Abstract
The significant advances in nonlinear stochastic dynamics and control in Hamiltonian formulation during the past decade are reviewed. The exact stationary solutions and equivalent nonlinear system method of Gaussian-white -noises excited and dissipated Hamiltonian systems, the stochastic averaging method for quasi Hamiltonian systems, the stochastic stability, stochastic bifurcation, first-passage time and nonlinear stochastic optimal control of quasi Hamiltonian systems are summarized. Possible extension and applications of the theory are pointed out. This review article cites 158 references.
Issue Section:
Review Articles
1.
Bolotin
, V. V.
, 1984, Random Vibration of Elastic Systems
, Matinus Nijhoff Publishers
, The Hague
.2.
Ibrahim
, R. A.
, 1985, Parametric Random Vibration
, Research Studies Press LTD
, Taunton, England
.3.
Dimentberg
, M. F.
, 1988, Statistical Dynamics of Nonlinear and Time-Varying Systems
, Research Studies Press LtD
, Taunton, England
.4.
Roberts
, J. B.
, and Spanos
, P. D.
, 1990, Random Vibration and Stctistical Linearization
, Wiley
, New York
.5.
Zhu
, W. Q.
, 1992, Random Vibration
, Science Press
, Beijing (In Chinese)
.6.
Soong
, T. T.
, and Grigoriu
, M.
, 1993, Random Vibration of Mechanical and Structural Systems
, PTR Prentice-Hall
, Englewood Cliffs, New Jersey
.7.
Soize
, C.
, 1994, The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solution
, World Scientific
, Singapore
.8.
Lin
, Y. K.
, and Cai
, G. Q.
, 1995, Probabilistic Structural Dynamics, Advanced Theory and Applications
, McGraw-Hill
, New York
.9.
Grigoriu
, M.
, 1995, Applied Non-Gaussian Processes; Examples, Theory, Simulations, Linear Random Vibration and MATLAB Solutions
, Prentice Hall
, Englewood Cliffs, NJ, USA
.10.
Khasminskii
, R. Z.
, 1980, Stochastic Stability of Differential Equations
, Sijthoff and Noorchoff, Alphen aan den Rijn
, The Netherlands
.11.
Mao
, X.
, 1994, Exponential Stability of Stochastic Differential Equations
, Marcel Dekker Inc.
, New York
.12.
Arnold
, L.
, 1998, Random Dynamical Systems
, Springer
, Berlin
.13.
Stengel
, H.
, 1986, Stochastic Optimal Control
, Wiley
, New York
.14.
Fleming
, W. H.
, and Soner
, H. M.
, 1992, Controlled Markov Processes and Viscosity Solutions
, Springer-Verlag
, New York
.15.
Yong
, J. M.
, and Zhou
, X. Y.
, 1999, Stochastic Control, Hamiltonian Systems and HJB Equations
, Springer-Verlag
, New York
.16.
Ziegler
, F.
, and Sehuëller
, G. I.
, eds, 1988, Nonlinear Stochastic Dynamic Engineering Systems
, Proc. IUTAM Symp.
, Springer-Verlag
, Berlin
.17.
Bellomo
, N.
, and Casciati
, F.
, eds, 1992, Nonlinear Stochastic Mechanics
, Proc. IUTAM Symp.
, Springer-Verlag
, Berlin
.18.
Naess
, A.
, and Krenk
, S.
, eds, 1996, Advances in Nonlinear Stochastic Mechanics
, Proc. IUTAM Symp.
, Kluwer Academic Publishers
, Dordrecht
.19.
Narayanan
, S.
, and Iyengar
, R. N.
, eds, 2001, Nonlinearity and Stochastic Structural Dynamics
, Proc. IUTAM Symp.
, Kluwer Academic Publishers
, Dordrecht
.20.
Sri Namachchivaya
, N.
, and Lin
, Y. K.
, eds, 2003, Nonlinear Stochastic Dynamics
, Proc. IUTAM Symp.
, Kluwer Academic Publishers
, Dordrecht
.21.
Crandall
, S. H.
, and Zhu
, W. Q.
, 1983, “Random Vibration: A Survey of Recent Developments
,” ASME J. Appl. Mech.
0021-8936, 50
, 50th Anniversary Issue, pp. 953
–962
.22.
Sehuëller
, G. I.
, ed, 1997, “A State-of-the-Art Report on Computational Stochastic Mechanics
,” Probab. Eng. Mech.
0266-8920, 12
, pp. 197
–321
.23.
Zhu
, W. Q.
, and Cai
, G. Q.
, 2002, “Nonlinear Stochastic Dynamics: A Survey of Recent Developments
,” Acta Mech.
0001-5970, 18
, pp. 551
–566
.24.
Zhu
, W. Q.
, 2003, Nonlinear Stochastic Dynamics and Control—Hamiltonian Theoretical Framework
, Science Press
, Beijing
(In Chinese).25.
Tabor
, M.
, 1989, Chaos and Integrability in Nonlinear Dynamics, An Introduction
, Wiley
, New York
.26.
Lichtenberg
, A. J.
, and Lieberman
, M. A.
, 1983, Regular and Stochastic Motion
, Springer-Verlag
, Berlin
.27.
28.
Yoshida
, H.
, 1999, “A New Necessary Condition for the Integrability of Hamiltonian Systems With Two-Dimensional Homogeneous Potential
,” Physica D
0167-2789, 128
, pp. 53
–87
.29.
Arnold
, V. I.
, 1989, Mathmatical Methods of Classical Mechanics
, 2nd ed., Springer-Verlag
, New York
.30.
Arnold
, V. I.
, Kozlov
, V. V.
, and Neishtadt
, A. I.
, 1988, Mathematical Aspects of Classical and Celestial Mechanics, In Dynamical Systems III
, Viarnold
, ed, Springer-Verlag
, New York
.31.
Boundtis
, T.
, Segar
, H.
, and Vivaldi
, F.
, 1982, “Integrable Hamiltonian Systems and the Painleve Property
, Phys. Rev. A
1050-2947, Third Series, 25
, pp. 1257
–1264
.32.
Whittaker
, E. T.
, 1964, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
, Cambridge University Press
, Cambridge, UK
.33.
Hénon
, M.
, and Heiles
, C.
, 1964, “The Applicability of the Third Integral of Motion; Some Numerical Experiments
,” Astron. J.
0004-6256, 69
, pp. 73
–79
.34.
Fuller
, A. T.
, 1969, “Analysis of Nonlinear Stochastic Systems by Means of the Fokker-Planck Equation
,” Int. J. Control
0020-7179, 9
, pp. 603
–655
.35.
Zhu
, W. Q.
, Cai
, G. Q.
, and Lin
, Y. K.
, 1990, “On Exact Stationary Solutions of Stochastically Perturbed Hamiltonian Systems
,” Probab. Eng. Mech.
0266-8920, 5
, pp. 84
–87
.36.
Zhu
, W. Q.
, Cai
, G. Q.
, and Lin
, Y. K.
, 1992, “Stochastically Perturbed Hamiltonian Systems
,” Nonlinear Stochastic Mechanics
, N.
Bellomo
and F.
Casciaki
, eds., Springer-Verlag
, Berlin
, pp. 543
–552
.37.
Caughey
, T. K.
, 1971, “Nonlinear Theory of Random Vibration
,” Advances in Applied Mechanics 11
, Academic Press
, New York
.38.
Caughey
, T. K.
, and Ma
, F.
, 1982, “The Exact Steady-State Solution of a Class of Nonlinear Stochastic Systems
,” Int. J. Non-Linear Mech.
0020-7462, 17
, pp. 137
–142
.39.
Caughey
, T. K.
, and Ma
, F.
, 1982, “The Steady-State Response of a Class of Dynamical Systems to Stochastic Excitation
,” ASME J. Appl. Mech.
0021-8936, 49
, pp. 629
–632
.40.
Dimentberg
, M. F.
, 1982, “An Exact Solution to a Certain Nonlinear Random Vibration Problem
,” Int. J. Non-Linear Mech.
0020-7462, 17
, pp. 231
–236
.41.
Lin
, Y. K.
, and Cai
, G. Q.
, 1988, “Exact Stationary-Response Solution for Second Order Nonlinear Systems Under Parametric and External Excitations, Part II
,” ASME J. Appl. Mech.
0021-8936, 55
, pp. 702
–705
.42.
Zhu
, W. Q.
, 1990, “Exact Solutions for Stationary Responses of Several Classes of Nonlinear Systems Under Parametric and External White Noise Excitations
,” J. Appl. Math. Mech.
0021-8928, 11
, pp. 165
–175
.43.
Zhu
, W. Q.
, and Yang
, Y. Q.
, 1996, “Exact Stationary Solutions of Stochastically Excited and Dissipated Integrable Hamiltonian Systems
,” ASME J. Appl. Mech.
0021-8936, 63
, pp. 493
–500
.44.
Huang
, Z. L.
, Liu
, Z. H.
, and Zhu
, W. Q.
, 2004, “Stationary Response of Multi-Degree-of-Freedom Vibro-Impact Systems Under White Noise Excitations
,” J. Sound Vib.
0022-460X, 275
, pp. 223
–240
.45.
Cai
, G. Q.
, and Lin
, Y. K.
, 1996, “Exact and Approximate Solutions for Randomly Excited MDOF Nonlinear Systems
,” Int. J. Non-Linear Mech.
0020-7462, 31
, pp. 623
–647
.46.
Zhu
, W. Q.
, and Huang
, Z. L.
, 2001, “Exact Stationary Solutions of Stochastically Excited and Dissipated Partially Integrable Hamiltonian Systems
,” Int. J. Non-Linear Mech.
0020-7462, 36
, pp. 39
–48
.47.
Ying
, Z. G.
, and Zhu
, W. Q.
, 2000, “Exact Stationary Solutions of Stochastically Excited and Dissipated Gyroscopic Systems
,” Int. J. Non-Linear Mech.
0020-7462, 35
, pp. 837
–848
.48.
Huang
, Z. L.
, and Zhu
, W. Q.
, 2000, “Exact Stationary Solutions of Stochastically and Harmonically Excited and Dissipated Integrable Hamiltonian Systems
,” J. Sound Vib.
0022-460X, 230
, pp. 709
–720
.49.
Caughey
, T. K.
, 1986, “On Response of Nonlinear Oscillators to Stochastic Excitation
,” Probab. Eng. Mech.
0266-8920, 1
, pp. 2
–4
.50.
Lutes
, L. D.
, 1970, “Approximate Technique for Treating Random Vibration of Hysteretic Systems
,” J. Acoust. Soc. Am.
0001-4966, 48
, pp. 299
–306
.51.
Cai
, G. Q.
, and Lin
, Y. K.
, 1988, “A New Approximate Solution Technique for Randomly Excited Nonlinear Oscillators
,” Int. J. Non-Linear Mech.
0020-7462, 23
, pp. 409
–420
.52.
Zhu
, W. Q.
, and Yu
, J. S.
, 1989, “The Equivalent Nonlinear System Method
,” J. Sound Vib.
0022-460X, 129
, pp. 385
–395
.53.
To
, C. W. S.
, and Li
, D. M.
, 1991, “Equivalent Nonlinearization of Nonlinear Systems to Random Excitation
,” Probab. Eng. Mech.
0266-8920, 6
, pp. 184
–192
.54.
Lei
, Z.
, and Qiu
, C.
, 1996, “A New Equivalent Nonlinearization Method for Random Vibration of Nonlinear Systems
,” Mech. Res. Commun.
0093-6413, 23
, pp. 131
–136
.55.
Zhu
, W. Q.
, Soong
, T. T.
, and Lei
, Y.
, 1994, “Equivalent Nonlinear System Method for Stochastically Excited Hamiltonian Systems
,” ASME J. Appl. Mech.
0021-8936, 61
, pp. 618
–623
.56.
Zhu
, W. Q.
, and Lei
, Y.
, 1997, “Equivalent Nonlinear System Method for Stochastically Excited and Dissipated Integrable Hamiltonian Systems
,” ASME J. Appl. Mech.
0021-8936, 64
, pp. 209
–216
.57.
Zhu
, W. Q.
, and Deng
, M. L.
, 2004, “Equivalent Nonlinear Systems Method for Stochastically Excited and Dissipated Integrable Hamiltonian Systems-Resonant Case
,” J. Sound Vib.
0022-460X, 274
, pp. 1110
–1122
.58.
Zhu
, W. Q.
, Huang
, Z. L.
, and Suzuki
, Y.
, 2001, “Equivalent Nonlinear System Method for Stochastically Excited and Dissipated Partially Integrable Hamiltonian Systems
,” Int. J. Non-Linear Mech.
0020-7462, 36
, pp. 773
–786
.59.
Stratonovich
, R. L.
, 1963, 1967, Topics in the Theory of Random Noise
, Vols. 1
and 2
, Gordon Breach
, New York
.60.
Khasminskii
, R. Z.
, 1966, “A Limit Theorem for Solution of Differential Equations With Random Right-Hand Side
,” Theor. Probab. Appl.
0040-585X, 11
, pp. 390
–406
.61.
Papanicolaou
, G. C.
, and Kohler
, W.
, 1974, “Asymptotic Theory of Mixing Stochastic Ordinary Differential Equations
,” Commun. Pure Appl. Math.
0010-3640, 27
, pp. 641
–668
.62.
Blankenship
, G. L.
, and Papanicolaou
, G. C.
, 1978, “Stability and Control of Stochastic Systems With Wide-Band Noise Disturbances I
,” SIAM J. Appl. Math.
0036-1399, 34
, pp. 437
–476
.63.
Landa
, P. S.
, and Stratonovich
, R. L.
, 1962, “Theory of Stochastic Transition of Various Systems Between States
,” Vestn. Mosk. Univ., Ser. 3: Fiz., Astron.
, pp. 33
–45
(in Russian).64.
Khasminskii
, R. Z.
, 1964, “Behavior of a Conservative System With Small Friction and Small Random Noise
,” Prikl. Mat. Mekh.
0032-8235, 28
, pp. 1126
–1130
(in Russian).65.
Khasminskii
, R. Z.
, 1968, “On the Averaging Principle for Itô Stochastic Differential Equations
,” Kybernetika
0023-5954, 3
, pp. 260
–279
(in Russian).66.
Papanicolaou
, G.
, Stroock
, D.
, and Varadhan
, S. R. S.
, 1977, “Martingale Approach to Some Limit Theorems
,” Duke Univ. Math. Ser. III
.67.
Roberts
, J. B.
, 1982, “Energy Method for Nonlinear Systems With Nonwhite Excitation
,” Random Vibrations and Reliabiity, Proc. IUTAM Symp.
, K.
Hennig
, ed., Academic-Verlag
, Berlin
, pp. 285
–294
.68.
Red-Horse
, J. R.
, and Spanos
, P. D.
, 1992, “A Generalization to Stochastic Averaging in Random Vibration
,” Int. J. Non-Linear Mech.
0020-7462, 27
, pp. 85
–101
.69.
Cai
, G. Q.
, and Lin
, Y. K.
, 2001, “Random Vibration of Strongly Nonlinear Systems
,” Nonlinear Dyn.
0924-090X, 24
, pp. 3
–15
.70.
Zhu
, W. Q.
, Huang
, Z. L.
, and Suzuke
, Y.
, 2001, “Response and Stability of Strongly Nonlinear Oscillators Under Wide-Band Random Excitation
,” Int. J. Non-Linear Mech.
0020-7462, 36
, pp. 1235
–1250
.71.
Huang
, Z. G. L.
, and Zhu
, W. Q.
, 2000, “Stochastic Averaging of Strongly Nonlinear Oscillators Under Combined Harmonic and White Noise Excitations
,” J. Sound Vib.
0022-460X, 238
, pp. 233
–256
.72.
Huang
, Z. L.
, Zhu
, W. Q.
, Ni
, Y. Q.
, and Ko
, J. M.
, 2002, “Stochastic Averaging of Strongly Nonlinear Oscillator Under Bounded Noise Excitation
, J. Sound Vib.
0022-460X, 254
, pp. 245
–267
.73.
Sri Namachchivaya
, N.
, and Sowers
, R. B.
, 2002, “Rigorous Stochastic Averaging at a Center With Additive Noise
,” Meccanica
0025-6455, 37
, pp. 85
–114
.74.
Freidlin
, M. I.
, and Wentzell
, A. D.
, 1998, Random Perturbation of Dynamical Systems
, 2nd ed, Springer-Verlag
, Berlin
.75.
Sowers
, R. B.
, 2004, “Stochastic Averaging Near Homoclinic Robets Via Singular Perturbations
,” in Ref. (20).76.
Roberts
, J. B.
, and Spanos
, P. D.
, 1986, “Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,” Int. J. Non-Linear Mech.
0020-7462, 21
, pp. 111
–134
.77.
Zhu
, W. Q.
, 1988, “Stochastic Averaging Methods in Random Vibration
,” Appl. Mech. Rev.
0003-6900, 41
(5
), pp. 189
–199
.78.
Zhu
, W. Q.
, 1996, “Recent Developments and Applications of the Stochastic Averaging Method in Random Vibration
,” Appl. Mech. Rev.
0003-6900, 49
(10
), pp. s72
–s82
.79.
Zhu
, W. Q.
, and Yang
, Y. Q.
, 1997, “Stochastic Averaging of Quasi-Nonintegrable-Hamiltonian Systems
,” ASME J. Appl. Mech.
0021-8936, 64
, pp. 157
–164
.80.
Zhu
, W. Q.
, Huang
, Z. L.
, and Yang
, Y. Q.
, 1997, “Stochastic Averaging of Quasi Integrable Hamiltonian Systems
,” ASME J. Appl. Mech.
0021-8936, 64
, pp. 975
–984
.81.
Zhu
, W. Q.
, Huang
, Z. L.
, and Suzuki
, Y.
, 2002, “Stochastic Averaging and Lyapunov Exponent of Quasi Partially Integrable Hamiltonian Systems
,” Int. J. Non-Linear Mech.
0020-7462, 37
, pp. 419
–437
.82.
Deng
, M. L.
, and Zhu
, W. Q.
, 2003, “Stationary Motion of Active Brownian Particle
,” Phys. Rev. E
1063-651X, 69
, p. 046105
.83.
Zhu
, W. Q.
, Deng
, M. L.
, and Huang
, Z. L.
, 2003, “Optimal Bounded Control of First-Passage Failure of Quasi Integrable Hamiltonian Systems With Wide-Band Random Excitation
,” Nonlinear Dyn.
0924-090X, 33
, pp. 189
–207
.84.
Huang
, Z. L.
, and Zhu
, W. Q.
, 1997, “Exact Stationary Solutions of Averaged Equations of Stochastically and Harmonically Excited MDOF Quasi-Linear Systems With Internal and / Or External Resonance
,” J. Sound Vib.
0022-460X, 204
, pp. 249
–258
.85.
Huang
, Z. L.
, and Zhu
, W. Q.
, 2004, “Stochastic Averaging of Quasi Integrable Hamiltonian Systems Under Combined Harmonic and White Noise Excitations
,” Int. J. Non-Linear Mech.
0020-7462, 39
, pp. 1421
–1434
.86.
Huang
, Z. L.
, and Zhu
, W. Q.
, 2004, “Stochastic Averaging of Quasi Integrable Hamiltonian Systems Under Bounded Noise Excitation
,” Probab. Eng. Mech.
0266-8920, 19
, pp. 219
–228
.87.
Huang
, Z. L.
, and Zhu
, W. Q.
, 2005, “Averaging Method for Quasi-Integrable Hamiltonian Systems
,” J. Sound Vib.
0022-460X, 284
, pp. 325
–341
.88.
Kozin
, F.
, 1969, “A Survey of Stability of Stochastic Systems
,” Automatica
0005-1098, 5
(1
), pp. 95
–112
.89.
Naprestek
, J.
1996, “Stochastic Exponential and Asymptotic Stability of Simple Nonlinear Systems
,” Int. J. Non-Linear Mech.
0020-7462, 31
(5
), pp. 693
–705
.90.
Oseledec
, V. I.
, 1968, “A Multiplicative Ergodic Theorem, Lyapunov Characteristic Numbers for Dynamical Systems
,” Trans. Mosc. Math. Soc.
0077-1554, 19
, pp. 197
–231
.91.
Khasminskii
, R. Z.
, 1967, “Necessary and Sufficient Conditions for the Asymptotic Stability of Linear Stochastic Systems
,” Theor. Probab. Appl.
0040-585X, 11
, pp. 144
–147
.92.
Kozin
, F.
, and Zhang
, Z. Y.
, 1991, “On Almost Sure Sample Stability of Nonlinear Itô, Differential Equations
,” Probab. Eng. Mech.
0266-8920, 6
(2
), pp. 92
–95
.93.
Talay
, D.
, 1999, “Lyapunov Exponent of the Euler Scheme for Stochastic Differential Equation
,” in Stochastic Dynamics
, H.
Crauel
and M.
Gundlach
, eds., Springer-Verlag
, New York
, pp. 241
–258
.94.
Wihstutz
, V.
, 1999, “Perturbation Methods for Lyapunov Exponents
,” in Stochastic Dynamics
, H.
Crauel
and M.
Gundlach
, eds., Springer-Verlag
, New York
, pp. 209
–239
.95.
Ariaratnam
, S. T.
, and Xie
, W.-C.
, 1992, “Lyapunov Exponents and Stochastic Stability of Coupled Linear Systems Under Real Noise Excitation
,” ASME J. Appl. Mech.
0021-8936, 59
, pp. 664
–673
.96.
Ariaratnam
, S. T.
, and Abdelrahman
, N. M.
, 2003, “Stochastic Stability of Coupled Oscillators in Internal Resonance
,” in Ref. (20).97.
Arnold
, L.
, 1984, “A Formula Connecting Sample and Moment Stability of Linear Stochastic Systems
.” in Lyapunov Exponents (Lecture Notes in Mathematics 1186)
, L.
Arnold
and V.
Wihstutz
, eds., Springer-Verlag
, Berlin
, pp. 793
–802
.98.
Arnold
, L.
, Doyle
, M. M.
, and Sri Namachchivaya
, N.
, 1997, “Small Noise Expansion of Moment Lyapunov Exponents for Two-Dimensional Systems
,” Dyn. Stab. Syst.
0268-1110, 12
(3
), pp. 187
–211
.99.
Khasminskii
, R. Z.
, and Moshchuk
, N.
, 1998, “Moment Lyapunov Exponent and Stability Index for Linear Conservative System With Small Random Perturbation
,” SIAM J. Appl. Math.
0036-1399, 58
(1
), pp. 245
–256
.100.
Xie
, W. C.
, 2001, “Moment Lyapunov Exponent of a Two-Dimensional System Under Real Noise Excitation
,” J. Sound Vib.
0022-460X, 239
(1
), pp. 139
–155
.101.
Horsthemke
, W.
, and Lefever
, R.
, 1984, Noise-Induced Transition
, Springer-Verlag
, Berlin
.102.
Sri Namachchivaya
, N.
, 1990, “Stochastic Bifurcation
,” Appl. Math. Comput.
0096-3003, 38
(1
), 101
–159
.103.
Arnold
, L.
, 2001, “Recent Progress in Stochastic Bifurcation Theory
,” In Ref. (19), pp. 15
–27
.104.
Zhu
, W. Q.
, 2004, “Lyapunov Exponent and Stochastic Stability of Quasi Non-Integrable Hamiltonian Systems
,” Int. J. Non-Linear Mech.
0020-7462, 39
, pp. 645
–655
.105.
Pardoux
, E.
, and Wihstutz
, V.
, 1988, “Lyapunov Exponent and Rotation Number of Two-Dimensional Linear Stochastic Systems With Small Diffusion
,” SIAM J. Appl. Math.
0036-1399, 48
, pp. 442
–457
.106.
Zhu
, W. Q.
, and Huang
, Z. L.
, 1999, “Lyapunov Exponent and Stochastic Stability of Quasi Integrable Hamiltonian Systems
,” ASME J. Appl. Mech.
0021-8936, 66
, pp. 211
–217
.107.
Huang
, Z. L.
, and Zhu
, W. Q.
, 2000, “Lyapunov Exponent and Almost Sure Asymptotic Stability of Quasi-Linear Gyroscopic Systems
,” Int. J. Non-Linear Mech.
0020-7462, 35
, pp. 645
–655
.108.
Huang
, Z. L.
, and Zhu
, W. Q.
, 2003, “A New Approach to Almost-Sure Asymptotic Stability of Stochastic Systems of Higher Dimension
,” Int. J. Non-Linear Mech.
0020-7462, 38
, pp. 239
–247
.109.
Zhu
, W. Q.
, and Huang
, Z. L.
, 1998, “Stochastic Stability of Quasi-Non-Integrable-Hamiltonian Systems
,” J. Sound Vib.
0022-460X, 218
, pp. 769
–789
.110.
Zhu
, W. Q.
, and Huang
, Z. L.
, 1999, “Stochastic Hopf Bifurcation of Quasi Non-Integrable Hamiltonian Systems
,” Int. J. Non-Linear Mech.
0020-7462, 34
, pp. 437
–447
.111.
Lyon
, R. H.
, Heckl
, M.
, and Hazelgrove
, C. B.
, 1961, “Response of Hard-Spring Oscillator to Narrow-Band Excitation
,” J. Acoust. Soc. Am.
0001-4966, 33
, pp. 1404
–1411
.112.
Zhu
, W. Q.
, Lu
, M. Q.
, and Wu
, Q. T.
, 1999, “Stochastic Jump and Bifurcation of a Duffing Oscillator Under Narrow-Band Excitation
,” J. Sound Vib.
0022-460X, 165
, pp. 285
–304
.113.
Kapitaniak
, T.
, 1986, “Chaotic Distribution of Nonlinear Systems Perturbed by Random Noise
,” Phys. Lett. A
0375-9601, 116
, pp. 251
–254
.114.
Bulsara
, A. R.
, Schieve
, W. C.
, and Jacobs
, E. W.
, 1990, “Homoclinic Chaos in Systems Perturbed by Weak Langevin Noise
,” Phys. Rev. A
1050-2947, 41
, pp. 668
–681
.115.
Frey
, M.
, and Simiu
, E.
, 1993, “Noise Induced Chaos and Phase Space Flux
,” Physica D
0167-2789, 63
, pp. 321
–340
.116.
Liu
, W. Y.
, Zhu
, W. Q.
, and Huang
, Z. L.
, 2001, “Effect of Bounded Noise on Chaotic Motion of Duffing Oscillator Under Parametric Excitation
,” Chaos, Solitons Fractals
0960-0779, 12
, pp. 527
–537
.117.
Liu
, Z. H.
, and Zhu
, W. Q.
, 2004, “Homoclinic Bifurcation and Chaos in Simple Pendulum Under Bounded Noise Excitation
,” Chaos, Solitons Fractals
0960-0779, 20
, pp. 593
–607
.118.
Zhu
, W. Q.
, and Liu
, Z. H.
, 2005, “Homoclinic Bifurcation and Chaos in Coupled Simple Pendulum and Harmonic Oscillator Under Bounded Noise Excitation
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274, 15
(1
), pp. 234
–243
.119.
Roberts
, J. B.
, 1986, “First-Passage Probabilities for Randomly Excited Systems: Diffusion Methods
,” Probab. Eng. Mech.
0266-8920, 1
, pp. 66
–81
.120.
Cai
, G. Q.
, and Lin
, Y. K.
, 1994, “On Statistics of First-Passage Failure
,” ASME J. Appl. Mech.
0021-8936, 61
(1
), pp. 93
–99
.121.
Gan
, C. B.
, and Zhu
, W. Q.
, 2001, “First-Passage Failure of Quasi-Non-Integrable-Hamiltonian Systems
,” Int. J. Non-Linear Mech.
0020-7462, 36
, pp. 209
–220
.122.
Zhu
, W. Q.
, Deng
, M. L.
, and Huang
, Z. L.
, 2002, “First-Passage Failure of Quasi-Integrable Hamiltonian Systems
,” ASME J. Appl. Mech.
0021-8936, 69
, pp. 274
–282
.123.
Zhu
, W. Q.
, Huang
, Z. L.
, and Deng
, M. L.
, 2003, “First-Passage Failure and its Feedback Minimization of Quasi-Partially Integrable Hamiltonian Systems
,” Int. J. Non-Linear Mech.
0020-7462, 38
, pp. 1133
–1148
.124.
Zhu
, W. Q.
, and Lei
, Y.
, 1989, “First Passage Time for State Transition of Randomly Excited Systems
,” Proc. of 47th Session of Int. Statistical Inst. Vol. LIII
(Invited papers), Book3, pp. 517
–531
.125.
Zhu
, W. Q.
, and Wu
, Y. J.
, 2003, “First-Passage Time of Duffing Oscillator Under Combined Harmonic and White-Noise Excitations
,” Nonlinear Dyn.
0924-090X, 32
, pp. 291
–305
.126.
Housner
, G. W.
, et al., 1997, “Structural Control: Past, Present and Future
,” J. Eng. Mech.
0733-9399, 123
, pp. 897
–971
.127.
Yoshida
, K.
, 1984, “A Method of Optimal Control of Nonlinear Stochastic Systems With Nonquadratic Criteria
,” Int. J. Control
0020-7179, 39
(2
), pp. 279
–291
.128.
Chang
, R. J.
, 1991, “Optimal Linear Feedback Control for a Class of Nonlinear Nonquadratic Non-Gaussian Problem
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 113
(4
), 569
–574
.129.
Liberzon
, D.
, and Brockett
, R. W.
, 2000, “Nonlinear Feedback Systems Perturbed by Noise: Steady-State Probability Distribution and Optimal Control
,” IEEE Autom. Contr.
, 45
(6
), pp. 1116
–1130
.130.
Bratus
, A.
, et al., 2000, “Hybrid Solution Method for Dynamic Programming Equations for MDOF Stochastic Systems
,” Dyn. Control
0925-4668, 10
(1
), pp. 107
–116
.131.
Crespo
, L. G.
, and Sun
, J. Q.
, 2003, “Nolinear Stochastic Control via Stationary Response Design
,” Probab. Eng. Mech.
0266-8920, 18
, pp. 79
–86
.132.
Kushner
, H. J.
, 1990, “Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems
, Birkhauser
, Boston
.133.
Kushner
, H. J.
, and Rungguldier
, W. J.
, 1987, “Nearly Optimal State Feedback Control for Stochastic Systems With Wide-Band Noise Disturbances
,” SIAM J. Control Optim.
0363-0129, 25
, pp. 298
–315
.134.
Zhu
, W. Q.
, and Ying
, Z. G.
, 1999, “Optimal Nonlinear Feedback Control of Quasi-Hamiltonian Systems
,” Sci. China, Ser. A: Math., Phys., Astron.
1006-9283, 42
, pp. 1213
–1219
.135.
Zhu
, W. Q.
, Ying
, Z. G.
, and Soong
, T. T.
, 2001, “An Optimal Nonlinear Feedback Control Strategy for Randomly Excited Structural Systems
,” Nonlinear Dyn.
0924-090X, 24
, pp. 31
–51
.136.
Zhu
, W. Q.
, and Deng
, M. L.
, 2004, “Optimal Bounded Control for Minimizing the Response of Quasi Nonintegrable Hamiltonian Systems
,” Nonlinear Dyn.
0924-090X, 35
, pp. 81
–100
.137.
Zhu
, W. Q.
, and Deng
, M. L.
, 2004, “Optimal Bounded Control for Minimizing the Response of Quasi Integrable Hamiltonian Systems
,” Int. J. Non-Linear Mech.
0020-7462, 39
, pp. 1535
–1546
.138.
Zhu
, W. Q.
, and Wu
, Y. J.
, 2005, “Optimal Bounded Control of Strongly Nonlinear Oscillator Under Combined Harmonic and White-Noise Excitations
,” Probab. Eng. Mech.
0266-8920, 20
(1
), pp. 1
–9
.139.
Zhu
, W. Q.
, Ying
, Z. G.
, Ni
, Y. Q.
, and KOJM
, 2000, “Optimal Nonlinear Stochastic Control of Hysteretic Structures
,” J. Eng. Mech.
0733-9399, 126
, pp. 1027
–1032
.140.
Wonham
, W. M.
, 1968, “On the Separation Theorem of Stochastic Control
,” SIAM J. Control
0036-1402, 6
, pp. 312
–326
.141.
Bensoussan
, A.
, 1992, Stochastic Control of Partially Observable Systems
, Cambridge University Press
, Cambridge, UK
.142.
Zhu
, W. Q.
, and Ying
, Z. G.
, 2002, “Nonlinear Stochastic Optimal Control of Partially Observable Linear Structures
,” Eng. Struct.
0141-0296, 24
, pp. 333
–342
.143.
Zhu
, W. Q.
, Luo
, M.
, and Ying
, Z. G.
, 2004, “Nonlinear Stochastic Optimal Control of Tall Buildings Under Wind Loading
,” Eng. Struct.
0141-0296, 26
, pp. 1561
–1572
.144.
Charalambous
, C. D.
, and Elliott
, R. J.
, 1998, “Classes of Nonlinear Partially Observable Stochastic Optimal Control Problems With Explicit Optimal Control Law
,” SIAM J. Control Optim.
0363-0129, 36
, pp. 542
–578
.145.
Zhu
, W. Q.
, and Ying
, Z. G.
, 2004, “On Stochastic Optimal Control of Partially Observable Nonlinear Quasi Hamiltonian Systems
,” J. Zhejiang Univ. Sci.
, 5
(11
), pp. 1313
–1317
.146.
Jansen
, L. M.
, and Dyke
, S. J.
, 2000, “Semi-Active Control Strategy for MR Dampers: Comparative Study
,” J. Eng. Mech.
0733-9399, 126
, pp. 795
–803
.147.
Ying
, Z. G.
, Zhu
, W. Q.
, and Soong
, T. T.
, 2003, “A Stochastic Optimal Semi-Active Control Strategy for ER/MR Dampers
,” J. Sound Vib.
0022-460X, 259
, pp. 45
–62
.148.
Dong
, L.
, Ying
, Z. G.
, and Zhu
, W. Q.
, 2004, “Stochastic Optimal Semi-Active Control of Nonlinear Systems Using MR Damper
,” Adv. Struct. Eng.
1369-2768, 7
, pp. 485
–494
.149.
Zhu
, W. Q.
, Luo
, M.
, and Dong
, L.
, 2004, “Semi-Active Control of Wind Excited Building Structures Using MR/ER Dampers
,” Probab. Eng. Mech.
0266-8920, 19
, pp. 279
–285
.150.
Florchinger
, P.
, 1997, “Feedback Stabilization of Affine in the Control Stochastic Differential Systems by the Control Lyapunov Function Method
,” SIAM J. Control Optim.
0363-0129, 35
, pp. 500
–511
.151.
Zhu
, W. Q.
, 2004, “Feedback Stabilization of Quasi Nonintegrable Hamiltonian Systems by Using Lyapunov Exponent
,” Nonlinear Dyn.
0924-090X, 36
, pp. 455
–470
.152.
Zhu
, W. Q.
, and Huang
, Z. L.
, 2003, “Feedback Stabilization of Quasi-Integrable Hamiltonian Systems
,” ASME J. Appl. Mech.
0021-8936, 70
, pp. 129
–136
.153.
Zhu
, W. Q.
, and Huang
, Z. L.
, 2003, “Stochastic Stabilization of Quasi Partially Integrable Hamiltonian Systems by Using Lyapunov Exponent
,” Nonlinear Dyn.
0924-090X, 33
, pp. 209
–224
.154.
Zhu
, W. Q.
, Huang
, Z. L.
, Ko
, J. M.
, and Ni
, Y. Q.
, 2004, “Optimal Feedback Control of Strongly Nonlinear Oscillator Excited by Bounded Noise
,” J. Sound Vib.
0022-460X, 274
, pp. 701
–724
.155.
Zhu
, W. Q.
, and Huang
, Z. L.
, 2004, “Stochastic Stabilization of Quasi Noniintegrable Hamiltonian Systems
,” Int. J. Non-Linear Mech.
0020-7462, 39
, pp. 879
–895
.156.
Zhu
, W. Q.
, Huang
, Z. L.
, and Deng
, M. L.
, 2002, “Feedback Minimization of First-Passage Failure of Quasi Nonintegrable Hamiltonian Systems
,” Int. J. Non-Linear Mech.
0020-7462, 37
, pp. 1057
–1071
.157.
Zhu
, W. Q.
, and Wu
, Y. J.
, 2004, “Optimal Bounded Control of First-Passage Failure of Strongly Nonlinear Oscillators Under Combined Harmonic and White Noise Excitations
,” J. Sound Vib.
0022-460X, 271
(1
), pp. 83
–101
.158.
Cheng
, M.
, Zhu
, W. Q.
, and Ying
, Z. G.
, 2006, “Stochastic Optimal Semi-Active Control of Hysteretic Systems by Using a Magnetorheological Damper
,” Smart Mater. Struct.
0964-1726, 15
, pp. 711
–718
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.