Analysis of Functionally Graded Materials
,” Int. J. Mech. Sci.
0020-7403, 45
, pp. 519
–539
.43.
Chakraborty
, A.
, and Gopalakrishnan
, S.
, 2003, “A Spectrally Formulated Finite Element for Wave Propagation Analysis in Functionally Graded Beam
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 2421
–2448
.44.
Ching
, H. K.
, and Yen
, S. C.
, 2006, “Transient Thermoelastic Deformation of 2-D Functionally Graded Beams Under Nonuniformly Convective Heat Supply
,” Compos. Struct.
0263-8223, 73
, pp. 381
–393
.45.
Tsukamoto
, H.
, 2003, “Analytical Method of Inelastic Thermal Stresses in a Functionally Graded Material Plate by a Combination of Micro- and Macromechanical Approaches
,” Composites, Part B
1359-8368, 34
, pp. 561
–568
.46.
Ootao
, Y.
, and Tanigawa
, Y.
, 1999, “Three-Dimensional Transient Thermal Stresses of Functionally Graded Rectangular Plate Due to Partial Heating
,” J. Therm. Stresses
0149-5739, 22
, pp. 35
–55
.47.
Zimmerman
, R. W.
, and Lutz
, M. P.
, 1999, “Thermal Stresses and Thermal Expansion in a Uniformly Heated Functionally Graded Cylinder
,” J. Therm. Stresses
0149-5739, 22
, pp. 178
–188
.48.
Pitakthapanaphong
, S.
, and Busso
, E. P.
, 2002, “Self-Consistent Elastoplastic Stress Solutions for Functionally Graded Material Systems Subjected to Thermal Gradients
,” J. Mech. Phys. Solids
0022-5096, 50
, pp. 695
–716
.49.
Reddy
, J. N.
, 2000, “Analysis of Functionally Graded Plates
,” Int. J. Numer. Methods Eng.
0029-5981, 47
, pp. 663
–684
.50.
Reddy
, J. N.
, and Cheng
, Z.-Q.
, 2001, “Three-Dimensional Thermomechanical Deformations of Functionally Graded Rectangular Plates
,” Eur. J. Mech. A/Solids
0997-7538, 20
, pp. 841
–855
.51.
Reddy
, J. N.
, and Chen
, C. D.
, 1998, “Thermomechanical Analysis of Functionally Graded Cylinders and Plates
,” J. Therm. Stresses
0149-5739, 21
, pp. 593
–626
.52.
Praveen
, G. N.
, and Reddy
, J. N.
, 1998, “Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates
,” Int. J. Solids Struct.
0020-7683, 35
, pp. 4457
–4476
.53.
Loy
, C. T.
, Lam
, K. Y.
, and Reddy
, J. N.
, 1999, “Vibration of Functionally Graded Cylindrical Shells
,” Int. J. Mech. Sci.
0020-7403, 41
, pp. 309
–324
.54.
Praveen
, G. N.
, Chin
, C. D.
, and Reddy
, J. N.
, 1999, “Thermoelastic Analysis of Functionally Graded Ceramic-Metal Cylinder
,” J. Eng. Mech.
0733-9399, 125
, pp. 1259
–1267
.55.
Pradhan
, S. C.
, Loy
, C. T.
, Lam
, K. Y.
, and Reddy
, J. N.
, 2000, “Vibration Characteristics of Functionally Graded Cylindrical Shells Under Various Boundary Conditions
,” Appl. Acoust.
0003-682X, 61
, pp. 119
–129
.56.
Reddy
, J. N.
, Wang
, C. M.
, and Kitipornchai
, S.
, 1999, “Axysimmetric Bending of Functionally Graded Circular and Annular Plates
,” Eur. J. Mech. A/Solids
0997-7538, 18
, pp. 185
–199
.57.
Vel
, S. S.
, and Batra
, R. C.
, 2004, “Three Dimensional Exact Solution for the Vibration of Functionally Graded Rectangular Plates
,” J. Sound Vib.
0022-460X, 272
, pp. 703
–730
.58.
Vel
, S. S.
, and Batra
, R. C.
, 2003, “Three-Dimensional Analysis of Transient Thermal Stresses in Functionally Graded Plates
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 7181
–7196
.59.
Qian
, L. F.
, and Batra
, R. C.
, 2004, “Transient Thermoelastic Deformations of a Thick Functionally Graded Plate
,” J. Therm. Stresses
0149-5739, 27
, pp. 705
–740
.60.
Qian
, L. F.
, Batra
, R. C.
, and Chen
, L. M.
, 2004, “Static and Dynamic Deformation of Thick Functionally Graded Elastic Plates by Using Higher-Order Shear and Normal Deformable Plate Theory and Meshless Local Petrov–Galerkin Method
,” Composites, Part B
1359-8368, 35
, pp. 685
–697
.61.
Kashtalyan
, M.
, 2004, “Three Dimensional Elasticity Solution for Bending of Functionally Graded Rectangular Plates
,” Eur. J. Mech. A/Solids
0997-7538, 23
, pp. 853
–864
.62.
Elishakoff
, I.
, and Gentilini
, C.
, 2005, “Three-Dimensional Flexure of Rectangular Plates Made of Functionally Graded Materials
,” ASME J. Appl. Mech.
0021-8936, 72
, pp. 788
–791
.63.
Pan
, E.
, 2003, “Exact Solution for Functionally Graded Anisotropic Elastic Composite Laminates
,” J. Compos. Mater.
0021-9983, 37
, pp. 1903
–1919
.64.
Soldatos
, K. P.
, 2004, “Complex Potential Formalisms for Bending of Inhomogeneous Monoclinic Plates Including Transverse Shear Deformations
,” J. Mech. Phys. Solids
0022-5096, 52
, pp. 341
–357
.65.
Croce
, L. D.
, and Venini
, P.
, 2004, “Finite Elements for Functionally Graded Reissner-Mindlin Plates
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 193
, pp. 705
–725
.66.
Bilgili
, E.
, Bernstein
, B.
, and Arastoopour
, H.
, 2003, “Effect of Material Non-Homogeneity on the Inhomogeneous Shearing Deformations of a Gent Slab Subjected to a Temperature Gradient
,” Int. J. Non-Linear Mech.
0020-7462, 38
, pp. 1351
–1368
.67.
Cheng
, Z.-Q.
, 2001, “Nonlinear Bending of Inhomogeneous Plates
,” Eng. Struct.
0141-0296, 23
, pp. 1359
–1363
.68.
Ramirez
, F.
, Heyliger
, P. R.
, and Pan
, E.
, 2005, “Static Analysis of Functionally Graded Elastic Anisotropic Plates Using a Discrete Layer Approach
,” Composites, Part B
1359-8368, 37
, pp. 10
–20
.69.
Na
, K.-S.
, and Kim
, J.-H.
, 2006, “Nonlinear Bending Response of Functionally Graded Plates Under Thermal Loads
,” J. Therm. Stresses
0149-5739, 29
, pp. 245
–261
.70.
Chi
, S.-H.
, and Chung
, Y.-L.
, 2006, “Mechanical Behavior of Functionally Graded Material Under Transverse Load—Part I: Analysis
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 3657
–3674
.71.
Chi
, S.-H.
, and Chung
, Y.-L.
, 2006, “Mechanical Behavior of Functionally Graded Material Under Transverse Load—Part II: Numerical Results
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 3675
–3691
.72.
Yang
, J.
, Liew
, K. M.
, and Kitipornchai
, S.
, 2006, “Stochastic Analysis of Computationally Graded Plates With System Randomness Under Static Loading
,” Int. J. Solids Struct.
0020-7683, 47
, pp. 1519
–1541
.73.
Zenkour
, A. M.
, 2005, “A Comprehensive Analysis of Functionally Graded Sandwich Plates: Part 1—Deflections and Stresses
,” Int. J. Solids Struct.
0020-7683, 42
, pp. 5224
–5242
.74.
Zenkour
, A. M.
, 2005, “A Comprehensive Analysis of Functionally Graded Sandwich Plates: Part 2—Buckling and Free Vibration
,” Int. J. Solids Struct.
0020-7683, 42
, pp. 5243
–5258
.75.
Woo
, J.
, and Meguid
, S. A.
, 2001, “Nonlinear Analysis of Functionally Graded Plates and Shallow Shells
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 7409
–7421
.76.
Liew
, K. M.
, Kitipornchai
, S.
, Zhang
, X. Z.
, and Lim
, C. W.
, 2003, “Analysis of the Thermal Stress Behaviour of Functionally Graded Hollow Circular Cylinders
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 2355
–2380
.77.
Jabbari
, M.
, Sohrabpor
, S.
, and Eslami
, M. R.
, 2002, “Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads
,” Int. J. Pressure Vessels Piping
0308-0161, 79
, pp. 493
–497
.78.
Tarn
, J.-Q.
, 2001, “Exact Solutions for Functionally Graded Anisotropic Cylinders Subjected to Thermal and Mechanical Loads
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 8189
–8206
.79.
Tutuncu
, N.
, and Ozturk
, M.
, 2001, “Exact Solutions for Stresses in Functionally Graded Pressure Vessels
,” Composites, Part B
1359-8368, 32
, pp. 683
–686
.80.
Ruhi
, M.
, Angoshtari
, A.
, and Naghdabadi
, R.
, 2005, “Thermoelastic Analysis of Thick-Walled Finite-Length Cylinders of Functionally Graded Materials
,” J. Therm. Stresses
0149-5739, 28
, pp. 391
–408
.81.
Shao
, Z. S.
, and Wang
, T. J.
, 2006, “Three-Dimensional Solutions for the Stress Fields in Functionally Graded Cylindrical Panel with Finite Length and Subjected to Thermal/Mechanical Loads
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 3856
–3874
.82.
Pelletier
, J. L.
, and Vel
, S. S.
, 2006, “An Exact Solution for the Steady-State Thermoelastic Response of Functionally Graded Orthotropic Cylindrical Shells
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 1131
–1158
.83.
Eraslan
, A. N.
, and Akis
, T.
, 2006, “On the Plane Strain and Plane Stress Solutions of Functionally Graded Rotating Solid Shaft and Solid Disk Problems
,” Acta Mech.
0001-5970, 181
, pp. 43
–63
.84.
Javaheri
, R.
, and Eslami
, M. R.
, 2002, “Thermoelastic Buckling of Rectangular Plates Made of Functionally Graded Materials
,” AIAA J.
0001-1452, 40
, pp. 162
–169
.85.
Javaheri
, R.
, and Eslami
, M. R.
, 2002, “Buckling of Functionally Graded Plates Under In-Plane Compressive Loading
,” ZAMM
0044-2267, 82
, pp. 277
–283
.86.
Javaheri
, R.
, and Eslami
, M. R.
, 2002, “Thermal Buckling of Functionally Graded Plates Based on Higher-Order Theory
,” J. Therm. Stresses
0149-5739, 25
, pp. 603
–625
.87.
Na
, K.-S.
, and Kim
, J.-H.
, 2004, “Three-Dimensional Thermal Buckling Analysis of Functionally Graded Materials
,” Composites, Part B
1359-8368, 35
, pp. 429
–437
.88.
Na
, K.-S.
, and Kim
, J.-H.
, 2006, “Three-Dimensional Thermomechanical Buckling Analysis for Functionally Graded Composite Plates
,” Compos. Struct.
0263-8223, 73
, pp. 413
–422
.89.
Na
, K.-S.
, and Kim
, J.-H.
, 2006, “Thermal Postbuckling Investigations of Functionally Graded Plates Using 3-D Finite Element Method
,” Finite Elem. Anal. Design
0168-874X, 42
, pp. 749
–756
.90.
Ganapathi
, M.
, and Prakash
, T.
, 2006, “Thermal Buckling of Simply Supported Functionally Graded Skew Plates
,” Compos. Struct.
0263-8223, 74
, pp. 247
–250
.91.
Yang
, J.
, Liew
, K. M.
, and Kitipornchai
, S.
, 2005, “Second-Order Statistics of the Elastic Buckling of Functionally Graded Rectangular Plates
,” Compos. Sci. Technol.
0266-3538, 65
, pp. 1165
–1175
.92.
Najafizadeh
, M. M.
, and Eslami
, M. R.
, 2002, “First-Order-Theory Based Thermoelastic Stability of Functionally Graded Material Circular Plates
,” AIAA J.
0001-1452, 40
, pp. 1444
–1450
.93.
Najafizadeh
, M. M.
, and Eslami
, M. R.
, 2002, “Buckling Analysis of Circular Plates of Functionally Graded Material Under Uniform Radial Compression
,” Int. J. Mech. Sci.
0020-7403, 44
, pp. 2479
–2493
.94.
Ma
, L. S.
, and Wang
, T. J.
, 2004, “Relationships Between Axisymmetric Bending and Buckling Solutions of, FGM Circular Plates Based on Third-Order and Classical Plate Theories
,” Int. J. Solids Struct.
0020-7683, 41
, pp. 85
–101
.95.
Chen
, X. L.
, and Liew
, K. M.
, 2004, “Buckling of Rectangular Functionally Graded Material Plates Subjected to Nonlinearly Distributed In-Plane Edge Loads
,” Smart Mater. Struct.
0964-1726, 13
, pp. 1430
–1437
.96.
Yang
, J.
, and Shen
, H.-S.
, 2003, “Non-Linear Analysis of Functionally Graded Plates Under Transverse and In-Plane Loads
,” Int. J. Non-Linear Mech.
0020-7462, 38
, pp. 467
–482
.97.
Yang
, J.
, and Shen
, H.-S.
, 2003, “Nonlinear Bending Analysis of Shear Deformable Functionally Graded Plates Subjected to Thermo-Mechanical Loads Under Various Boundary Conditions
,” Composites, Part B
1359-8368, 34
, pp. 103
–115
.98.
Shen
, H.-S.
, 2002, “Nonlinear Bending Response of Functionally Graded Plate Subjected to Transverse Loads and in Thermal Environments
,” Int. J. Mech. Sci.
0020-7403, 44
, pp. 561
–584
.99.
Yang
, J.
, and Shen
, H.-S.
, 2002, “Vibration Characteristics and Transient Response of Shear-Deformable Graded Plates in Thermal Environments
,” J. Sound Vib.
0022-460X, 255
, pp. 579
–602
.100.
Huang
, X.-L.
, and Shen
, H.-S.
, 2004, “Nonlinear Vibration and Dynamic Response of Functionally Graded Plates in Thermal Environments
,” Int. J. Solids Struct.
0020-7683, 41
, pp. 2403
–2427
.101.
Shen
, H.-S.
, 2002, “Postbuckling Analysis of Axially Loaded Functionally Graded Cylindrical Panels in Thermal Environments
,” Int. J. Solids Struct.
0020-7683, 39
, pp. 5991
–6010
.102.
Shen
, H.-S.
, and Leung
, A. Y. T.
, 2003, “Postbuckling of Pressure-Loaded Functionally Graded Cylindrical Panels in Thermal Environments
,” J. Eng. Mech.
0733-9399, 129
, pp. 414
–425
.103.
Shen
, H.-S.
, 2002, “Postbuckling Analysis of Axially Loaded Functionally Graded Cylindrical Shells in Thermal Environments
,” Compos. Sci. Technol.
0266-3538, 62
, pp. 977
–987
.104.
Shen
, H.-S.
, 2004, “Postbuckling Analysis of Pressure-Loaded Functionally Graded Cylindrical Shells in Thermal Environments
,” Eng. Struct.
0141-0296, 25
, pp. 487
–497
.105.
Birman
, V.
, Chona
, R.
, Byrd
, L. W.
, and Haney
, M. A.
, 2007, “Response of Spacially Tailored Structures to Thermal Loading,” J. Eng. Math., in press.106.
Shen
, H.-S.
, 2004, “Thermal Postbuckling Behavior of Functionally Graded Cylindrical Shells with Temperature-Dependent Properties
,” Int. J. Solids Struct.
0020-7683, 41
, pp. 1961
–1974
.107.
Shen
, H.-S.
, and Noda
, N.
, 2005, “Postbuckling of, FGM Cylindrical Shells Under Combined Axial and Radial Mechanical Loads in Thermal Environments
,” Int. J. Solids Struct.
0020-7683, 42
, pp. 4641
–4662
.108.
Shahsiah
, R.
, and Eslami
, M. R.
, 2003, “Thermal Buckling of Functionally Graded Cylindrical Shell
,” J. Therm. Stresses
0149-5739, 26
, pp. 277
–294
.109.
Lanhe
, W.
, 2004, “Thermal Buckling of a Simply Supported Moderately Thick Rectangular, FGM Plate
,” Compos. Struct.
0263-8223, 64
, pp. 211
–218
.110.
Park
, J.-S.
, and Kim
, J.-H.
, 2005, “Thermal Postbuckling and Vibration Analysis of Functionally Graded Plates
,” J. Sound Vib.
0022-460X, 289
, pp. 77
–93
.111.
Woo
, J.
, Meguid
, S. A.
, Stranart
, J. C.
, and Liew
, K. M.
, 2006, “Thermomechanical Postbuckling Analysis of Moderately Thick Functionally Graded Plates and Shallow Shells
,” Int. J. Mech. Sci.
0020-7403, 47
, pp. 1147
–1171
.112.
Kadoli
, R.
, and Ganesan
, N.
, 2006, “Buckling and Free Vibration Analysis of Functionally Graded Cylindrical Shells Subjected to a Temperature-Specified Boundary Condition
,” J. Sound Vib.
0022-460X, 289
, pp. 450
–480
.113.
Ma
, L. S.
, and Wang
, T. J.
, 2003, “Nonlinear Bending and Post-Buckling of a Functionally Graded Circular Plate Under Mechanical and Thermal Loadings
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 3311
–3330
.114.
Bhangale
, R. K.
, Ganesan
, N.
, and Padmanabhan
, C.
, 2006, “Linear Thermoelastic Buckling and Free Vibration Behavior of Functionally Graded Truncated Conical Shells
,” J. Sound Vib.
0022-460X, 292
, pp. 341
–371
.115.
Yang
, J.
, Liew
, K. M.
, Wu
, Y. F.
, and Kitipornchai
, S.
, 2006, “Thermo-Mechanical Post-Buckling Of, FGM Cylindrical Panels With Temperature-Dependent Properties
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 307
–324
.116.
Liew
, K. M.
, Yang
, J.
, and Kitipornchai
, S.
, 2004, “Thermal Post-Buckling of Laminated Plates Comprising Functionally Graded Materials with Temperature-Dependent Properties
,” ASME J. Appl. Mech.
0021-8936, 71
, pp. 839
–850
.117.
Lefebvre
, J.
, Zhang
, V.
, Gazalet
, J.
, Gryba
, T.
, and Sadaune
, V.
, 2001, “Acoustic Wave Propagation in Continuous Functionally Graded Plates: An Extension of the Legendre Polynomial Approach
,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010, 48
, pp. 1332
–1340
.118.
Liu
, G. R.
, Han
, K.
, and Lam
, K. Y.
, 2001, “An Integration Technique for Evaluating Confluent Hypergeometric Functions and Its Application to Functionally Graded Materials
,” Comput. Struct.
0045-7949, 79
, pp. 1039
–1047
.119.
Berezovski
, A.
, Engelbrecht
, Ju.
, and Maugin
, G. A.
, 2003, “Numerical Simulation of Two-Dimensional Wave Propagation in Functionally Graded Materials
,” Eur. J. Mech. A/Solids
0997-7538, 22
, pp. 257
–265
.120.
Han
, X.
, Liu
, G. R.
, Xi
, Z. C.
, and Lam
, K. Y.
, 2000, “Transient Waves in a Functionally Graded Cylinder
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 3037
–3021
.121.
Han
, X.
, Xu
, D.
, and Liu
, G. R.
, 2002, “Transient Responses in a Functionally Graded Cylindrical Shell to a Point Load
,” J. Sound Vib.
0022-460X, 251
, pp. 783
–805
.122.
Kitipornchai
, S.
, Yang
, J.
, and Liew
, K. M.
, 2004, “Semi-Analytical Solution for Nonlinear Vibration of Laminated, FGM Plates with Geometric Imperfections
,” Int. J. Solids Struct.
0020-7683, 41
, pp. 2235
–2257
.123.
Yang
, J.
, and Shen
, H.-S.
, 2001, “Dynamic Response of Initially Stressed Functionally Graded Rectangular Thin Plates
,” Comput. Struct.
0045-7949, 54
, pp. 497
–508
.124.
Prakash
, T.
, and Ganapathi
, M.
, 2006, “Supersonic Flutter Characteristics of Functionally Graded Flat Panels Including Thermal Effects
,” Comput. Struct.
0045-7949, 72
, pp. 10
–18
.125.
Bhangale
, R. K.
, and Ganesan
, N.
, 2006, “Free Vibration of Simply Supported Functionally Graded and Layered Magneto-Electro-Elastic Plates by Finite Element Method
,” J. Sound Vib.
0022-460X, 294
, pp. 1016
–1038
.126.
Bhangale
, R. K.
, and Ganesan
, N.
, 2006, “Static Analysis of Simply Supported Functionally Graded and Layered Magneto-Electro-Elastic Plates
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 3230
–3253
.127.
Kitipornchai
, S.
, Yang
, J.
, and Liew
, K. M.
, 2006, “Random Vibration of the Functionally Graded Laminates in Thermal Environments
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 195
, pp. 1075
–1095
.128.
Gong
, S. W.
, Lam
, K. Y.
, and Reddy
, J. N.
, 1999, “The Elastic Response of Functionally Graded Cylindrical Shells to Low-Velocity Impact
,” Int. J. Impact Eng.
0734-743X, 22
, pp. 397
–417
.129.
Ng
, T. Y.
, Lam
, K. Y.
, Liew
, K. M.
, and Reddy
, J. N.
, 2001, “Dynamic Stability Analysis of Functionally Graded Cylindrical Shells Under Periodic Axial Loading
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 1295
–1309
.130.
Sofiyev
, A. H.
, 2004, “The Stability of Functionally Graded Truncated Conical Shells Subjected to Aperiodic Impulsive Loading
,” Int. J. Solids Struct.
0020-7683, 41
, pp. 3411
–3424
.131.
Tylikowski
, A.
, 2005, “Dynamic Stability of Functionally Graded Plate Under In-Plane Compression
,” Math. Probl. Eng.
1024-123X, 4
, pp. 411
–424
.132.
Yang
, J.
, Liew
, K. M.
, and Kitipornchari
, S.
, 2004, “Dynamic Stability of Laminated FGM Plates Based on Higher-Order Shear Deformation Theory
,” Comput. Mech.
0178-7675, 33
, pp. 305
–315
.133.
Anderson
, T. D.
, 2003, “A 3-D Elasticity Solution for a Sandwich Composite With Functionally Graded Core Subjected to Transverse Loading by a Rigid Sphere
,” Compos. Struct.
0263-8223, 60
, pp. 265
–274
.134.
Tanigawa
, Y.
, Morishita
, H.
, and Ogaki
, S.
, 1999, “Derivation of Systems of Fundamental Equation for Three-Dimensional Thermoelastic Field With Nonhomogeneous Material Properties and Its Application to a Semi-Infinite Body
,” J. Therm. Stresses
0149-5739, 22
, pp. 689
–711
.135.
Pindera
, M. J.
, Aboudi
, J.
, and Arnold
, S. M.
, 2002, “Analysis of Spallation Mechanism in Thermal Barrier Coatings With Graded Bond Coats Using the Higher Order Theory for FGMs
,” Eng. Fract. Mech.
0013-7944, 69
, pp. 1587
–1606
.136.
Wang
, J.-P.
, Yang
, S.-Y.
, and Liu
, L.-S.
, 2005, “Creep Response of Ceramic/Metal Functionally Graded Thermal Barrier Coating
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum
Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 495
–500
.137.
Zhai
, P.-C.
, Chen
, G.
, and Zhang
, Q.-J.
, 2005, “Creep Property of Functionally Graded Materials
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum
Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 599
–604
.138.
Singh
, S. B.
, and Ray
, S.
, 2003, “Creep Analysis of an Isotropic Rotating Disc of Al–SiC Composite
,” J. Mater. Process. Technol.
0924-0136, 143–144
, pp. 616
–622
.139.
Wang
, J.-P.
, Chen
, G.
, and Zhai
, P.-C.
, 2005, “Optimization of Material Composition of, FGM Coatings Under Steady Heat Flux Loading by Micro-Generic Algorithms
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum
Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 441
–446
.140.
Nadeau
, J. C.
, and Ferrari
, M.
, 1999, “Multistructural Optimization of a Functionally Graded Transversely Isotropic Layer
,” Mech. Mater.
0167-6636, 31
, pp. 637
–651
.141.
Cho
, J. R.
, and Oden
, J. T.
, 2000, “Functionally Graded Material: A Parametric Study on Thermal-Stress Characteristics Using the Crank–Nicolson–Galerkin Scheme
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 188
, pp. 17
–38
.142.
Cho
, J. R.
, and Shin
, S. W.
, 2004, “Material Composition Optimization for Heat-Resisting, FGM by Artificial Neural Network
,” Composites, Part A
1359-835X, 35
, pp. 585
–594
.143.
Lipton
, R.
, 2002, “Design of Functionally Graded Composite Structures in the Presence of Stress Constraints
,” Int. J. Solids Struct.
0020-7683, 39
, pp. 2575
–2586
.144.
Cho
, J. R.
, and Ha
, D. Y.
, 2002, “Optimal Tailoring of 2D Volume-Fraction Distribution for Heat-Resisting Functionally Graded Materials Using, FGM
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 191
, pp. 3195
–3211
.145.
Cho
, J. R.
, and Ha
, D. Y.
, 2002, “Volume Fraction Optimization for Minimizing Thermal Stresses in Ni–Al2O3 Functionally Graded Materials
,” Mater. Sci. Eng., A
0921-5093, 334
, pp. 147
–155
.146.
Parashkevola
, L.
, Ivanova
, J.
, and Bontcheva
, N.
, 2004, “Optimal Design of Functionally Graded Plates With Thermo-Elastic Plastic Behaviour
,” C. R. Mec.
1631-0721, 332
, pp. 493
–498
.147.
Cho
, J. R.
, and Choi
, J. H.
, 2004, “A Yield-Criteria Tailoring of the Volume Fraction in Metal-Ceramic Functionally Graded Material
,” Eur. J. Mech. A/Solids
0997-7538, 23
, pp. 271
–281
.148.
Cho
, J. R.
, and Park
, H. J.
, 2003, “Effective Volume-Fraction Optimization for Thermal Stress Reduction in FGMS Utilizing Irregular H-Refinements
,” Int. J. Numer. Methods Eng.
0029-5981, 58
, pp. 749
–770
.149.
Turteltaub
, S.
, 2002, “Functionally Graded Materials for Prescribed Field Evolution
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 191
, pp. 2283
–2296
.150.
Turteltaub
, S.
, 2002, “Optimal Control and Optimization of Functionally Graded Materials for Thermomechanical Processes
,” Int. J. Solids Struct.
0020-7683, 39
, pp. 3175
–3197
.151.
Chen
, G.
, Zhai
, P.-C.
, and Zhang
, Q.-J.
, 2003, “Optimization of Material Composition Of, FGM Coating Under Thermal Loading by Micro Genetic Algorithms
,” Functionally Graded Materials VII, Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000)
, Materials Science Forum
Vols. 423–425
, W.
Pan
, J.
Gong
, L.
Zhang
, and L.
Chen
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 713
–718
.152.
Qian
, L. F.
, and Batra
, R. C.
, 2005, “Design of Bidirectional Functionally Graded Plate for Optimal Natural Frequencies
,” J. Sound Vib.
0022-460X, 280
, pp. 415
–424
.153.
Batra
, R. C.
, and Jin
, J.
, 2005, “Natural Frequencies of a Functionally Graded Anisotropic Rectangular Plate
,” J. Sound Vib.
0022-460X, 282
, pp. 509
–516
.154.
Kieback
, B.
, Neubrand
, A.
, and Riedel
, H.
, 2003, “Processing Techniques for Functionally Graded Materials
,” Mater. Sci. Eng., A
0921-5093, 362
, pp. 81
–105
.155.
Put
, S.
, Vleugels
, J.
, and Van der Biest
, O.
, 2003, “Microstructural Engineering of Functionally Graded Materials by Electrophoretic Deposition
,” J. Mater. Process. Technol.
0924-0136, 143–144
, pp. 572
–577
.156.
Vanmeensel
, K.
, Anne
, G.
, Jiang
, D.
, Vleugels
, J.
, and Van der Biest
, O.
, 2005, “Processing of a Graded Cutting Tool in the Al2O3–Zro2–Ti(C, N) System by Electrophoretic Deposition
,” Mater. Sci. Forum
0255-5476, 492–493
, pp. 705
–710
.157.
Kim
, J. I.
, Kim
, W.-J.
, Choi
, D. J.
, Park
, J. Y.
, and Ryu
, W.-S.
, 2005, “Design of a C∕SiC Functionally Graded Coating for the Oxidation Protection of C∕C Composites
,” Carbon
0008-6223, 43
, pp. 1749
–1757
.158.
Shen
, Z. J.
, and Nygren
, M.
, 2002, “Laminated and Functionally Graded Materials Prepared by Spark Plasma Sintering
,” Key Eng. Mater.
1013-9826, 206
, pp. 2155
–2158
.159.
Tokita
, M.
, 2003, “Large-Size-WC∕Co Functionally Graded Materials Fabricated by Spark Plasma Sintering (SPS) Method
,” Functionally Graded Materials VII, Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000)
, Materials Science Forum
Vols. 423–425
, W.
Pan
, J.
Gong
, L.
Zhang
, and L.
Chen
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 39
–44
.160.
Biesheuvel
, P. M.
, and Verweij
, H.
, 2000, “Calculation of the Composition Profile of a Functionally Graded Material Produced by Centrifugal Casting
,” J. Am. Ceram. Soc.
0002-7820, 83
, pp. 743
–749
.161.
Velhinto
, A.
, Sequeira
, P. D.
, Fernanzes
, F. M. B.
, Botas
, J. D.
, and Rocha
, L. S.
, 2003, “Al∕SiCp Functionally Graded Meta-Matrix Composites Produced by Centrifugal Casting: Effect of Particle Grain size on Reinforcement Distribution
,” Functionally Graded Materials VII, Proceedings of the Seventh International Symposium on Functionally Graded Materials
(FGM2000), Materials Science Forum Vols. 423–425
, W.
Pan
, J.
Gong
, L.
Zhang
, and, L.
Chen
eds., Trans Tech Publications Ltd., Uetikon-Zuerich
, Switzerland
, pp. 257
–262
.162.
Carrilo-Heian
, E. M.
, Carpenter
, R. D.
, Paulino
, G. H.
, Gibeling
, J. G.
, and Munir
, Z. A.
, 2001, “Dense Layered Molybdenum Disilicide-Silicon Carbide Functionally Graded Composites Formed by Field-Activated Synthesis
,” J. Am. Ceram. Soc.
0002-7820, 84
, pp. 962
–968
.163.
Lambros
, A.
, Narayanaswamy
, A.
, Santare
, M. H.
, and Anlas
, G.
, 1999, “Manufacturing and Testing of a Functionally Graded Material
,” ASME J. Eng. Mater. Technol.
0094-4289, 121
, pp. 488
–493
.164.
Bakshi
, S.
, Chattopadhyay
, K.
, and Kumar
, S.
, 2005, “Studies of the Mechanical Behaviour of a Newly Developed Al–4.6Cu Functionally Graded Material
,” Mater. Forum
0883-2900, 29
, pp. 467
–470
.165.
Fukui
, Y.
, Okada
, H.
, Kumazawa
, N.
, and Watanabe
, Y.
, 2000, “Near-Net-Shape Forming of Al–Al3Ni Functionally Graded Material over Eutectic Melting Temperature
,” Metall. Mater. Trans. A
1073-5623, 31
, pp. 2627
–2636
.166.
Okada
, H.
, Fukui
, Y.
, Sako
, R.
, and Kumazawa
, N.
, 2003, “Numerical Analysis on Near Net Shape Forming of Al–Al3Ni Functionally Graded Material
,” Composites, Part A
1359-835X, 34
, pp. 371
–382
.167.
Tiegs
, T. N.
, Santella
, M. L.
, Blue
, C. A.
, Menchhofer
, P. A.
, and Coranson
, F.
, 2000, “FGM Fabrication by Surface Thermal Treatments of TiC–Ni3Al Composites
,” Functionally Graded Materials Proceedings of the Sixth International Symposium on Functionally Graded Materials
, K.
Trumble
, K.
Bowman
, I.
Reimanis and
, S.
Sampath
eds., The American Ceramic Society
, Westerville, OH
, pp. 357
–363
.168.
Wang
, Y.
, Chen
, M.
, Qi
, L. Z.
, Liu
, Z. L.
, Yao
, K. L.
, and Wang
, Q. L.
, 2003, “A New Application of Pulsed Laser Deposition to Produce Functionally Graded Material Thin Films
,” Functionally Graded Materials, VII Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000)
, Materials Science Forum Vols. 423–425
, W.
Pan
, J.
Gong
, L.
Zhang
, and, L.
Chen
eds., Trans Tech Publications Ltd., Uetikon-Zuerich
, Switzerland
, pp. 573
–576
.169.
Jedamzik
, R.
, Neubrand
, A.
, and Rodel
, J.
, 2000, “Functionally Graded Materials by Electrochemical Processing and Infiltration: Application to Tungsten/Copper Composites
,” J. Mater. Sci.
0022-2461, 35
, pp. 477
–486
.170.
Pines
, M. L.
, and Bruck
, H. A.
, 2006, “Pressureless Sintering of Particle-Reinforced Metal-Ceramic Composites for Functionally Graded Materials: Part I. Porosity Reduction Models
,” Acta Mater.
1359-6454, 54
, pp. 1457
–1465
.171.
Pines
, M. L.
, and Bruck
, H. A.
, 2006, “Pressureless Sintering of Particle-Reinforced Metal-Ceramic Composites for Functionally Graded Materials: Part II. Sintering Model
,” Acta Mater.
1359-6454, 54
, pp. 1467
–1474
.172.
Chen
, K.-Z.
, and Feng
, X.-A.
, 2003, “Computer-Aided Design Method for the Components Made of Heterogeneous Materials
,” Comput.-Aided Des.
0010-4485, 35
, pp. 453
–466
.173.
Chen
, K.-Z.
, and Feng
, X.-A.
, 2004, “CAD Modeling for the Components Made of Multi Heterogeneous Materials and Smart Materials
,” Comput.-Aided Des.
0010-4485, 36
, pp. 51
–63
.174.
Qian
, X.
, and Dutta
, D.
, 2004, “Feature-based design for heterogeneous objects
,” Comput.-Aided Des.
0010-4485, 36
, pp. 1263
–1278
.175.
Qian
, X.
, and Dutta
, D.
, 2003, “Heterogeneous Object Modeling Through Direct Face Neighborhood Alteration
,” Comput. Graphics
0097-8493, 27
, pp. 943
–961
.176.
Siu
, Y. K.
, and Tan
, S. T.
, 2002, “Source-Based Heterogeneous Solid Modeling
,” Comput.-Aided Des.
0010-4485, 34
, pp. 41
–55
.177.
Banks-Sills
, L.
, Eliasi
, R.
, and Berlin Yu 2002, “Modeling of Functionally Graded Materials in Dynamic Analyses
,” Composites, Part B
1359-8368 33
, pp. 7
–15
.178.
Zhang
, B.
, and Gasik
, M.
, 2005, “Machining, FGM: residual stress redistribution
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eigth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
eds., Trans Tech Publications Ltd., Uetikon-Zuerich
, Switzerland
, pp. 415
–420
.179.
Qian
, X.
, and Dutta
, D.
, 2003, “Design of Heterogeneous Turbine Blades
,” Comput.-Aided Des.
0010-4485, 35
, pp. 319
–329
.180.
Stump
, F. V.
, Paulino
, G. H.
, and Silva
, E. C. N.
, 2005, “Material Distribution Design of Functionally Graded Rotating Discs with Stress Constraint
,” Proceedings, Sixth World Congress of Structural and Multidisciplinary Optimization
, Rio de Janeiro
, May 30–Jun. 3.181.
Sugano
, Y.
, Chiba
, R.
, Hirose
, K.
, and Takahashi
, K.
, 2004, “Material Design for Reduction of Thermal Stress in a Functionally Graded Material Rotating Disc
,” JSME Int. J., Ser. A
1340-8046, 47
, pp. 189
–197
.182.
Shabana
, Y. M.
, and Noda
, N.
, 2001, “Thermo-Elasto-Plastic Stresses in Functionally Graded Materials Subjected to Thermal Loading Taking Residual Stresses of the Fabrication Process Into Consideration
,” Composites, Part B
1359-8368 32
, pp. 111
–121
.183.
Hudnut
, S.
, Almajid
, A.
, and Taya
, M.
, 2000, “Functionally Graded Piezoelectric Bimorph Type Actuator,”
Proc. SPIE
0277-786X 3992
, pp. 376
–386
.184.
Li
, X.
, Vartuli
, J. S.
, Milius
, D. L.
, Aksay
, I. A.
, Shih
, W. Y.
, and Shih
, W. H.
, 2001, “Electromechanical Properties of a Ceramic D31-Gradient Flextensional Actuator
,” J. Am. Ceram. Soc.
0002-7820, 84
, pp. 996
–1003
.185.
Alexander
, P. W.
, and Brei
, D.
, 2003, “The Design Tradeoffs of Linear Functionally Graded Piezoceramic Actuators
,” Proceedings of IMECE 2003-2003 ASME International Mechanical Engineering Congress and Exposition
, ASME Paper No. IMECE2003–42723.186.
Takagi
, K.
, Li
, J.-F.
, Yokogama
, S.
, and Watanabe
, R.
, 2003, “Fabrication and Evaluation of PZT/Pt Piezoelectric Composites and Functionally Graded Actuators
,” J. Eur. Ceram. Soc.
0955-2219, 23
, pp. 1577
–1583
.187.
Jin
, D.
, and Meng
, Z.
, 2003, “Functionally Graded PZT/Zno Piezoelectric Composites
,” J. Mater. Sci. Lett.
0261-8028, 22
, pp. 971
–974
.188.
Li
, J.-F.
, Takagi
, K.
, Ono
, M.
, Pan
, W.
, Watanabe
, R.
, Almajid
, A.
, and Taya
, M.
, 2003, “Fabrication and Evaluation of Porous Piezoelectric Ceramics and Porosity-Graded Actuators
,” J. Am. Ceram. Soc.
0002-7820, 86
, pp. 1094
–1098
.189.
Alexander
, P. W.
, Brei
, D.
, and Halloran
, J. W.
, 2005, “DEPP Co-Extruded Functionally Graded Piezoceramics
,” Proceedings of IMECE 2005—2005 ASME International Mechanical Engineering Congress and Exposition
, ASME Paper No. IMECE2005–80217.190.
Alexander
, P. W.
, Brei
, D.
, and Halloran
, J. W.
, 2005, “The Force-Deflection Behavior of Functionally Graded Piezoceramic Actuators
,” Proceedings of the 2005 AIAA/ASME/AHS Adaptive Structures Conference
.191.
Butcher
, R. J.
, Rousseau
, C.-E.
, and Tippur
, H. V.
, 1999, “A Functionally Graded Particulate Composite: Preparation, Measurements and Failure Analysis
,” Acta Mater.
1359-6454, 47
, pp. 259
–268
.192.
Velhinho
, A.
, Vignoles
, G. L.
, Cloetens
, P.
, Thibault
, X.
, Boller
, E.
, Fernandes
, F. B.
, Rocha
, L. A.
, and Botas
, J. D.
, 2005, “Evaluation of Sic-Particle Connectivity in Functionally Graded Al∕Sicp Composites by Synchrotron Radiation Holographic Microtomography
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, eds., Trans Tech Publications Ltd, Uetikon-Zuerich
, Switzerland
, pp. 621
–626
.193.
Cannillo
, V.
, Manfredini
, T.
, Montorsi
, M.
, Siligardi
, C.
, and Sola
, A.
, 2005, “Experimental Characterization and Computational Simulation of Glass-Alumina Functionally Graded Surfaces
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 647
–652
.194.
Dantz
, D.
, Genzel
, Ch.
, Reimers
, W.
, and Buslaps
, T.
, 2000, “Investigations of the Residual Stress State in Microwave Sintered Functionally Graded Materials
,” Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
, K.
Trumble
, K.
Bowman
, I.
Reimanis
, and S.
Sampath
, eds., The American Ceramic Society
, Westerville, OH
, pp. 563
–570
.195.
Anne
, G.
, Vanmeensel
, K.
, Vleugels
, J.
, and Van der Biest
, O.
, 2005, “Stress Relaxation on Polished Sections of Al2O3∕ZrO2, FGM Discs Measured by Raman Spectroscopy
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 641
–646
.196.
Kucuk
, A.
, Dambra
, C. G.
, Berndt
, C. C.
, Senturk
, U.
, and Lima
, R. S.
, 2000, “Cracking Behavior of NiCrAIZ∕YSZ Thermal Barrier Coatings Under Four Point Bending Loads
,” Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
, K.
Trumble
, K.
Bowman
, I.
Reimanis
, and S.
Sampath
, eds., The American Ceramic Society
, Westerville, OH
, pp. 177
–186
.197.
Neubrand
, A.
, Kawasaki
, A.
, and Yang
, Y. Y.
, 2000, “Thermal Cycling Behavior of Cu∕Al2O3 Functionally Graded Material
,” Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
, K.
Trumble
, K.
Bowman
, I.
Reimanis
, and S.
Sampath
, eds., The American Ceramic Society
, Westerville, OH
, pp. 705
–712
.198.
Balke
, H.
, Bahr
, H.-A.
, Semenov
, A. S.
, Hofinger
, I.
, Hauser
, C.
, Kirchhof
, G.
, and Weiss
, H.-J.
, 2000, “Graded Thermal Barrier Coatings: Cracking Due to Laser Irradiation and Determining of Interface Toughness
,” Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
, K.
Trumble
, K.
Bowman
, I.
Reimanis
, and S.
Sampath
, eds., The American Ceramic Society
, Westerville, OH
, pp. 205
–212
.199.
Marks
, R.
, Zaretsky
, E.
, Frage
, N.
, Tevet
, O.
, Greenberg
, Y.
, and Dariel
, M. P.
, 2000, “Ultrasonic Characterization of the Elastic Properties of Ceramic-Metal Graded Composites
,” Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
, K.
Trumble
, K.
Bowman
, I.
Reimanis
, and S.
Sampath
, eds., The American Ceramic Society
, Westerville, OH
, pp. 587
–594
.200.
Quin
, X.
, and Dutta
, D.
, 2004, “Feature-Based Design for Heterogeneous Objects
,” Comput.-Aided Des.
0010-4485, 36
, pp. 1263
–1278
.201.
Schiller
, C.
, Siedler
, M.
, Peters
, F.
, and Epple
, M.
, 2000, “Functionally Graded Materials of Biodegradable Polyesters and Bone-Like Calcium Phosphates for Bone Replacement
,” Functionally Graded Materials 2000, Proceedings of the Sixth International Symposium on Functionally Graded Materials
, K.
Trumble
, K.
Bowman
, I.
Reimanis
, and S.
Sampath
, eds., The American Ceramic Society
, Westerville, OH
, pp. 97
–108
.202.
Leushake
, U.
, Krell
, T.
, and Schulz
, U.
, 2004, “Graded Thermal Barrier Coating Systems for Gas Turbine Applications
,” Materialwiss. Werkstofftech.
0933-5137, 28
, pp. 391
–394
.203.
Cho
, J. R.
, and Park
, H. J.
, 2002, “High Strength, FGM Cutting Tools: Finite Element Analysis on Thermoelastic Characteristics
,” J. Mater. Process. Technol.
0924-0136, 130–131
, pp. 351
–356
.204.
Li
, J. F.
, Takagi
, K.
, Ono
, M.
, Pan
, W.
, Watanabe
, R.
, Almajid
, A.
, and Taya
, M.
, 2003, “Fabrication and Evaluation of Porous Piezoelectric Ceramics and Porosity Graded Piezoelectric Actuators
,” J. Am. Ceram. Soc.
0002-7820, 86
, pp. 1094
–1098
.205.
Liu
, L. S.
, Zhang
, Q.-J.
, and Zhai
, P.-C.
, 2003, “The Optimization Design on Metal/Ceramic, FGM Armor With Neural Net and Conjugate Gradient Method
,” Functionally Graded Materials, VII Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000), Materials Science Forum Vols. 423–425
, W.
Pan
, J.
Gong
, L.
Zhang
, and L.
Chen
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 791
–802
.206.
Cooley
, W. G.
, and Palazotto
, A.
, 2005, “Finite Element Analysis of Functionally Graded Shell Panels Under Thermal Loading
,” Proceedings of the 2005 ASME International Congress and Exhibition
, Paper No. IMECE2005–85778.207.
Takeuch
, K.
, Kawazoe
, M.
, and Kanayama
, K.
, 2003, “Design of Functionally Graded Wood-Based Board for Floor Heating System With Higher Energy Efficiency
,” Functionally Graded Materials, VII Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000)
, Materials Science Forum Vols. 423–425
, W.
Pan
, J.
Gong
, L.
Zhang
, and L.
Chen
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 819
–824
.208.
Oh
, S.-Y.
, Librescu
, L.
, and Song
, O.
, 2003, “Thermoelastic Modeling and Vibration of Functionally Graded Thin-Walled Rotating Blades
,” AIAA J.
0001-1452, 41
, pp. 2051
–2061
.209.
Oh
, S.-Y.
, Librescu
, L.
, and Song
, O.
, 2003, “Vibration of Turbomachinery Rotating Blades Made-Up of Functionally Graded Materials and Operating in a High Temperature Field
,” Acta Mech.
0001-5970, 166
, pp. 69
–87
.210.
Librescu
, L.
, Oh
, S.-Y.
, and Song
, O.
, 2004, “Spinning Thin-Walled Beams Made of Functionally Graded Materials: Modeling, Vibration and Instability
,” Eur. J. Mech. A/Solids
0997-7538, 23
, pp. 499
–515
.211.
Oh
, S.-Y.
, Librescu
, L.
, and Song
, O.
, 2005, “Vibration and Instability of Functionally Graded Circular Cylindrical Spinning Thin-Walled Beams
,” J. Sound Vib.
0022-460X, 285
, pp. 1071
–1091
.212.
Librescu
, L.
, and Song
, S.-Y.
, 2005, “Thin-Walled Beams Made of Functionally Graded Materials and Operating in a High Temperature Environment: Vibration and Stability
,” J. Therm. Stresses
0149-5739, 28
, pp. 649
–712
.213.
Ootao
, Y.
, and Tanigawa
, Y.
, 2000, “Three-Dimensional Transient Piezothermoelasticity in Functionally Graded Rectangular Plate Bonded to a Piezoelectric Plate
,” Int. J. Solids Struct.
0020-7683, 37
, pp. 4377
–4401
.214.
Lim
, C. W.
, and He
, L. H.
, 2001, “Exact Solution of a Compositionally Graded Piezoelectric Layer Under Uniform Stretch, Bending and Twisting
,” Int. J. Mech. Sci.
0020-7403, 43
, pp. 2479
–2492
.215.
Wang
, B. L.
, and Noda
, N.
, 2001, “Design of a Smart Functionally Graded Thermopiezoelectric Composite Structure
,” Smart Mater. Struct.
0964-1726, 10
, pp. 189
–193
.216.
Liew
, K. M.
, He
, X. Q.
, Ng
, T. Y.
, and Sivashanker
, S.
, 2001, “Active Control Of, FGM Plates Subjected to a Temperature Gradient: Modeling Via Finite Element Method Based on FSDT
,” Int. J. Numer. Methods Eng.
0029-5981, 52
, pp. 1253
–1271
.217.
He
, T. Y.
, Ng
, S.
, Sivashanker
, S.
, and Liew
, K. M.
, 2001, “Active Control Of, FGM Plates With Integrated Piezoelectric Sensors and Actuators
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 1641
–1655
.218.
Liew
, K. M.
, Lim
, H. K.
, and Tan
, X. Q.
, 2002, “Analysis of Laminated Composite Beams and Plates With Piezoelectric Patches Using the Element-Free Galerkin Method
,” Comput. Mech.
0178-7675, 29
, pp. 486
–497
.219.
Chen
, W. Q.
, and Ding
, H. J.
, 2002, “On Free Vibration of a Functionally Graded Piezoelectric Rectangular Plate
,” Acta Mech.
0001-5970, 153
, pp. 207
–216
.220.
Reddy
, J. N.
, and Cheng
, Z.-Q.
, 2001, “Three-Dimensional Solution of Smart Functionally Graded Plates
,” ASME J. Appl. Mech.
0021-8936, 68
, pp. 234
–241
.221.
Wu
, X. H.
, Chen
, C.
, Shen
, Y. P.
, and Tian
, X. G.
, 2002, “A Higher Order Theory for Functionally Graded Piezoelectric Shells
,” Int. J. Solids Struct.
0020-7683, 39
, pp. 5325
–5344
.222.
Zhong
, Z.
, and Shang
, E. T.
, 2003, “Three-Dimensional Exact Analysis of a Simply Supported Functionally Gradient Piezoelectric Plate
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 5335
–5352
.223.
Almajid
, A.
, Taya
, M.
, and Hudnet
, S.
, 2001, “Analysis of Out-of-Plane Displacement and Stress Field in a Piezoelectric Composite With Functionally Graded Microstructure
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 3377
–3391
.224.
Ding
, H. J.
, Wang
, H. M.
, and Chen
, W. Q.
, 2003, “Dynamic Responses of a Functionally Graded Pyroelectric Hollow Sphere for Spherically Symmetric Problems
,” Int. J. Mech. Sci.
0020-7403, 45
, pp. 1029
–1051
.225.
Joshi
, S.
, Mukherjee
, A.
, and Schmauder
, S.
, 2003, “Numerical Characterization of Functionally Graded Active Materials Under Electrical and Thermal Fields
,” Smart Mater. Struct.
0964-1726, 12
, pp. 571
–579
.226.
Lu
, P.
, Lee
, H. P.
, and Lu
, C.
, 2006, “Exact Solutions for Simply Supported Functionally Graded Piezoelectric Laminates by Stroh-Like Formalism
,” Compos. Struct.
0263-8223, 72
, pp. 352
–363
.227.
Yang
, J.
, Kitipornchai
, S.
, and Liew
, K. M.
, 2003, “Large Amplitude Vibration of Thermo-Electro-Mechanically Stressed, FGM Laminated Plates
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 192
, pp. 3861
–3885
.228.
Liew
, K. M.
, Yang
, J.
, and Kitipornchai
, S.
, 2003, “Postbuckling of Piezoelectric, FGM Plates Subject to Thermo-Electro-Mechanical Loading
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 3869
–3892
.229.
Yang
, J.
, Kitipornchai
, S.
, and Liew
, K. M.
, 2004, “Non-Linear Analysis of the Thermo-Electro-Mechanical Behaviour of Shear Deformable, FGM Plates With Piezoelectric Actuators
,” Int. J. Numer. Methods Eng.
0029-5981, 59
, pp. 1605
–1632
.230.
Huang
, X.-L.
and Shen
, H.-S.
, 2006, “Vibration and Dynamic Response of Functionally Graded Plates With Piezoelectric Actuators in Thermal Environments
,” J. Sound Vib.
0022-460X, 289
, pp. 25
–53
.231.
Shen
, H.-S.
, 2005, “Postbuckling of, FGM Plates With Piezoelectric Actuators Under Thermo-Electro-Mechanical Loading
,” Int. J. Solids Struct.
0020-7683, 42
, pp. 6101
–6121
.232.
Shen
, H.-S.
, 2005, “Postbuckling of Axially Loaded, FGM Hybrid Cylindrical Shells in Thermal Environments
,” Compos. Sci. Technol.
0266-3538, 65
, pp. 1675
–1690
.233.
Kapuria
, S.
, Bhattacharyya
, M.
, and Kumar
, A. N.
, 2006, “Assessment of Coupled 1D Models for Hybrid Piezoelectric Layered Functionally Graded Beams
,” Compos. Struct.
0263-8223, 72
, pp. 455
–468
.234.
Ray
, M. C.
, and Sachade
, H. M.
, 2006, “Exact Solutions for the Functionally Graded Plates Integrated With a Layer of Piezoelectric Fiber-Reinforced Material
,” ASME J. Appl. Mech.
0021-8936, 73
, pp. 622
–632
.235.
Miyazaki
, E.
, and Watanabe
, Y.
, 2003, “Development of Shape Memory Alloy Fiber Reinforced Smart Fgms
,” Functionally Graded Materials VII, Proceedings of the Seventh International Symposium on Functionally Graded Materials (FGM2000)
, Materials Science Forum
Vols. 423–425
, W.
Pan
, J.
Gong
, L.
Zhang
, and L.
Chen
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 107
–112
.236.
Ivosevic
, M.
, Knight
, R.
, Kalidindi
, S. R.
, Palmese
, G. R.
, and Sutter
, J. K.
, 2006, “Solid Particle Erosion Resistance of Thermally Sprayed Functionally Graded Coatings for Polymer Matrix Composites
,” Surf. Coat. Technol.
0257-8972, 200
, pp. 5145
–5151
.237.
Rangaraj
, S.
, and Kokini
, K.
, 2003, “Interface Thermal Fracture in Functionally Graded Zirconia-Mullite-Bond Coat Alloy Thermal Barrier Coatings
,” Acta Mater.
1359-6454, 51
, pp. 251
–267
.238.
Kim
, J. H.
, Kim
, M. C.
, and Park
, C. G.
, 2003, “Evaluation of Functionally Graded Thermal Barrier Coatings Fabricated by Detonation Gun Spray Technique
,” Surf. Coat. Technol.
0257-8972, 168
, pp. 275
–280
.239.
Widjaja
, S.
, Limarga
, A. M.
, and Yip
, T. H.
, 2003, “Modeling of Residual Stresses in a Plasma-Sprayed Zirconia/Alumina Functionally Graded-Thermal Barrier Coating
,” Thin Solid Films
0040-6090, 434
, pp. 216
–227
.240.
Widjaja
, S.
, Limarga
, A. M.
, and Yip
, T. H.
, 2002, “Oxidation Behavior of a Plasma-Sprayed Functionally Graded ZrO2∕Al2O3 Thermal Barrier Coating
,” Mater. Lett.
0167-577X, 57
, pp. 628
–634
.241.
Limarga
, A. M.
, Widjaja
, S.
, and Yip
, T. H.
, 2005, “Mechanical Properties and Oxidation Resistance of Plasma-Sprayed Multilayered ZrO2∕Al2O3 Thermal Barrier Coatings
,” Surf. Coat. Technol.
0257-8972, 197
, pp. 93
–102
.242.
Zhang
, X. C.
, Xu
, B. S.
, Wang
, H. D.
, Jiang
, Y.
, and Wu
, Y. X.
, 2006, “Modeling of Thermal Residual Stresses in Multilayer Coatings With Graded Properties and Compositions
,” Thin Solid Films
0040-6090, 497
, pp. 223
–231
.243.
Pindera
, M.-J.
, Aboudi
, J.
, and Arnold
, S. M.
, 2002, “Analysis of Spallation Mechanism in Thermal Barrier Coatings With Graded Bond Coats Using the Higher-Order Theory for FGMS
,” Eng. Fract. Mech.
0013-7944, 69
, pp. 1587
–1606
.244.
Pindera
, M.-J.
, Aboudi
, J.
, and Arnold
, S. M.
, 2005, “Analysis of Spallation Mechanism Suppression in Plasma-Sprayed TBCs Through the Use of Heterogeneous Bond Coat Architectures
,” Int. J. Plast.
0749-6419, 21
, pp. 1061
–1096
.245.
Khor
, K. A.
, and Gu
, Y. W.
, 2000, “Thermal Properties of Plasma-Sprayed Functionally Graded Thermal Barrier Coatings
,” Thin Solid Films
0040-6090, 372
, pp. 104
–113
.246.
Bahr
, H.-A.
, Balke
, H.
, Fett
, T.
, Hofinger
, I.
, Kirchhoff
, G.
, Munz
, D.
, Neubrand
, A.
, Semenov
, A. S.
, Weiss
, H.-J.
, and Yang
, Y. Y.
, 2003, “Cracks in Functionally Graded Materials
,” Mater. Sci. Eng., A
0921-5093, 362
, pp. 2
–16
.247.
Cetinel
, H.
, Uyulgan
, B.
, Tekmen
, C.
, Ozdemir
, I.
, and Celik
, E.
, 2003, “Wear Properties of Functionally Gradient Layers on Stainless Steel Substrates for High Temperature Applications
,” Surf. Coat. Technol.
0257-8972, 174–175
, pp. 1089
–1094
.248.
Kim
, J.-H.
, and Paulino
, G. H.
, 2005, “Mixed-Mode Crack Propagation in Functionally Graded materials
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum
Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, ed., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 409
–414
.249.
Comi
, C.
, and Mariani
, S.
, 2005, “Extended Finite Elements for Fracture Analysis of Functionally Graded Materials
,” Proceedings of the VIII International Conference on Computational Plasticity, COMPLAS VIII
, E.
Onate
and D. R. J.
Owen
, eds. CIMNE, Barcelona
.250.
Vena
, P.
, Gastaldi
, D.
, and Contro
, R.
, 2005, “Effects of the Thermal Residual Stress Field on the Crack Propagation in Graded Alumina/Zirconia Ceramics
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum
Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich
, Switzerland
, pp. 17
–182
.251.
Inan
, O.
, Dag
, S.
, and Erdogan
, F.
, 2005, “Three Dimensional Fracture Analysis of, FGM Coatings
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum
Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 373
–378
.252.
Kokini
, K.
, and Rangaraj
, S. V.
, 2005, “Time-Dependent Behavior and Fracture of Functionally Graded Thermal Barrier Coatings Under Thermal Shock
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum
Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich
, Switzerland
, pp. 379
–384
.253.
Paulino
, G. H.
, and Zhang
, Z.
, 2005, “Dynamic Fracture of Functionally Graded Composites Using an Intrinsic Cohesive Zone Model
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eighth International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum
Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, eds., Trans Tech Publications Ltd.
, Uetikon-Zuerich
, Switzerland
, pp. 447
–452
.254.
Tilbrook
, M.
, Rutgers
, L.
, Moon
, R.
, and Hoffman
, M.
, 2005, “Fracture and Fatigue Crack Propagation in Graded Composites
,” Functionally Graded Materials VIII (FGM2004), Proceedings of the Eight International Symposium on Multifunctional and Functionally Graded Materials
, Materials Science Forum Vols. 492–493
, O.
Van der Biest
, M.
Gasik
, and J.
Vleugels
, eds. Trans Tech Publications Ltd.
, Uetikon-Zuerich, Switzerland
, pp. 573
–580
.255.
Paulino
, G. H.
, and Kim
, J.-H.
, 2004, “A New Approach to Compute T-Stress in Functionally Graded Materials by Means of the Interaction Integral Method
,” Eng. Fract. Mech.
0013-7944, 71
, pp. 1907
–1950
.256.
Becker
, T. L.
, Jr., Cannon
, R. M.
, and Ritchie
, R. O.
, 2001, “Finite Crack Kinking and T-Stresses in Functionally Graded Materials
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 5545
–5563
.257.
Kim
, J.-H.
, and Paulino
, G. H.
, 2004, “T-Stress in Orthotropic Functionally Graded Materials: Lekhnitskii and Stroh Formalisms
,” Int. J. Fract.
0376-9429, 126
, pp. 345
–384
.258.
Kim
, J.-H.
, and Paulino
, G. H.
, 2003, “The Interaction Integral for Fracture of Orthotropic Functionally Graded Materials: Evaluation of Stress Intensity Factors
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 3967
–4001
.259.
Kim
, J.-H.
, and Paulino
, G. H.
, 2003, “An Accurate Scheme for Mixed-Mode Fracture Analysis of Functionally Graded Materials Using the Interaction Integral and Micromechanics Models
,” Int. J. Numer. Methods Eng.
0029-5981, 58
, pp. 1457
–1497
.260.
Kim
, J.-H.
, and Paulino
, G. H.
, 2005, “Consistent Formulations of the Interaction Integral Method for Fracture of Functionally Graded Materials
,” ASME J. Appl. Mech.
0021-8936, 72
, pp. 351
–364
.261.
Jin
, Z.-H.
, 2005, “Some Notes on the Linear Viscoelasticity of Functionally Graded Materials
,” Math. Mech. Solids
1081-2865, 11
, pp. 216
–224
.262.
Mukherjiee
, S.
, and Paulino
, G. H.
, 2003, “The Elasto-Viscoelastic Correspondence Principle for Functionally Graded Materials
,” ASME J. Appl. Mech.
0021-8936, 70
, pp. 359
–363
.263.
Shul
, C. W.
, and Lee
, K. Y.
, 2002, “A Subsurface Eccentric Crack in a Functionally Graded Coating Layer on the Layered Half-Space Under an Anti-Plane Shear Impact Load
,” Int. J. Solids Struct.
0020-7683, 39
, pp. 2019
–2029
.264.
Li
, C.
, Weng
, G. J.
, and Duan
, Z.
, 2001, “Dynamic Behavior of a Cylindrical Crack in a Functionally Graded Interlayer Under Torsional Loading
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 7473
–7485
.265.
Feng
, W. J.
, and Zou
, Z. Z.
, 2003, “Dynamic Stress Field for Torsional Impact of a Penny-Shaped Crack in a Transversely Isotropic Functionally Graded Strip
,” Int. J. Eng. Sci.
0020-7225, 41
, pp. 1729
–1739
.266.
Zhang
, Z.
, and Paulino
, G. H.
, 2005, “Cohesive Zone Modeling of Dynamic Failure in Homogeneous and Functionally Graded Materials
,” Int. J. Plast.
0749-6419, 21
, pp. 1195
–1254
.267.
Jin
, Z.-H.
, and Paulino
, G. H.
, 2001, “Transient Thermal Stress Analysis of an Edge Crack in a Functionally Graded Material
,” Int. J. Fract.
0376-9429, 107
, pp. 73
–98
.268.
Jin
, Z.-H.
, and Paulino
, G. H.
, 2002, “A Viscoelastic Functionally Graded Strip Containing a Crack Subjected to In-Plane Loading
,” Eng. Fract. Mech.
0013-7944, 69
, pp. 1769
–1790
.269.
Bahr
, H.-A.
, Balke
, H.
, Fett
, T.
, Hofinger
, I.
, Kirchhoff
, G.
, Munz
, D.
, Neubrand
, A.
, Semenov
, A. S.
, Weiss
, H.-J.
, and Yang
, Y. Y.
, 2003, “Cracks in Functionally Graded Materials
,” Mater. Sci. Eng., A
0921-5093, 362
, pp. 2
–16
.270.
Zhou
, Z. G.
, Wang
, B.
, and Sun
, Y.-G.
, 2004, “Investigation of the Dynamic Behavior of a Finite Crack in the Functionally Graded Materials by the Use of the Schmidt Method
,” Wave Motion
0165-2125, 39
, pp. 213
–225
.271.
Chen
, J.
, Liu
, Z.
, and Zou
, Z.
, 2002, “Transition Internal Crack Problem for a Nonhomogeneous Orthotropic Strip (Mode I)
,” Int. J. Eng. Sci.
0020-7225, 40
, pp. 1761
–1774
.272.
Kirugulige
, M. S.
, Kitey
, R.
, and Tippur
, H. V.
, 2005, “Dynamic Fracture Behavior of Model Sandwich Structures with Functionally Graded Core: A Feasibility Study
,” Compos. Sci. Technol.
0266-3538, 65
, pp. 1052
–1068
.273.
Jain
, N.
, and Shukla
, A.
, 2004, “Displacements, Strains and Stresses Associated with Propagating Cracks in Materials with Continuously Varying Properties
,” Acta Mech.
0001-5970, 171
, pp. 75
–103
.274.
Guo
, L.-C.
, Wu
, L.-Z.
, Zeng
, T.
, and Ma
, L.
, 2005, “The Dynamic Fracture Behavior of a Functionally Graded Coating-Substrate System
,” Compos. Struct.
0263-8223, 64
, pp. 433
–442
.275.
Ueda
, S.
, 2006, “Transient Response of a Center Crack in a Functionally Graded Piezoelectric Strip Under Electromechanical Impact
,” Eng. Fract. Mech.
0013-7944, 73
, pp. 1455
–1471
.276.
Afsar
, A. M.
, and Sekine
, H.
, 2002, “Inverse Problems of Material Distributions for Prescribed Apparent Toughness In, FGM Coatings Around a Circular Hole in Infinite Elastic Media
,” Compos. Sci. Technol.
0266-3538, 62
, pp. 1063
–1077
.277.
Nemat-Alla
, M.
, and Noda
, N.
, 2000, “Edge Crack Problem in a Semi-Infinite, FGM Plate with a Bi-Directional Coefficient of Thermal Expansion Under Two-Dimensional Thermal Loading
,” Acta Mech.
0001-5970, 114
, pp. 211
–229
.278.
El-Borgi
, S.
, Erdogan
, F.
, and Hidri
, L.
, 2004, “A Partially Insulated Embedded Crack in an Infinite Functionally Graded Medium Under Thermo-Mechanical Loading
,” Int. J. Eng. Sci.
0020-7225, 42
, pp. 371
–393
.279.
Xiong
, H.-P.
, Kawasaki
, A.
, Kang
, Y.-S.
, and Watanabe
, R.
, 2005, “Experimental Study of Heat Insulation Performance of Functionally Graded Metal/Ceramic Coatings and Their Behavior at High Surface Temperature
,” Surf. Coat. Technol.
0257-8972, 194
, pp. 203
–214
.280.
Kim
, J.-H.
, and Paulino
, G. H.
, 2003, “Mixed-Mode J-Integral Formulation and Implementation Using Graded Elements for Fracture Analysis of Nonhomogeneous Orthotropic Materials
,” Mech. Mater.
0167-6636, 35
, pp. 107
–128
.281.
Tvergaard
, V.
, 2002, “Theoretical Investigation of the Effect of Plasticity on Crack Growth Along a Functionally Graded Region Between Dissimilar Elastic-Plastic Solids
,” Eng. Fract. Mech.
0013-7944, 69
, pp. 1635
–1645
.282.
Guo
, L.-C.
, Wu
, L.
, and Ma
, L.
, 2004, “The Inverse Crack Problem Under a Concentrated Load for a Functionally Graded Coating-Substrate Composite System
,” Compos. Struct.
0263-8223, 63
, pp. 397
–406
.283.
Kim
, J.-H.
, and Paulino
, G. H.
, 2003, “T-Stress, Mixed-Mode Stress Intensity Factor, and Crack Initiation Angles in Functionally Graded Materials: A Unified Approach Using the Interaction Integral Method
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 192
, pp. 1463
–1494
.284.
Kim
, J.-H.
, and Paulino
, G. H.
, 2004, “Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading,” International Journal of Mechanics and Materials in Design, 1, pp. 63–94.285.
Kawasaki
, A.
, and Watanabe
, R.
, 2002, “Thermal Fracture Behavior of Metal/Ceramic Functionally Graded Materials
,” Eng. Fract. Mech.
0013-7944, 69
, pp. 1713
–1728
.286.
Forth
, S. C.
, Favrow
, L. H.
, Keat
, W. D.
, and Newman
, J. A.
, 2003, “Three-Dimensional Mixed-Mode Fatigue Crack Growth in a Functionally Graded Titanium Alloy
,” Eng. Fract. Mech.
0013-7944, 70
, pp. 2175
–2185
.287.
Huang
, G. Y.
, and Wang
, Y.-S.
, 2004, “A New Model for Fracture Analysis of a Functionally Graded Interfacial Zone Under Harmonic Anti-Plane Loading
,” Eng. Fract. Mech.
0013-7944, 71
, pp. 1841
–1851
.288.
Huang
, G.-Y.
Wang
, Y.-S.
, and Yu
, S.-W.
, 2004, “Fracture Analysis of a Functionally Graded Interfacial Zone Under Plane Deformation
,” Int. J. Solids Struct.
0020-7683, 41
, pp. 731
–743
.289.
Zhou
, Z.-G.
, Wang
, B.
, and Yang
, L.-J.
2004, “Investigation of the Behavior of an Interface Crack Between Two Half-Planes of Orthotropic Functionally Graded Materials by Using a New Method
,” JSME Int. J., Ser. A
1340-8046, 47
, pp. 467
–478
.290.
Kim
, J.-H.
, and Paulino
, G. H.
, 2002, “Mixed-Mode Fracture of Orthotropic Functionally Graded Materials Using Finite Elements and the Modified Crack Closure Method
,” Eng. Fract. Mech.
0013-7944, 69
, pp. 1557
–1586
.291.
Guo
, L.-C.
, Wu
, L.-Z.
, Zeng
, T.
, and Ma
, L.
, 2004, “Mode, I Crack Problem for a Functionally Graded Orthotropic Strip
,” Eur. J. Mech. A/Solids
0997-7538, 23
, pp. 219
–234
.292.
Noda
, N.
, and Wang
, B. L.
, 2002, “Transient Thermoelastic Responses of Functionally Graded Materials Containing Collinear Cracks
,” Eng. Fract. Mech.
0013-7944, 9
, pp. 1791
–1809
.293.
Ueda
, S.
, and Shinto
, Y.
, 2000, “Cracking Kinking in Functionally Graded Materials Due to an Initial Strain Resulting from Stress Relaxation
,” J. Therm. Stresses
0149-5739, 23
, pp. 285
–290
.294.
Xiao
, H. T.
, Yue
, Z. Q.
, Tham
, L. G.
, and Chen
, Y. R.
, 2005, “Stress Intensity Factors for Penny-Shaped Cracks Perpendicular to Graded Interfacial Zone of Bonded Bi-Materials
,” Eng. Fract. Mech.
0013-7944, 72
, pp. 121
–143
.295.
Dolbow
, J. E.
, and Gosz
, M.
, 2002, “On the Computation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials
,” Int. J. Solids Struct.
0020-7683, 39
, pp. 2557
–2574
.296.
Meguid
, S. A.
, Wang
, X. D.
, and Jiang
, L. Y.
, 2002, “On the Dynamic Propagation of a Finite Crack in Functionally Graded Materials
,” Eng. Fract. Mech.
0013-7944, 69
, pp. 1753
–1768
.297.
Becker
, T. L.
, Cannon
, R. M.
, and Ritchie
, R. O.
, 2002, “Statistical Fracture Modeling: Crack Path and Fracture Criteria with Applications to Homogeneous and Functionally Graded Materials
,” Eng. Fract. Mech.
0013-7944, 69
, pp. 1521
–1555
.298.
Walters
, M. C.
, Paulino
, G. H.
, and Dodds
, R.
Jr., 2004, “Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Under Mode, I.—Thermoelastic Loading
,” Int. J. Solids Struct.
0020-7683, 41
, pp. 1081
–1118
.299.
Abanto-Bueno
, J.
, and Lamros
, J.
, 2006, “Parameters Controlling Fracture Resistance in Functionally Graded Materials Under Mode, I Loading
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 3920
–3939
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.