Three-dimensional (3D) constitutive equations of piezoelectric (PZ) plates and shells are considered for inverse linear and electrostrictive (quadratic) piezoeffects. Prestressed multilayer PZ shells reinforced with metal including the case of uneven thickness polarization are studied. Asymptotic and variational methods to solve the governing differential equations of PZ shells are considered. Concentrations of electrical and mechanical fields near structure imperfections and external local loading are investigated. The electrothermoviscoelastic heating of PZ shells is considered at harmonic excitation. From numerical analysis and the experimental data of energy dissipation and the temperature behavior of PZ shell the conditions of optimal transformation of electric energy into mechanical deformations are defined. Thus, the geometrical parameters and working frequencies are determined with due account of dielectric relaxation processes. The following nonlinear phenomena are studied: acoustoelectronic wave amplification; electron injection into metalized polar dielectric; resonance growth by 5–20 times of internal electrical field strength in the PZ shells and plates; and autothermostabilization of ferroelectric resonators. For a better understanding of R.D. Mindlin’s gradient theory of polarization in view of electron processes in thin metal-dielectric-metal structures, use was made of solid state physics interpretations as well as experimental data. High concentration of mechanical stresses and temperature and electrical fields near structure defects (first of all, near boundary between various materials) defines the main properties of polar dielectrics. An unknown domain of electrode rough surface influence was estimated, and as result an uneven polarization distribution was found. A theory of nonlinear autowave systems with energy dissipation was used in a physical model of the electrothermal fracture of dielectrics (contacting with metal electrodes), and as a result a nondestructive testing method to study the microstructure defect formation has been suggested.

1.
Adirovich
,
E. I.
, 1960, “
An Electrical Field and Currents Caused by Injection-Controlled Polarization
,”
Sov. Phys. Solid State
0038-5654,
28
(
2
), pp.
1410
1422
.
2.
Wright
,
G.
, 1961, “
Mechanisms of Space-Charge-Limited Current in Solids
,”
Solid-State Electron.
0038-1101,
2
(
2/3
), pp.
165
189
.
3.
Sutton
,
P. M.
, 1964, “
Space Charge and Electrode Polarization in Glass. II
,”
J. Am. Ceram. Soc.
0002-7820,
47
(
5
), pp.
219
230
.
4.
Gifeisman
,
Sh. M.
, 1969, “
Distribution of the Field in a Contact Metal-Dielectric-Metal System
,”
Sov. Phys. Solid State
0038-5654,
11
(
8
), pp.
2097
2102
.
5.
Chenskii
,
E. V.
, 1970, “
On the Monodomain Polarization of Ferroelectrics With Phase Transition of the First Kind
,”
Sov. Phys. Solid State
0038-5654,
12
(
2
), pp.
586
591
.
6.
Lampert
,
M.
, and
Mark
,
P.
, 1970,
Current Injection in Solids
,
Academic
, New York.
7.
Lampert
,
M. A.
, and
Shilling
,
R. B.
, 1970, “
Current Injection in Solids. The Regional Approximation Method
,”
Semiconductors and Semimetals
,
R. K.
Willardson
, and
A. C.
Beer
, eds., Vol.
6
, Injection Phenomena,
Academic
, New York.
8.
Simmons
,
J. G.
, 1971, “
Theory of Metallic Contacts on High Resistivity Solids. I: Shallow Traps
,”
J. Phys. Chem. Solids
0022-3697,
32
(
8
), pp.
1987
1999
.
9.
Godlewski
,
J.
, and
Kalinowski
,
J.
, 1978, “
An Extension of Theoretical Description of Space-Charge-Limited Currents in Insulators
,”
Solid State Commun.
0038-1098,
25
(
7
), pp.
473
475
.
10.
Arkhipov
,
V. I.
, and
Rudenko
,
A. I.
, 1978, “
Negative Currents Caused by Injection-Controlled Polarization
,”
Solid State Commun.
0038-1098,
28
(
8
), pp.
675
676
.
11.
Lee
,
H. S.
, and
Marin
,
S. P.
, 1980, “
Electrode Shape Effects on Oxide Conduction in Films Thermally Grown from Polycrystaline Silicon
,”
J. Appl. Phys.
0021-8979,
51
(
7
), pp.
3746
3750
.
12.
Mead
,
C. A.
, 1961, “
Operation of Tunnel-Emission Devices
,”
J. Appl. Phys.
0021-8979,
32
(
4
), pp.
646
652
.
13.
Mead
,
C. A.
, 1962, “
Electron Transport in Thin Insulating Films
,”
Phys. Rev.
0031-899X,
128
, pp.
2088
2091
.
14.
Romanov
,
V. P.
, and
Chaplygin
,
Ju. A.
, 1979, “
Stationary Distribution of the Mobile Charge in the Dielectric of MOS Structures
,”
Phys. Status Solidi A
0031-8965,
53
, pp.
493
498
.
15.
Romanov
,
V. P.
, 1981, “
Stationary Distribution of the Noncompensated Mobile Charge in Two-Layer Dielectrics
,”
Russian Microelectronics
,
10
, pp.
132
134
.
16.
Romanov
,
V. P.
, 1982, “
Stationary Distribution of the Mobile Ions in a Dielectric With Regard to Their Elastic Interaction With a Medium
,”
Phys. Status Solidi A
0031-8965,
70
, pp.
525
532
.
17.
Naidjuk
,
Ju. G.
,
Gribov
,
N. N.
,
Shklarevskii
,
O. I.
,
Jansen
,
A. G.
, and
Janson
,
I. K.
, 1985, “
Thermoelectrical Effects Ad Asymmetry of the Volt-Amper Characteristics of Metal Microcontacts
,”
Phys. Low Temperat.
,
11
(
11
), pp.
1053
1062
.
18.
Bogomol’nyi
,
V. M.
, 1995a, “
Calculation and Design of PZ Actuators on the Basis of Thin Layer MDM Structures
,”
Proc. SPIE
0277-786X,
2442
, pp.
518
524
.
19.
Bogomol’nyi
,
V. M.
, and
Serebryakov
,
Ju. N.
,
, 1996, “
Calculation of Electrical Field in MDM Structures
,”
Meas. Tech.
0543-1972,
1
, pp.
46
47
(translated in English).
20.
Wu
,
C. Y.
, and
Chen
,
C. F.
, 1987, “
Transport Properties of Thermal Oxide Films Growth on Polycrystalline Silicon
,”
IEEE Trans. Electron Devices
0018-9383,
ED34
(
7
), pp.
1520
1527
.
21.
Joo
,
J. H.
,
et al.
, 2001, “
Rugged Metal Electrode (RME) in High Density Memory Devices
,”
Jpn. J. Appl. Phys., Part 2
0021-4922,
40
(
8A
), pp.
L826
L828
.
22.
Brezzi
,
F.
,
Marini
,
L. D.
, and
Pietra
,
P.
, 1989, “
Numerical Simulation of Semiconductor Devices
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
75
, pp.
493
514
.
23.
Dong
,
S.
,
Wang
,
S.
,
Shen
,
Wenjaang
, and
Li
,
Lonati
, 2000, “
A Miniature PZ Ultrasonic Motor Based on Circular Bending Vibration Mode
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
(
4
), pp.
325
330
.
24.
Mock
,
M. S.
, 1983,
Analysis of Mathematical Models of Semiconductor Devices
,
Boole Press
, Dublin.
25.
Esener
,
S.
, and
Lee
,
S. H.
, 1985, “
Punch-Through Current Under Diffusion-Limited Injection
,”
J. Appl. Phys.
0021-8979,
58
(
3
), pp.
1380
1387
.
26.
Kao
,
K.
, and
Hwang
,
W.
, 1981,
Electrical Transport in Solids
. Part 1,2,
Pergamon
, Oxford.
27.
Benveniste
,
Y.
, 1992, “
The Termination of the Elastic and Electric Fields in PZ Inhomogeneity
,”
J. Appl. Phys.
0021-8979,
72
, pp.
1086
1095
.
28.
Benveniste
,
Y.
, 1993, “
Universal Relations in PZ Composites With Eigenstress and Polarization Fields. Part I: Binary-Media-Local Fields and Effective Behavior. Part II: Multiphase Media Effective Behavior
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
60
(
2
), pp.
265
275
.
29.
Bogomol’nyi
,
V. M.
, 1995b, “
On Calculation of Uneven Polarized Through Thickness Piezoceramic Transducers
,”
Meas. Tech.
0543-1972,
6
, pp.
52
54
.
30.
Bogomol’nyi
,
V. M.
, 1995c, “
On Calculation of PZ Modulators of Infrared Radiation
,”
Meas. Tech.
0543-1972,
7
, pp.
58
60
.
31.
Furukawa
,
T.
,
Yematsu
,
Y.
, and
Asakawa
,
K.
, 1968, “
Piezoelectricity, Pyroelectricity and Thermoelectricity of Polymer Films
,”
J. Appl. Polym. Sci.
0021-8995,
12
(
12
), pp.
2675
2689
.
32.
Bharadwaja
,
S. S.
, and
Krupanidhi
,
S. B.
, 2001, “
Conduction Mechanism in Antiferroelectric PbZrTiO3 Thin Films. Analysis of Charge Carrier Trapping Phenomenon
,”
Integr. Ferroelectr.
1058-4587,
35
(
1–4
), pp.
283
297
.
33.
Bugdacy
,
N.
, and
Bogy
,
D. B.
, 1981a, “
A Two-Dimensional Theory For PZ Layers Used in Electromechanical Transducers. Part I: Derivation, Part II: Application
,”
Int. J. Solids Struct.
0020-7683,
17
(
12
), pp.
1159
1202
.
34.
Ebeneser
,
D. D.
, and
Pushpa
,
A.
, 1999, “
PZ Thin Shell Theoretical Model and Eigenfunction Analysis of Radially Polarized Cylinder
,”
J. Acoust. Soc. Am.
0001-4966,
105
(
1
), pp.
154
163
.
35.
Hazony
,
D.
, and
Raya
,
J.
, 1988, “
Electromechanical Modelling of Distortionless PZ Transducers With Non-Uniform Parameters
,”
J. Acoust. Soc. Am.
0001-4966,
84
(
1
), pp.
20
25
.
36.
Joffe
,
A. F.
, 1928,
The Physics of Crystals
,
McGraw-Hill
, New York.
37.
Mason
,
W. P.
, 1950,
Piezoelectric Crystals and their Applications in Ultrasonics
,
Princeton
, New Jersey.
38.
Mason
,
W. P.
, and
Wick
,
R. F.
, 1954, “
Ferroelectric and Dielectric Amplifiers
,”
Proc. IRE
0096-8390,
42
(
11
), pp.
1606
1611
.
39.
Mason
,
W. P.
, 1981, “
Piezoelectricity, Its History and Applications
,”
J. Acoust. Soc. Am.
0001-4966,
70
, (pp.
1561
1566
).
40.
Holmes
,
J.
,
Pearce
,
D.
, and
Button
,
T.
, 1999, “
Novel PZ Structures for Sensors and Actuators Applications
,”
Ferroelectrics
0015-0193,
224
(
1–4
), pp.
21
28
.
41.
Weinberg
,
M. S.
, 1999, “
Working Equations for PZ Actuators and Sensors
,”
J. Microelectromech. Syst.
1057-7157,
8
(
4
), pp.
529
533
.
42.
Barfoot
,
J.
, and
Taylor
,
G.
, 1979,
Polar Dielectrics and their Applications
,
Macmillan Press
, New York.
43.
Ming-Jen
,
Pa.
,
et al.
, 2000, “
Comparison of Actuators Properties for PZ and Electrostrictive Materials
,”
Proc. SPIE
0277-786X,
3992
, pp.
80
90
.
44.
Miy
,
D. K.
, 1993,
Mechatronics, Electromechanics
,
Springer
, New York.
45.
Takano
,
T.
,
Hirata
,
H.
, and
Tomikawa
,
Y.
, 1990, “
Non-axisymmetric Contour Vibrations of Clamped PZ Annular Plates
,”
J. Acoust. Soc. Jpn.
0369-4232,
11
(
3
), pp.
161
172
.
46.
Uchino
,
K.
, 1996,
PZ Actuators and Ultrasonic Motors, Kluwer Academic
,
Dordrecht
, Netherlands.
47.
Burdess
,
J. S.
, 1986, “
The Dynamics of a Thin PZ Cylinder Gyroscope
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
4
, pp.
271
280
.
48.
Chiba
,
M.
, and
Wakatsuki
,
N.
, 2000, “
Temperature Self Compensated Lithium-Tantalate PZ Gyroscope With Higher Stability
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
39
(
5B
), pp.
3069
3072
.
49.
Cho
,
Y. S.
, and
Yoon
,
K. H.
, 2001, “
Dielectric Ceramics
,”
Handbook of Advanced Electronics and Photonics Materials and Devices
,
4
, Ferroelectrics and Dielectrics,
H. S.
Nalwa
, ed.,
Academic Press
, San Diego.
50.
Cassedy
,
E. S.
, 1959, “
A Surface Wave Parametric Amplifier
,”
Proc. IRE
0096-8390,
47
(
8
), pp.
374
380
.
51.
Ingebritsen
,
K. A.
, 1969, “
Surface Wave in Piezoelectrics
,”
J. Appl. Phys.
0021-8979,
40
(
7
), pp.
2681
2686
.
52.
Sharma
,
A. K.
, and
Wilson
,
M. G. F.
, 1970, “
Linear Theory of the Acoustoelectric Oscillator
,”
Proc. IEEE
0018-9219,
117
(
12
), pp.
2216
2220
.
53.
Zjurjukin
,
Ju. A.
,
Najanov
,
V. I.
, and
Polotnjagin
,
V. A.
, 1970, “
To Theory of Hypersound Waves Excitation With PZ Transducers
,”
J. Commun. Technol. Electron.
1064-2269,
15
(
4
), pp.
795
804
(in Russian).
54.
Zjurjukin
,
Ju. A.
,
Starukhin
,
Ju. I.
,
Stephko
,
V. V.
, and
Khitrin
,
V. S.
, 1974, “
Investigation of the Operation of Acoustoelectronic Generator of CdS
,”
Sov. Phys. Semicond.
0038-5700,
8
(
6
), pp.
1196
1198
.
55.
Zjurjukin
,
Ju. A.
,
Stephko
,
V. V.
, and
Khitrin
,
V. S.
, 1973, “
To Theory of Acoustoelectronic Generator in for Generation Regime
,”
J. Commun. Technol. Electron.
1064-2269,
18
(
7
), pp.
1459
1467
.
56.
Zjurjukin
,
Ju. A.
,
Khitrin
,
V. S.
, and
Shevchik
,
V. N.
, 1976, “
On Synchronization of the Acoustical Waves in PZ Semiconductors
,”
J. Commun. Technol. Electron.
1064-2269,
21
(
3
), pp.
571
573
.
57.
Brittain
,
R. H.
, and
Weight
,
J. P.
, 1987, “
Fabrication of the Non-Uniformly Excited Wide-Band Ultrasonics Transducers
,”
Ultrasonics
0041-624X,
25
(
2
), pp.
100
106
.
58.
Khoma
,
I. Ju.
, 1981, “
On Construction of a General Theory of the PZ Shells
,”
Sov. Appl. Mech.
0038-5298,
17
(
2
), pp.
115
118
.
59.
Khoma
,
I. Ju.
, 1983, “
On the Build-up of a Generalized Theory of Thermopiezoelastic Materials
,”
Sov. Appl. Mech.
0038-5298,
19
(
12
), pp.
65
71
.
60.
Rudnitskii
,
S. I.
, and
Shul’ga
,
N. A.
, 1986, “
On a Variant of an Applied Theory of the Piezoceramic Shells
,”
Sov. Appl. Mech.
0038-5298,
22
(
3
), pp.
24
30
.
61.
Zhen-Qiang-Cheng
,
Lim
,
C. W.
, and
Kitiporn
,
Chai S.
, 1999, “
Three-Dimensional Exact Solution for Inhomogeneous Laminated PZ Plates
,”
Int. J. Eng. Sci.
0020-7225,
37
(
11
), pp.
1425
1439
.
62.
Burke
,
V.
,
Duffi
,
R. J.
,
Hazony
,
D.
,
et al.
, 1976, “
Distortion-less Wave Propagation in Inhomogeneous Media and Transmission Lines
,”
Q. Appl. Math.
0033-569X,
34
(
2
), pp.
183
194
.
63.
Drumheller
,
D. S.
, and
Kalmins
,
A.
, 1970, “
Dynamical Shell Theory for Ferroelectric Ceramics
,”
J. Acoust. Soc. Am.
0001-4966,
47
(
5
), pp.
1343
1353
.
64.
Ambartsumian
,
S. A.
, and
Belubekian
,
M. V.
, 1987, “
The Bending and Vibration of the PZ Ceramic Plates
,”
Electromagnetomechanical Interactions in Deformable Solids and Structures
,
Y.
Yamamoto
,
K.
Miya
, eds., UITAM Symp. Proc., Oct. 17–24, 1986, Tokyo, Japan,
Elsevier
, North Holland, Amsterdam, pp.
59
67
.
65.
Parton
,
V. Z.
, and
Kudrjavtsev
,
B. A.
, 1988,
Electromagnetoelasticity of Solids: PZ and Electrically Conductive Materials
,
Gordon Breach
, New York.
66.
Butcher
,
P. N.
, and
Janus
,
H. M.
, 1971, “
The Effect of the Static Field Distribution on the Behavior of Short Acousto-Electric Oscillator
,”
Phys. Lett. A
0375-9601,
37A
(
3
), pp.
210
220
.
67.
Butcher
,
P. N.
, and
Janus
,
H. M.
, 1972, “
The Linear Theory of Acoustoelectric Oscillators With Arbitrary Static Field Distribution
,”
J. Phys. C
0022-3719,
5
(
5
), pp.
567
581
.
68.
Hench
,
L. L.
, and
West
,
J. K.
, 1990,
Principles of Electronic Ceramics
,
Wiley
, New York.
69.
Nakamura
,
K.
,
Ando
,
H.
, and
Shimizu
,
H.
, 1986, “
Partial Domain Inversion in LiNbO3 Plates and its Applications to PZ Devices
,”
Proc. Ultrasonic Symposium
,
2
, OF2, 86CH2375-4, pp.
719
722
.
70.
Ostrovsky
,
I. V.
, and
Polovina
,
A. I.
, 1978, “
Acoustical Correlation in the PZ Plate-Like Resonators
,”
Sov. Phys. Solid State
0038-5654,
20
(
11
), pp.
3430
3432
.
71.
Ostrovskii
,
I. V.
, and
Bulakh
,
G. I.
, 1980, “
Second Harmonics of the Acoustoelectric Current in Piezo Semiconductors
,”
Phys. Status Solidi A
0031-8965,
59
, pp.
83
89
.
72.
Ricketts
,
D.
, 1980, “
Electroacoustic Sensitivity of Composite PZ Polymer Cylinders
,”
J. Acoust. Soc. Am.
0001-4966,
68
(
4
), pp.
1025
1029
.
73.
Ridley
,
B. K.
, 1973, “
Parametric Processes in the Acoustoelectric Effect
,”
J. Phys. C
0022-3719,
6
(
9
), pp.
1605
1614
.
74.
Toda
,
M.
, and
Tosima
,
S.
, 1969, “
Surface Charge Wave Propagation and Proposed Devices
,”
Jpn. J. Appl. Phys.
0021-4922,
8
(
2
), pp.
207
213
.
75.
Klotin’sh
,
E.
, and
Kotleris
,
J.
, 1986, “
Parametric Instability of the Acoustic Waves in Ferroelectric Ceramics Excited by an Electrical Field
,”
Ferroelectrics
0015-0193,
69
, pp.
51
57
.
76.
Gulayev
,
Y. V.
, 1970, “
On the Non-Linear Theory of Ultrasound Amplification in Semiconductors
,”
IEEE Trans. Sonics Ultrason.
0018-9537,
SU-17
(
2
), pp.
111
122
.
77.
McFee
,
J. H.
, 1966, “
Transmission and Amplification of Acoustic Waves in PZ Semiconductors
,”
Phys. Acoust.
0893-388X,
4
, Part A, (pp.
1
47
).
78.
Pekar
,
S. I.
, 1965, “
Electron-Phonon Interaction Proportional to External Electrical Field
,”
J. Exp. Theor. Phys.
1063-7761,
49
, pp.
621
628
(in Russian).
79.
Pekar
,
S. I.
, 1966, “
On the Amplification of the Hypersound on Space-Charge Waves in Semiconductors
,”
J. Phys. Soc. Jpn.
0031-9015,
21
, pp.
448
452
.
80.
Pekar
,
S. I.
, 1976, “
Investigation of the Electrostrictive Constants a First and Second Order With Great Dielectric Permeability
,”
Sov. Phys. J.
0038-5697,
230
(
5
), pp.
1089
1091
.
81.
Silberman
,
P. E.
, 1967, “
To Nonlinear Theory of the Sound Non-Stability
,”
Sov. Phys. Solid State
0038-5654,
9
(
1
), pp.
309
316
.
82.
Tien
,
P. K.
, 1968, “
Nonlinear Theory of Ultrasonics Wave Amplification and Current Saturation in Piezosemiconductors
,”
Phys. Rev.
0031-899X,
171
(
3
), pp.
970
986
.
83.
Timan
,
B. L.
, 1971, “
The Amplification of the Sound in the Piezodielectrics at Space-Charge-Limited Current
,”
Sov. Phys. Solid State
0038-5654,
5
, pp.
1275
1277
.
84.
Weinreich
,
G.
, 1956, “
Acoustodynamic Effect in Semiconductors
,”
Phys. Rev.
0031-899X,
104
(
2
), pp.
321
324
.
85.
White
,
D. L.
, 1962, “
Amplification of Ultrasonics Waves in PZ Semiconductors
,”
J. Appl. Phys.
0021-8979,
33
(
8
), pp.
2547
2557
.
86.
Zaitsev
,
B. D.
, and
Kuznetsova
,
I. E.
, 2001, “
Electric Field Influence on the Acoustic Waves
.”
Handbook of Advanced Electronics and Photonics Materials ad Devices
, vol.
4
, Ferroelectrics and Dielectrics,
HS
Nalwa
, ed.,
Academ. Press
, San Diego, pp.
139
174
.
87.
Pustovoit
,
V. I.
, and
Gertsenshtein
,
M. E.
, 1964, “
On the Possibility of the Bending Waves Amplification
,”
Sov. Phys. Solid State
0038-5654,
6
(
3
), pp.
879
887
.
88.
Belyi
,
V. N.
, and
Savruk
,
B. B.
, 1987, “
Parametrical Electroacoustic Effects in Crystals With of External Field Rotate Acoustical Anisotropy
,”
Sov. Phys. Tech. Phys.
0038-5662,
57
(
2
), pp.
336
340
.
89.
Kittinger
,
E.
,
Tichy
,
J.
, and
Friedel
,
W.
, 1986, “
Nonlinear Piezoelectricity and Electrostriction of Alpha-Quartz
,”
J. Appl. Phys.
0021-8979,
60
(
4
), pp.
1465
1471
.
90.
Bolkisev
,
A. M.
, and
Shul’ga
,
N. A.
, 1985, “
Forced Oscillations of the Piezoceramic Cylinders With Radial Polarization
,”
Sov. Appl. Mech.
0038-5298,
21
(
5
), pp.
118
121
.
91.
Ostrovskii
,
I. V.
, 1980, “
Ultrasonics Injection Charge Carriers From the Metal in Piezoelectric
,”
Sov. Phys. Solid State
0038-5654,
22
(
11
), pp.
3459
3460
.
92.
Bogomol’nyi
,
V. M.
, 1994, “
Calculation of Harmonically Driven Piezoceramic Transducers
,”
Meas. Tech.
0543-1972,
12
, pp.
1412
1416
. (translate in English).
93.
Kossov
,
G.
, 1966, “
The Effects of Backing and Matching on the Performance of PZ Ceramic Transducers
,”
IEEE Trans. Sonics Ultrason.
0018-9537,
SU-13
(
1
), pp.
20
30
.
94.
Bogomol’nyi
,
V. M.
, 2000a, “
Resonance Calculation for Electrothermal Damage of Metal-Insulator-Metal (MDM) Structures
,”
Meas. Tech.
0543-1972,
43
(
6
), pp.
538
543
. (transferred in English).
95.
Bogomol’nyi
,
V. M.
, 2000b, “
Calculation of the Critical Parameters of Selfexiting Processes in the Electrothermal Destruction of Dielectric Diodes
,”
Meas. Tech.
0543-1972,
43
(
11
), pp.
973
981
. (in English).
96.
Bogomol’nyi
,
V. M.
, 2001, “
To the Theory of Nondestructive Testing in Electrical Degradation of Semiconductor Devices
,”
Meas. Tech.
0543-1972,
44
(
5
), pp.
513
516
. (in English.).
97.
Ivanov
,
I. V.
, 1968, “
Temperature Automatic Stabilization in Microwave Segnetoelectric Resonators at Super-High Frequency Diapason
,”
J. Commun. Technol. Electron.
1064-2269,
13
(
7
), pp.
1291
1295
.
98.
Vatulyan
,
A. O.
,
Kiryutenko
,
A. Ju.
, and
Nasedkin
,
A. V.
, 1996, “
Plane Waves and Fundamental Solutions in Linear Thermoelectroelasticity
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
37
(
5
), pp.
135
142
. (in Russian).
99.
Vatulyan
,
A. O.
, and
Rynkova
,
A. A.
, 2001, “
Bending Vibrations of the PZ Bimorphs With Internal Cut Electrode
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
42
(
1
), pp.
184
189
.
100.
Le
,
K. C.
, 1982, “
Long Wave High Frequency Oscillations of PZ Plates
,”
Sov. Phys. Dokl.
,
264
(
3
), pp.
581
583
.
101.
Le
,
K. C.
, 1997, “
High Frequency Vibrations and Wave Propagation in Elastic Shells: Variational-Asymptotic Approach
,”
Int. J. Solids Struct.
0020-7683,
34
(
10
), pp.
3929
3939
.
102.
Ass
,
E. I.
, and
Gribov
,
N. N.
, 1987, “
Estimation of the Elastic Dissipation Length of Current Carriers in Microcontacts
,”
Phys. Low Temperat.
,
13
(
6
), pp.
645
647
. (in Russian).
103.
Bogomol’nyi
,
V. M.
, 1999, “
To Dynamical Theory of Electrothermal Degradation and Nondestructive Testing (NDT) of the Defects in MDM Structures
,”
Proc. SPIE
0277-786X,
3700
, pp.
436
444
.
104.
Itskovich
,
I. F.
,
Moskaets
,
M. V.
,
Shekhter
,
R. I.
, and
Kulik
,
I. O.
, 1987, “
Thermoelectric Phenomena in Microcontacts in Heating Limit
,”
Phys. Low Temperat.
,
13
(
10
), pp.
1034
1045
(in Russian).
105.
Linford
,
R. G.
, and
Mitchell
,
L. A.
, 1971, “
Interplanar Potentials Function for Calculating Surface Energies and Cohesive Stresses
,”
Surf. Sci.
0039-6028,
27
, pp.
142
146
.
106.
Mindlin
,
R. D.
, 1972, “
Elasticity, Piezoelectricity and Crystal Lattice Dynamics
,”
J. Elast.
0374-3535,
2
(
4
), pp.
217
282
.
107.
Bedford
,
A.
, and
Drumheller
,
D. S.
, 1993,
Introduction to Elastic Wave Propagation
,
Wiley
, New York.
108.
Ambardar
,
A.
, and
Ferris
,
C. D.
, 1978, “
Wave Propagation in a PZ Two-Layered Cylindrical Shell With Hexagonal Symmetry (Some Applications to Long Bone)
,”
J. Acoust. Soc. Am.
0001-4966,
65
(
3
), pp.
781
792
.
109.
Adelman
,
N. T.
, and
Stavsky
,
Y.
, 1980, “
Flexural-Extensional Behavior of Composite PZ Circular Plates
,”
J. Acoust. Soc. Am.
0001-4966,
67
(
3
), pp.
819
822
.
110.
Dianov
,
D. B.
, and
Kuz’menko
,
A. G.
, 1970, “
Calculation of the Cylindrical PZ Transducers at Radial-Symmetrical Radiation
,”
Sov. Acoust. J.
,
16
(
1
), pp.
42
48
.
111.
Dianov
,
D. B.
,
Zadirenko
,
I. M.
, and
Kuz’menko
,
A. G.
, 1973, “
Investigation of Frequency Characteristics and Direction of Radiation of Cylindrical Transducers With Soft Screening
,”
Sov. Acoust. J.
,
19
(
5
), pp.
677
684
.
112.
Lazutkin
,
V. N.
, and
Tsyganov
,
Ju. V.
, 1971, “
Axissymmetrical Oscillation Modes and Electrical Impedance of the Rings With Radial Polarization
,”
Sov. Acoust. J.
,
17
(
3
), pp.
394
399
.
113.
Adelman
,
N. T.
,
Stavsky
,
Y.
, and
Segal
,
E.
, 1975, “
Radial Vibrations of the Axially Polarized PZ Ceramic Cylinders
,”
J. Acoust. Soc. Am.
0001-4966,
57
(
2
), pp.
356
360
.
114.
Dökmeci
,
M. C.
, 1978, “
Theory of Vibrations of Coated Thermopiezoelectric Laminae
,”
J. Math. Phys.
0022-2488,
19
(
1
), pp.
109
126
.
115.
Dökmeci
,
M. C.
, 1990, “
Shell Theory for Vibrations of Piezoceramics Under Bias
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
37
(
5
), pp.
369
383
.
116.
Paul
,
H. S.
, and
Vanntessan
,
M.
, 1987, “
Vibration of a Hollow Circular Cylinder of Piezoceramics
,”
J. Acoust. Soc. Am.
0001-4966,
82
(
3
), pp.
952
956
.
117.
Matrosov
,
A. A.
, and
Ustinov
,
Ju. A.
, 1984, “
Homogeneous Solution of Steady Vibrations of Piezoceramic Cylinder Problem
,”
J. Appl. Math. Mech.
0021-8928,
48
(
6
), pp.
1045
1049
(In Russian).
118.
Ganapathi
,
M.
, and
Makhecha
,
D. P.
, 2001, “
Free Vibration Analysis of the Multilayer Composite Laminates Based on Accurate Higher-Order Theory
,”
Composites, Part B
1359-8368,
32
(
6
), pp.
535
543
.
119.
Reissner
,
E.
, 1979, “
Note on the Effect of Transverse Shear Deformations in Laminated Anisotropic Plates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
20
(
12
),pp.
203
209
.
120.
Tiersten
,
H. F.
, 1993, “
Equations for the Extension and Flexure of Thin Electroelastic Plates Under Large Electric Fields
,”
ASM AMD
,
161
, pp.
21
34
.
121.
Varadan
,
V. V.
,
Jeng
,
J. H.
, and
Varadan
,
V. K.
, 1987, “
Form Invariant Constitutive Relations for Transversaly Isotropic PZ Materials
,”
J. Acoust. Soc. Am.
0001-4966,
82
, pp.
337
341
.
122.
Hou-Cheng
,
H.
, 1989,
Static and Dynamic Analysis of Plates and Shells
,
Springer
, London.
123.
Maugin
,
G. A.
, and
Attou
,
D.
, 1990, “
An Asymptotic Theory of Thin PZ Plates
,”
Q. J. Mech. Appl. Math.
0033-5614,
43
(
3
), pp.
347
363
.
124.
Rogatcheva
,
N. N.
, 1981, “
Constitutive Equations of Piezoceramic Shells
,”
J. Appl. Math. Mech.
0021-8928,
45
(
5
), pp.
902
911
(in Russian).
125.
Berdichevskii
,
V. L.
, 1979, “
Variational-Asymptotic Method Construction of the Shell Theory
,”
J. Appl. Math. Mech.
0021-8928,
43
(
4
), pp.
664
687
.
126.
Berdichevskii
,
V. L.
, 1980, “
Variational-Asymptotic Method of Construction the Non-Linear Shell Theory
,”
Theory of Thin Shells
, Proc. 3rd UITAM Symposiun,
W. T.
Koiter
and
G. K.
Mikhailov
, eds., Tbilisi, Russia, August 22–28, 1978,
North-Holland
,
Amsterdam
, pp.
75
91
.
127.
Berdichevskii
,
V. L.
, and
Le
,
K. C.
, 1982, “
High Frequency Vibrations of Shells
,”
Sov. Phys. Acoust.
0038-562X,
27
(
11
), pp.
988
990
.
128.
Ustinov
,
Ju. A.
, 1975, “
Axissymmetrical Stress-Strain State of the Nonhomogeneous Thin Cylindrical Shell
,
Sov. Appl. Mech.
0038-5298,
11
(
7
), pp.
35
41
.
129.
Getman
,
I. P.
, and
Ustinov
,
Ju. A
, 1979, “
To Theory of Nonhomogeneous Plates
,”
J. Appl. Math. Mech.
0021-8928,
43
(
5
), pp.
923
935
.
130.
Vatulyan
,
A. O.
,
Getman
,
I. P.
, and
Lapitskaya
,
N. E.
, 1991, “
On Bending of the PZ Bimorph Plate
,”
Sov. Appl. Mech.
0038-5298,
27
(
10
), pp.
101
105
.
131.
Vatuljan
,
A. O.
,
Nasedkin
,
A. V.
, and
Skaliuch
,
A. S.
, 1993, “
Vibration of the Cantilever PZ Plate With Goffered Washer
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
4
, pp.
118
123
.
132.
Rasskazov
,
O. O.
,
Kozlov
,
V. I.
, and
Karnauchova
,
T. V.
, 1999, “
Transverse Oscillations and Vibration Heating Rectangular Bimorph Plate of Dissipative Material
,”
Sov. Appl. Mech.
0038-5298,
39
(
9
), pp.
85
93
.
133.
Croitoro
,
E.
, and
Singh
,
M.
, 1987, “
Perturbation Torsion About a Finite Extension an Elastic Dielectrics
,”
ZAMP
0044-2275,
38
(
3
), pp.
450
458
.
134.
Lee
,
P. C. Y.
,
Kuong-Ming
,
W.
, and
Wang
,
Y. S.
, 1978, “
Effect of Acceleration on Resonance Frequencies of a Crystal Plates
,”
J. Acoust. Soc. Am.
0001-4966,
63
(
4
), pp.
1039
1047
.
135.
Yang
,
J. S.
,
Fang
,
H. Y.
, and
Jiang
,
Q.
, 2000, “
A Vibrating PZ Ceramic Shell as a Rotation Sensor
,”
Smart Mater. Struct.
0964-1726,
9
(
4
), pp.
445
451
.
136.
Bogomol’nyi
,
V. M.
, 1991, “
To Calculation of the PZ Transducers
,
Meas. Tech.
0543-1972,
11
, pp.
54
56
.
137.
Bogomol’nyi
,
V. M.
, 1981, “
To Calculation of the Piezoceramic Shells at Electrostatic Loading
,
Sov. Phys. Tech. Phys.
0038-5662,
51
, pp.
1284
1287
.
138.
Bogomol’nyi
,
V. M.
, 1983a, “
To Dynamical Calculation of the Electroelastic Piezoceramic Toroidal Shells
,”
Sov. Appl. Mech.
0038-5298,
19
(
6
), pp.
98
101
.
139.
Bogomol’nyi
,
V. M.
, 1983b, “
To Calculation of Thin Electroelastic Toroidal Shells
,”
Sov. Appl. Mech.
0038-5298,
19
(
4
), pp.
114
117
.
140.
Bogomol’nyi
,
V. M.
, 1988, “
Calculation of the Electrostrictive Effect in Prestressed Ferroelectric Shells
,”
Sov. J. Contemp. Eng. Mech.
,
41
, pp.
33
37
.
141.
Bogomol’nyi
,
V. M.
, 1992, “
Calculation of the Electrostrictive Effect in Prestressed Ferroelectric Ceramic Shell Under Harmonical Excitation
,
J. Appl. Mech. Tech. Phys.
0021-8944,
2
, pp.
150
155
.
142.
Bogomol’nyi
,
V. M.
, 1994, “
Calculation of the Harmonically Driven Piezoceramic Transducers
,
Meas. Tech.
0543-1972,
12
, pp.
1412
1416
.
143.
Bogomol’nyi
,
V. M.
, 1995d, “
Calculation of the PZ Transducers on Base MDM Structures
,”
Meas. Tech.
0543-1972,
2
, pp.
50
54
.
144.
Bolkisev
,
A. M.
,
Rudnitsky
,
S. I.
, and
Shulga
,
N. A.
, 1985, “
Comparative Analysis of the Forced Oscillations of the Electroelastic Shells With Engineering and Three-Dimensional Theories
,”
Sov. Appl. Mech.
0038-5298,
21
(
4
), pp.
19
24
.
145.
Boriseiko
,
V. A.
,
Grinchenko
,
V. T.
, and
Ulitko
,
A. F.
, 1976, “
Relations of Electroelasticity for Piezoceramic Shells
,”
Sov. Appl. Mech.
0038-5298,
12
(
2
), pp.
26
33
.
146.
Chang
,
S. H.
,
Du
,
B. C.
, and
Lin
,
J. F.
, 1999, “
Electroelastic Modelling of Annular Piezoceramic Actuating Disk Transducers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
10
(
5
), pp.
410
421
.
147.
Chen
,
W. Q.
, 2001, “
Free Vibrations of Laminated PZ Hollow Spheres
,”
J. Acoust. Soc. Am.
0001-4966,
109
(
1
), pp.
41
50
.
148.
Chowdury
,
K. L.
, and
Glockner
,
P. G.
, 1979, “
Some Exact Solutions in Elastic Dielectrics
,”
Bull. lnt. Acad. Pol. Sci. Ser. Techn.
,
27
(
5/6
), pp.
181
191
.
149.
Correia
,
J. F. P.
,
Soares
,
C. M. M.
,
Soares
,
C. A. M.
, and
Herskovits
,
J.
, 1999, “
Development of Semi-Analytical Axissymmetrical Shell Models With Embedded Sensors and Actuators
,”
Compos. Struct.
0263-8223,
47
(
1–4
), pp.
531
543
.
150.
Duppare
,
J.
,
Bücker
,
P.
,
Götz
,
B.
, and
Mairtin
,
Th.
, 2000, “
Theoretical and Experimental Investigation of Significant Characteristics Parameters of PZ Actuators
,”
Proc. SPIE
0277-786X,
3985
, pp.
672
677
.
151.
Hayward
,
G.
, and
Hossak
,
J.
, 1990, “
Unidimensional Modelling of Composite Transducers
,”
J. Acoust. Soc. Am.
0001-4966,
88
(
2
), pp.
599
608
.
152.
Lee
,
P. C. Y.
, 1971, “
Extensional Flexural and Width Shear Vibration of Thin Rectangular Plates
,”
J. Appl. Phys.
0021-8979,
42
(
11
), pp.
4139
4144
.
153.
Lee
,
P. C. Y.
, and
Lin
,
W. S.
, 1998, “
PZ Forced Vibrations of Rectangular SC-Cut Quartz Plates
,”
J. Appl. Phys.
0021-8979,
83
, pp.
7822
7833
.
154.
Ren
,
J. G.
, 1974, “
Exact Solution for Laminated Cylindrical Shells in Bending
,”
IEEE Trans. Sonics Ultrason.
0018-9537,
21
(
4
), pp.
257
268
.
155.
Vekovisheva
,
I. A.
, 1971, “
Variational Principles in Theory of Electroelasticity
,”
Sov. J. Appl. Phys.
0890-2747,
7
(
9
), pp.
129
133
.
156.
Vekovisheva
,
I. A.
, 1973, “
Bending of the Rectangular Plate Fast Clamped at its Outline
,”
Sov. J. Contemp. Eng. Mech.
,
26
(
3
), pp.
58
64
.
157.
Vekovisheva
,
I. A.
, 1975, “
Bending of Thin PZ Plates Under the Action of the Electrical Charges
,
Sov. J. Appl. Phys.
0890-2747,
10
, pp.
275
278
.
158.
Gopinathan
,
S. V.
,
Varadan
,
V. V.
, and
Varadan
,
V. K.
, 2000, “
A Review and Critique of Theories for PZ Laminates
,”
Smart Mater. Struct.
0964-1726,
9
(
1
), pp.
24
48
.
159.
Bogomol’nyi
,
V. M.
, and
Zhidjaev
,
N. A.
, 1990, “
The Choice of the Optimal Excitation Frequency of the Piezoceramic Transducers
,”
Izv. Sibirian Dept. Acad. Sci. Sov. Union
,
1
, pp.
79
81
(translated in English Sov. J. Appl. Phys.).
160.
Collet
,
M.
, 2001, “
Shape Optimization of PZ Sensors Dealing With Spill-Over Instability
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
9
(
4
), pp.
654
662
.
161.
Francis
,
D. T.
,
Ahmad
,
J.
,
Baylis
,
C.
, and
Coats
,
R. F.
, 1994, “
Finite and Boundary Element Modelling of Class III Flextensional Transducers for Ocean Tomography
,”
Proc. Second European Conf. Underwater Acoustic
, Vol.
1
, Brussels, July 4–8, Lyngby, pp.
515
520
.
162.
Kim
,
S. I.
, and
Jones
,
J. D.
, 1990, “
Optimal Design of Piezoactuators for Active Noise and Vibration Control
,” Paper 13th Aeroacoust Conf. Amer. Inst. of Aeronaut. Astronaut., AIAA Paper No. 90-3925.
163.
Ko
,
S.
, and
Pond
,
H. L.
, 1970, “
Improved Design of Spherical Multimode Hydrophone
,
J. Acoust. Soc. Am.
0001-4966,
64
(
5
), pp.
1270
1277.
164.
Rogers
,
P. H.
, 1986, “
Mathematical Model for a Free-Flooded PZ Cylinder Transducer
,”
J. Acoust. Soc. Am.
0001-4966,
80
(
1
), pp.
13
18
.
165.
Soares
,
C. M.
,
Soares
,
C. A.
, and
Correia
,
V. M.
, 1999, “
Optimal Design of Piezolaminated Structures
,”
Compos. Struct.
0263-8223,
47
(
1–4
), pp.
625
634
.
166.
Kepler
,
R. G.
, and
Anderson
,
R. A.
, 1992, “
Ferroelectric Polymers
,”
Adv. Phys.
0001-8732,
41
, pp.
1
57
.
167.
Lerch
,
R.
, 1981, “
Electromechanical Properties of Piezopolymer Microphones
,”
J. Acoust. Soc. Am.
0001-4966,
69
(
6
), pp.
1809
1814
.
168.
Verma
,
P. D.S.
, 1988, “
Radial Oscillations of an Elastic Semiconductors
,”
Int. J. Eng. Sci.
0020-7225,
26
(
1
), pp.
27
36
.
169.
Emets
,
Ju. P.
, 2001, “
Electrical Characteristics Three-Component Dielectric Composite With Density Package of the Inclusions
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
42, 1
(
248
), pp.
165
176.
170.
Kagawa
,
Y.
, and
Yamabuchi
,
T.
, 1977, “
Finite Element Simulation of Composite Electrostrictive Resonators
,”
Proc. Ultrasonics International Conference
(UI 77), June 28–30,
Business Press
,
Brighton, UK
, pp.
138
144
.
171.
Bisegna
,
P.
, and
Luciano
,
R.
, 1996, “
Variational Bounds for the Overall Properties of PZ Composites
,”
J. Mech. Phys. Solids
0022-5096,
44
(
4
), pp.
573
602
.
172.
Rjazantseva
,
M. Ju.
, 1985, “
Bending Oscillations of Three-Layer Plates of the Symmetrical Structure
,”
Mech. Solids
0025-6544,
3
, pp.
153
159
.
173.
Goldenveiser
,
A. L.
, 1963, “
Constructing of the Approximate Shell Theory by Asymptotic Integration of Elasticity Theory Equations
,”
J. Appl. Math. Mech.
0021-8928,
27
(
4
), pp.
593
608
.
174.
Khudik
,
B. I.
, and
Chernjavskii
,
K. E.
, 1990, “
Dispersion Relations of the Electroelastic Oscillations of Thin PZ Plates
,”
Sov. Phys. Solid State
0038-5654,
32
(
8
), pp.
2472
2474
.
175.
Clark
,
R. A.
, 1958, “
Asymptotic Solutions of Toroidal Shell Problem
,”
Q. Appl. Math.
0033-569X,
16
(
1
), pp.
47
60
.
176.
Langer
,
R. E.
, 1949, “
The Asymptotic Solution of Ordinary Linear Differential Equations of Second Order With Special Reference to a Turning Point
,”
Trans. Am. Math. Soc.
0002-9947,
67
, pp.
461
490
.
177.
Tumarkin
,
S. A.
, 1959, “
Asymptotic Solution of the Linear Nonhomogeneous Differential Equation of Second Order With Turning Point and its Application to Toroidal Shell Calculation
,”
J. Appl. Math. Mech.
0021-8928,
23
(
6
), pp.
1083
1094
.
178.
Sibiya
,
Y.
, 1974, “
Uniform Simplification in a Full Neighborhood of a Transition Point
,”
Mem. Am. Math. Soc.
0065-9266,
149
, pp.
106
114
.
179.
Zhang
,
R. J.
, 1991, “
Higher Approximations to the Homogeneous Solution for Toroid
,”
Acta Mech. Sin.
0459-1879,
4
(
4
), pp.
363
368
.
180.
Kudrjavtsev
,
B. A.
,
Parton
,
V. Z.
, and
Rakitin
,
V. I.
, 1975, “
Fracture Mechanics of PZ Materials With Straight Line Tunnel Crack on the Conductor Boundary
,”
J. Appl. Math. Mech.
0021-8928,
39
(
1
), pp.
149
159
.
181.
Belokopytova
,
L. V.
, and
Filshtinskii
,
L. A.
, 1979, “
Two Dimensional Boundary Problem of the Electroelasticity of the PZ Media With Cuts
,”
J. Appl. Math. Mech.
0021-8928,
43
(
1
), pp.
138
143
.
182.
Filshtinskii
,
L. A.
, and
Khizhnjak
,
L. A.
, 1983, “
Reaction of the Piezoceramic Shell Under Concentrated Loading
,”
J. Appl. Math. Mech.
0021-8928,
47
(
3
), pp.
478
482
.
183.
Hao
,
T. H.
,
Gong
,
X.
, and
Suo
,
Z.
, 1996, “
Fracture Mechanics for the Design of Ceramic Multilayer Actuator
,”
J. Mech. Phys. Solids
0022-5096,
44
(
1
), pp.
23
48
.
184.
Ru
,
C. Q.
,
Mao
,
X.
, and
Epstein
,
M.
, 1998, “
Electric Field Induced Interfacial Cracking in Multilayer Electrostrictive Actuators
,”
J. Mech. Phys. Solids
0022-5096,
46
(
8
), pp.
1301
1318
.
185.
Kreher
,
W. S.
, 2002, “
Influence of Domain Switching Zones on the Fracture Toughness of Ferroelectrics
,”
J. Mech. Phys. Solids
0022-5096,
50
(
5
), pp.
1029
1050
.
186.
Bogomol’nyi
,
V. M.
, and
Shwetz
,
A. V.
, 1985, “
To Estimation of PZ Transducers Temperature Under Harmonical Excitation
,”
J. Eng. Phys.
0022-0841,
58
(
1
), pp.
86
89
.
187.
Bogomol’nyi
,
V. M.
, and
Gidjaev
,
N. A.
, 1984, “
The Influence of Harmonical Excitation on PZ Transducers Temperature
,”
Sov. Phys. Tech. Phys.
0038-5662,
54
(
4
), pp.
851
853
.
188.
Bogomol’nyi
,
V. M.
, 1997, “
Analysis of the Losses, Temperature Behavior and Optimal Excitation Frequency of PZ Transducers
,”
Meas. Tech.
0543-1972,
3
, pp.
53
58
.
189.
Bogomol’nyi
,
V. M.
, 1998, “
Calculation of Dissipation Energy and Heating Temperature of the Piezoelectric MDM Structures
,”
Meas. Tech.
0543-1972,
12
, pp.
47
50
.
190.
Erofeev
,
S. A.
, 1998, “
Nonlinear Problems of Electrothermoelasticity
,”
J. Commun. Technol. Electron.
1064-2269,
43
(
1
), pp.
100
111
.
191.
Linhardt
,
F.
, and
Oberst
,
H.
, 1961, “
Uber temperature abhängingkeit schwingungdampfender künststoffe
,”
Akustishe Beihefte
,
1
, pp.
255
264
.
192.
Lindefelt
,
U.
, 1994, “
Heat Generation in Semiconductor Devices
,”
J. Appl. Phys.
0021-8979,
75
(
2
), pp.
942
957
.
193.
Mezheritsky
,
A. V.
, 1984, “
Energy Losses in Piezoceramics Under Electrical Excitation
,”
Electricity
,
10
, pp.
65
67
.
194.
Ter-Martirosian
,
L. T.
, 1975, “
Parametric Heating of the Acoustical Modes in Non-Linear Dielectrics
,”
J. Commun. Technol. Electron.
1064-2269,
20
(
12
), pp.
2592
2598
.
195.
Holland
,
R.
, and
Eer
,
Nisse E.
, 1968,
Design of Resonant PZ Devices
,
MIT Press
, Cambridge, MA.
196.
Qin
,
Q. H.
, 2000, “
General Solutions for Thermoelectroelastics With Various Holes Under Thermal Loading
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
5561
5578
.
197.
Qin
,
Q. H.
, 2000, “
Thermoelectroelastic Solution on Elliptic Inclusions and its Application to Crack-Inclusion Problems
,”
Appl. Math. Model.
0307-904X,
25
, pp.
1
23
.
198.
Kornilov
,
V. M.
, and
Lachinov
,
A. N.
, 1997, “
Electrical Conductivity in the Metal-Polymer-Metal System and a Role of Boundary Conditions
,”
J. Exp. Theor. Phys.
1063-7761,
84
(
4
), pp.
327
337
.
199.
Cherepanov
,
G. P.
, 1994, “
On the Theory of Thermal Stresses in a Thin Film on a Ceramic Substrate
,”
J. Appl. Phys.
0021-8979,
75
(
2
), pp.
844
849
.
200.
Rana
,
A. P.S.
, 1986, “
Temperature Internal Friction Background in Polycrystals
,”
J. IES
1052-2883,
94
(
10
), pp.
1029
1035
.
201.
Ames
,
K. A.
, and
Payne
,
L. E.
, 1994, “
Uniqueness and Continuous Dependence of Solutions to a Multidimensional Thermoelastic Contact Problem
,”
J. Elast.
0374-3535,
2
, pp.
139
148
.
202.
Homberg
,
D.
,
Khludnev
,
A. M.
, and
Sokolovskii
,
J.
, 1999, “
On Equilibrium Problem for a Cracked Body With Electrothermoconductivity
,”
Les. Prepubl. Inst. Elie Cartan.
,
23
, pp.
1
16
.
203.
Wang
,
B. L.
, and
Mai
,
Y. W.
, 2003, “
Thermal Shock Fracture of PZ Materials
,”
Philos. Mag.
1478-6435,
83
(
5
), pp.
631
657
.
204.
Gray
,
E.
, 1968, “
Thermal Effects on Space-Charge-Limited Current Flow in Solids
,”
J. Phys. B
0022-3700,
14
(
6
), pp.
374
377
.
205.
Young
,
J. H.
, 1987, “
Quasi-Linear Electrical Potentials in Steady-State Joule Heating
,”
J. Eng. Math.
0022-0833,
21
(
1
), pp.
33
40
.
206.
Chandrasekharajah
,
D. S.
, 1988, “
A Generalized Thermoelasticity Theory of PZ Media
,”
Acta Mech.
0001-5970,
71
(
1/4
),ss pp.
39
49
.
207.
Nowick
,
A. S.
, and
Berri
,
B. S.
, 1972,
An Elastic Relaxation in Crystalline Solids
,
Academic
, New York.
208.
Yamauchi
,
F.
, and
Takahashi
,
M.
, 1970, “
Internal Friction of Modified Lead-Zirkonate-Titanate Ceramics
,”
J. Phys. Soc. Jpn.
0031-9015,
28
Suppl, pp.
313
315
.
209.
Garcia
,
J. E.
,
Perez
,
R.
, and
Albareda
,
A.
, 2001, “
High Electric Field Measurement of Dielectric Constant and Losses of Ferroelectric Ceramics
,”
J. Phys. D
0022-3727,
34
(
22
), pp.
3279
3284
.
210.
Qin
,
Q. H.
, 2001,
Fracture Mechanics of Piezoelectric Materials
,
WIT Press
, Southampton.
211.
McMeeking
,
R. M.
, 2001, “
Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials
,”
Int. J. Fract.
0376-9429,
108
(
1
), pp.
25
41
.
212.
Robels
,
U.
, and
Arlt
,
G.
, 1993, “
Domain Wall Clamping in Ferroelectric by Orientation of Defects
,
J. Appl. Phys.
0021-8979,
73
(
7
), pp.
3454
3460
.
213.
Robels
,
U.
,
Calderwood
,
J. H.
, and
Arlt
,
G.
, 1995, “
Shift and Deformations of Hysteresis Curve of Ferroelectrics by Defects: An Electrostatic Model
,”
J. Appl. Phys.
0021-8979,
77
(
8
), pp.
4002
4008
.
214.
Fuling
,
S.
,
Kuna
,
M.
, and
Scherzer
,
M.
, 2000, “
Analytical Solution for Two Penny-Shaped Crack Problem in Thermo-Piezoelectric Materials and Their Finite Element Comparisons
,”
Int. J. Fract.
0376-9429,
117
(
1
), pp.
113
121
.
215.
Singh
,
R. N.
, 2001, “
Electromechanical Response of Cracks Materials
,”
25th Annual Conference of Composites. Advanced Ceramics, Materials and Structures
: B, Cocoa Beach. FL, Jan. 21–27, 2001, Westerville.
Amer. Ceram. Soc.
, OH, pp.
509
520
.
216.
Fan
,
H.
,
Park
,
G. T.
,
Choi
,
J. J.
,
Rui
,
J.
, and
Kun
,
H. F.
, 2002, “
Preparation and Improvement in the Electrical Properties of Lead-Zinc-Niobate Based Ceramics by Thermal Treatment
,”
J. Mater. Res.
0884-2914,
17
(
1
), pp.
180
185
.
217.
Pak
,
Y. E.
, 1992, “
Linear Electro-Elastic Fracture Mechanics of Piezoelectric Materials
,”
Int. J. Fract.
0376-9429,
54
, pp.
79
100
.
218.
Fantini
,
E.
et al.
, 2001, “
Failure Mechanisms in Compound Semiconductor Electron Devices
,”
Handbook of Advanced Electronic and Photonics Materials
,
2
, Semiconductor Devices.
H. S.
Nalwa
, ed.,
Academic
, San Diego, pp.
155
157
.
219.
Markenscoff
,
X.
, 1993, “
On the Dundur’s Correspondence Between Cavities and Rigid Inclusions
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
60
(
2
), pp.
260
264
.
220.
Deeg
,
W. F.
, 1980, “
The Analysis of Dislocation, Crack and Inclusion Problem in PZ Solids
,” Ph.D. thesis,
Stanford University
, Stanford, CA.
221.
Wang
,
B.
, 1992, “
Three Dimensional Analysis of an Ellipsoidal Inclusion in a PZ Material
,”
Int. J. Solids Struct.
0020-7683,
29
(
3
), pp.
293
308
.
222.
Li
,
Y.
,
Sato
,
Y.
, and
Watanabe
,
K.
, 2002, “
Stress Singularity Analysis of Axisymmetric PZ Bonded Structure
,”
JSME Int. J., Ser. A
1340-8046,
45
(
3
), pp.
363
370
.
223.
Inglis
,
C. E.
, 1913, “
Stresses in a Plate Due to Presence of Cracks and Sharp Corners
,”
Engineering (London)
0013-7782,
95
(
2462
), pp.
415
418
(see also Trans. Inst. Naval. Architectes, 55, 219–230).
224.
Griffith
,
A. A.
, 1970, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
221
, pp.
163
198
.
225.
Shin
,
C. S.
, 1986, “
A Discussion on Various Estimation of Elastic Stresses Distribution and Stress Concentration Factors for Sharp Edge Notches
,”
Int. J. Fatigue
0142-1123,
8
(
4
), pp.
235
237
(Techn. Notes).
226.
Machova
,
A.
, 2001, “
Stress Calculation on Atomistic Level
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
9
(
4
), pp.
327
337
.
227.
Antontsev
,
S. N.
, and
Chirot
,
M.
, 1994, “
The Thermistor Problem Existence, Smoothness, Uniquess, Blowup
,”
SIAM J. Math. Anal.
0036-1410,
25
(
4
), pp.
1128
1156
.
228.
Sakagami
,
T.
, and
Rubo
,
S.
, 1999, “
Development of a New Crack Identification Method Based on Singular Current Measurement Using Differential Thomography
,”
Proc. SPIE
0277-786X,
3700
, pp.
369
376
.
229.
Endo
,
M.
, 1989, “
Measurement of Surface Crack Depth by Surface Temperature Difference
,”
Imono (Japan)
,
6
(
9
), pp.
650
655
.
230.
Vladimirov
,
A. F.
, and
Moos
,
E. N.
, 1998, “
A Parameter of the Electron Working Function in Ion Spectroscopy
,”
Bull. Russ. Acad. Sci. Phys.
0001-432X,
62
(
7
), pp.
1445
1450
.
231.
Govorukha
,
V. B.
, and
Loboda
,
V. V.
, 2000, “
Contact Zone Models for an Interface Crack in a Piezoelectric Material
,”
Acta Mech.
0001-5970,
140
, pp.
233
246
.
232.
Nishioka
,
T.
, and
Shen
,
S.
, 2001, “
Higher Order Asymptotic Solution for an Interfacial Crack in PZ Bimaterials Under Impact
,”
Mater. Sci. Res. Int.
1341-1683,
7
(
3
), pp.
157
165
.
233.
Shirakihara
,
K.
,
et al.
, 2002, “
Effect of Polarization on Deformation and Fracture of PZ Ceramics
,”
J. Soc. Mater. Sci. Jpn.
0514-5163,
51
(
7
), pp.
736
742
.
234.
Ueda
,
S.
, 2002, “
The Mode/Crack Problem Layered PZ Plates
,”
Int. J. Fract.
0376-9429,
114
(
1
), pp.
63
86
.
235.
Oates
,
W. S.
, and
Lynch
,
C. S.
, 2003, “
New Approach to Solving Crack Tip Stress Fields for PZ Materials
,”
Active Materials: Behavior and Mechanics
,
San Diego
,
C. A.
, Mar. 3–6, 2003,
SPIE
, Bellingham, WA, pp. pp.
376
386
.
236.
Arai
,
M.
,
Sato
,
Y.
, and
Adachi
,
T.
, 2003, “
Elastodynamic Crack Analysis by Boundary Element Method Using Inversion Laplace Transformation
,”
JSME Int. J., Ser. A
1340-8046,
46
(
2
), pp.
131
139
.
237.
Ricoer
,
A.
, and
Kuna
,
M.
, 2003, “
Influence of the Fracture Process Zone in Ferroelectric on the Effective Fracture Toughness
,”
Active Materials: Behavior and Mechanics
,
San Diego
,
C. A.
, Mar. 3–6, 2003,
SPIE
, Bellingham, WA, pp.
395
404
.
238.
Yocum
,
M.
,
Abramovich
,
H.
,
et al.
, 2003, “
Fully Reversed Electromechanical Fatigue Behavior of Composite Laminate With Embedded PZ Actuator/Sensor
,”
Smart Mater. Struct.
0964-1726,
12
(
4
), pp.
556
564
.
239.
Mindlin
,
R. D.
, 1968, “
Polarization Gradient on Elastic Dielectrics
,”
Int. J. Solids Struct.
0020-7683,
4
, pp.
637
642
.
240.
Mindlin
,
R. D.
, 1969, “
Continuum and Lattice Theories of Influence of Electromechanical Coupling on Capacitance of Thin Dielectric Film
,”
Int. J. Solids Struct.
0020-7683,
5
, pp.
1197
1208
.
241.
Mindlin
,
R. D.
, 1972, “
Polarization Gradient in Elastic Dielectrics
,” Course held at Dept. Mechanics Deformable Bodies,
Udine CISM Springer
, Wien.
242.
Mindlin
,
R. D.
, and Applied Mechanics, 1974,
A Coll. Studies in Development of Applied Mechanics
G.
Hermann
, ed.,
Pergamon
, New York.
243.
Deresiewicz
,
H.
,
et al.
, eds., 1989,
The Collected Papers of Raymond D. Mindlin: The Late James Finch Prof.–Emeretus of Appl. Sci. Columbia University
,
Springer
, New York.
244.
Shao
,
J.
, and
Wright
,
G. T.
, 1961, “
Characteristic of the Space–Charge–Limited Dielectric Diode at Very High Frequencies
,”
Solid-State Electron.
0038-1101,
3
(
13
), pp.
291
303
.
245.
Moriarty
,
J. A.
, 1981, “
Small–Signal AC Response of Dielectric Materials Containing Static Space–Charge Fields: Applications to Ionic Conductors and MIS Structures
,”
J. Appl. Phys.
0021-8979,
52
(
5
), pp.
3413
3427
.
246.
Strashilov
,
V. L.
, and
Nadolinskii
,
M. M.
, 1989, “
Thickness-Shear Approximation for PZ Ceramic Plates
,”
Int. J. Electron.
0020-7217,
66
(
3
), pp.
399
408
.
247.
Williams
,
W. S.
, 1983, “
Piezoelectricity and Inhomogeneity in Ceramics, Polymer and Bone
,”
Ferroelectrics
0015-0193,
51
(
1/2
), pp.
61
69
.
248.
Gross
,
B.
,
von Seggern
,
H.
, and
Gerhardt-Multhaupt
,
R.
, 1985, “
Carrier Mobilities in Polyvinylidenefluoride
,”
J. Phys. D
0022-3727,
18
(
12
), pp.
2497
2504
.
249.
Lang
,
S. B.
, and
Yin-Qing-Rui
, 1987, “
Poling Techniques for Producing Non–Uniform Polarization Distribution in PSZT Ceramics
,”
Ferroelectrics
0015-0193,
76
(
3/4
), pp.
443
450
.
250.
Fowler
,
R. H.
, and
Nordheim
,
L.
, 1928, “
Electron Emission in Intense Electric Fields
,
Proc. R. Soc. London, Ser. A
0950-1207,
119A
, pp.
173
181
.
251.
Skrjabysheva
,
I. Ju.
, 1998, “
The Calculation of the Radiation-Induced Conductivity Current in Dielectrics Irradiated With High-Energy Electron and Proton for Two-Component Maxwellian Distribution
,”
Meas. Tech.
0543-1972,
11
, pp.
6
12
.
252.
Hench
,
L. L.
, and
Dove
,
D. B.
, eds., 1971,
Physics of Electronic Ceramics
, Part A,
Marcel Dekker
, New York.
253.
Fan
,
H. Y.
, 1948, “
Theory of Rectification of an Insulating Layer
,”
Phys. Rev.
0031-899X,
74
(
10
), pp.
1505
1513
.
254.
Cohen
,
J
, 1957, “
Electrical Conductivity of Fused Quartz
,”
J. Appl. Phys.
0021-8979,
28
(
7
), pp.
795
800
.
255.
Sedov
,
L. I.
, 1968, “
Models of Solid Media With Internal Freedom Degrees
,”
J. Appl. Math. Mech.
0021-8928,
32
(
5
), pp.
771
785
(in Russian).
256.
Carrera
,
E.
, 2001 “
Development, Ideas, and Evolution Based Upon Reissner’s Mixed Variational Theorem in the Modelling of Multilayered Plates and Shells
,”
Appl. Mech. Rev.
0003-6900,
54
(
4
), pp.
301
329
.
257.
Kadoli
,
R.
, and
Ganesan
,
N.
, 2004, “
Studies on Dynamic Behavior of Composite and Isotropic Cylindrical Shells With PZT Layers Under Axisymmetric Temperature Variation
,”
J. Sound Vib.
0022-460X,
271
(
1–2
), pp.
103
130
.
258.
Nagata
,
K.
,
Thongrueng
,
J.
, and
Kato
,
K.
, 1997, “
Evaluation of the Reliability of Piezoelectric Transformers
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
36
(
9b
), pp.
6103
6105
.
259.
Luchaninov
,
A. G.
, 2000, “
Domain-Wall Contribution to the Piezoeffect in BaTiO3 Ceramics
,”
Proc. SPIE. 7th Int. Symp. on Smart Structures and Materials
, March 5–9, Newport Beach, CA, pp.
13
21
.
260.
Aleshin
,
V. I.
, and
Luchaninov
,
A. G.
, 2001, “
Influence of Mobility of the 90∘ Domain Walls on the Effective Properties of PbTiO3 Ceramics
,”
J. Phys. D
0022-3727,
34
(
15
), pp.
2353
2358
.
261.
Sheikh
,
N. A.
,
Ahmad
,
J.
,
Upadhyay
,
C. S.
, and
Venkatesan
,
C.
, 2002, “
Electro-Thermo-Elastic Formulation and Analysis of PZ Beam
,”
Proc. SPIE
0277-786X, Bellingham, WA,
5062
, pp.
225
232
.
262.
Pamidighatam
,
S.
,
Puers
,
R.
,
Baert
,
K.
, and
Tilmans
,
H. A. C.
, 2002, “
Pull in Voltage Analysis of Electrostatically Actuated Beam Structures With Fixed-Fixed and Fixed-Free End Conditions
,”
J. Micromechanics Microengineering Structures, Devices and Systems
,
12
(
4
), pp.
458
464
.
263.
Sehr
,
H.
,
Tomlin
,
I. S.
,
Huang
,
B.
,
Beeby
,
S. P.
,
Evans
,
A. G. R.
,
Brunnschweiler
,
A.
,
Ensell
,
G. J.
,
Schabmueller
,
C. G. J.
, and
Nibbok
,
T. E. G.
, 2002, “
Time Constant and Lateral Resonances of Thermal Vertical Bimorph Actuators
,”
J. Micromech. Microeng. Struct. Devices and Systems
,
12
(
4
), pp.
410
413
.
264.
Varadan
,
V. K.
,
Vinny
,
K. J.
, and
Jose
,
K. A.
, 2003, “
RF MEMS and Their Applications
,”
Wiley
, Atrium, South Gate, Chichester.
265.
Diestelhorst
,
M.
, 2003, “
What Can Learn About Ferroelectrics Using Methods of Nonlinear Dynamics
,”
Condens. Matter Phys.
1607-324X,
6
(
34
), pp.
189
196
.
266.
Kapsh
,
R. P.
,
Kantz
,
H.
,
Hegger
,
R.
, and
Diestelhorst
,
M.
, 2001, “
Determination of the Dynamical Properties of Ferroelectrics Using Nonlinear Time Series Analysis
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
11
(
3
), pp.
1019
1034
.
267.
Damjanovic
,
D.
, 1997, “
Stress and Frequency Dependence of the Direct PZ Effect in Ferroelectric Ceramics
,”
J. Appl. Phys.
0021-8979,
82
, pp.
1788
1797
.
268.
Silva
,
E. C.
, and
Kikuchi
,
N.
, 1999, “
Design of Piezocomposite Materials and Piezoelectric Transducers Using Topology Optimization. Part 1
,”
Comput. Math. Eng.
,
6
(
2
), pp.
117
182
.
269.
Jinghua
,
Zhong
,
Seeleke
,
S.
,
et al.
, 2003, “
Optimal Control of PZ Actuators, Modelling, Signal Processing and Control. San Diego, CA. Mar. 3–6, 2003, Bellingham, WA.
,”
Proc. SPIE
0277-786X,
5049
, pp.
264
274
.
270.
Bai
,
M. R.
, and
Huang
,
Ch.
, 2003, “
Optimization and Implementation of PZ Radiators Using a Genetic Algorithm
,”
J. Acoust. Soc. Am.
0001-4966,
113
(
11
), pp.
3197
3208
.
271.
Del’Isola
,
F.
,
Henneke
,
E. G.
, and
Porfiri
,
M.
, 2003, “
Piezoelectromechanical Structures: A Survey of Basic Concepts and Methodologies
,”
Proc. SPIE
0277-786X,
5056
, pp.
574
582
.
272.
Bruch
,
J. C.
, Jr.
,
Sloss
,
J. M.
,
Adali
,
S.
, and
Sadek
,
I. S.
, 2000, “
Optimal Piezoactuator Locations/Lengths and Applied Voltage for Shape Control of Beams
,”
Smart Mater. Struct.
0964-1726,
9
(
2
), pp.
205
211
.
273.
Adachi
,
K.
,
Takahshi
,
T.
, and
Hasegawa
,
H.
, 2004, “
Analysis of Screw Pitch Effects on the Performance of Bolt-Clamped Langevin-Type Transducers
,”
J. Acoust. Soc. Am.
0001-4966,
116
(
3
), pp.
1544
1548
.
274.
Maurizio
,
R.
, 2004, “
Electromagnetoacoustic Surface Waves on Dispersive PZ Layered Media
,”
J. Acoust. Soc. Am.
0001-4966,
116
(
3
), pp.
1488
1497
.
275.
Doi
,
K.
,
Nakamura
,
K.
, and
Tichibana
,
A.
, 2003, “
First Principle Theoretical Study on the Electronic Properties of SiO2 Models With Hydrogenated Impurities and Charges
,”
Appl. Surf. Sci.
0169-4332,
216
(
1–4
), pp.
463
470
.
276.
Ricoeur
,
A.
, and
Kuna
,
M.
, 2003, “
A Micromechanical Analysis the Fracture Process Zone in Ferroelectrics
,
Comput. Mater. Sci.
0927-0256,
27
(
3
), pp.
235
239
.
277.
Defects in SiO2 and Related Dielectrics: Science and Technology
, Pbl. Ser. II: Math. Phys. Chemistry. 2000,
G.
Pacchioni
,
L.
Skuja
, and
D. L.
Griscom
,
Kluwer Academic
, Dordrecht.
278.
Stapper
,
C. H.
,
et al.
, eds., 1990,
Defect and Fault Tolerance in VLSI Systems
, Vol.
2
,
Plenum
, New York.
279.
Bogomol’nyi
,
V. M.
, ed., 2004, “
Electrophysical Method for Evaluating the Fracture Surface Energy of Dielectric Materials in Contact With Metal
,”
Meas. Tech.
0543-1972,
47
(
10
), pp.
1025
1031
.
280.
Ray
,
M. C.
, 2003, “
Optimal Control of Laminated Shells Using PZ Sensor and Actuator Layers
,”
AIAA J.
0001-1452,
41
(
6
), pp.
1151
1157
.
281.
Mallik
,
N.
, and
Ray
,
M. C.
, 2003, “
Effective Coefficients of PZ Fiber-Reinforced Composites
,”
AIAA J.
0001-1452,
41
(
4
), pp.
704
710
.
282.
Onoda
,
J.
,
et al.
, 2003, “
Energy-Recycling Semi-Active Method for Vibration Suppression with PZ Transducers
,”
AIAA J.
0001-1452,
41
(
4
), pp.
711
719
.
283.
Lesieure
,
G. A.
, 1998, “
Vibration Damping and Control Using Shunted PZ Materials
,”
Shock Vib. Dig.
0583-1024,
30
(
3
), pp.
187
195
.
284.
Heyliger
,
P. R.
, 2004, “
Static Fields in Magneto-Electro-Elastic Laminates
,”
AIAA J.
0001-1452,
42
(
7
), pp.
1435
1444
.
285.
Pan
,
E.
, 2001, “
Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates
,”
J. Appl. Mech.
0021-8936,
68
, pp.
608
618
.
286.
Pan
,
E.
, and
Heyliger
,
P. R.
, 2002, “
Free Vibrations of Simply Supported and Multilayered Magneto-Electro-Elastic Plates
,”
J. Sound Vib.
0022-460X,
252
, pp.
429
442
.
287.
Sun
,
D.
, and
Tong
,
L.
, 2003, “
Optimum Control Voltage Design for Constrained Static Shape Control of Piezoelectric Structures
,”
AIAA J.
0001-1452,
41
(
12
), pp.
2444
2450
.
288.
Paradies
,
R.
,
Hertwig
,
M.
, and
Elspass
,
W. J.
, 1996, “
Shape Control of an Adaptive Mirror at Different Angles of Inclination
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
7
(
2
), pp.
203
210
.
289.
Irschik
,
H.
, 2002, “
A Review on Static and Dynamic Shape Control of Structures by PZ Actuation
,”
Eng. Struct.
0141-0296,
24
(
1
), pp.
6381
6403
.
290.
Kapuria
,
S.
,
Dumir
,
P. C.
, and
Ahmed
,
A.
, 2004, “
Efficient Coupled Zigzag Theory for Hybrid PZ Beams for Thermoelectric Load
,”
AIAA J.
0001-1452,
42
(
2
), pp.
383
394
.
291.
Tauchert
,
T. R.
,
Aschida
,
F.
,
Noda
,
N.
,
Adali
,
S.
, and
Verijenko
,
V.
, 2000, “
Developments in Thermopiezoelectroelasticity With Relevance to Smart Composite Structures
,”
Compos. Struct.
0263-8223,
48
, pp.
31
45
.
292.
Benjeddon
,
A.
, 2000, “
Advances in PZ Finite Elements Modelling of Adaptive Structural Elements: A Survey
,”
Comput. Struct.
0045-7949,
76
, pp.
347
363
.
293.
Gautschi
,
G.
, 2002,
Piezoelectric Sensors: Force Strain Pressure Acceleration a. Acoustic Emission Sensors Materials and Amplifiers
,
Springer
, Berlin.
294.
Kielczynski
,
P.
, 2004, “
The Analog of the Kanazava-Gordon Formula for Cylindrical Resonators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
51
(
11
), pp.
1367
1372
.
295.
Ebeneser
,
D. D.
, 2004, “
Determination of Complex Coefficients of Radially Polarized PZ Ceramic Cylindrical Shells Using Thin Shell Theory
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
51
(
10
), pp.
1209
1215
.
296.
Chen
,
Z.
,
Meng
,
S. Y.
, and
Lin
,
Y.
, 2002, “
Effective Properties of Layered Magneto-Electro-Elastic Composites
,”
Compos. Struct.
0263-8223,
57
(
1–4
), pp.
177
182
.
297.
Wang
,
Zh.
,
Ackaert
,
J.
,
Kuper
,
F. G.
,
Tock
,
M.
,
De Backer
,
E.
,
Coppens
,
P.
,
De Semper
,
L.
, and
Vlachakis
,
B.
, 2004, “
Plasma-Charging Damage of Floating MIM Capacitors
,”
IEEE Trans. Electron Devices
0018-9383,
51
(
6
), pp.
1017
1024
.
298.
Li
,
H. L.
,
Hu
,
J. H.
, and
Chan
,
H. L. W.
, 2004, “
Finite Element Analysis on PZ Ring Transformer
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
51
(
10
), pp.
1206
1208
.
299.
Makino
,
H.
, and
Kamiya
,
N.
, 1998, “
Electromechanical Fatigue of Lead Zirconate Titanate Ceramics
,”
Jpn. J. Appl. Phys., Part 1
0021-4922, Part 1;
37
(
9b
), pp.
5301
5305
.
You do not currently have access to this content.