This review begins with the description of a new challenge in solid mechanics: multiphysics and multiscale coupling, and its current situations. By taking spallation as an example, it is illustrated that the fundamental difficulty in these multiscale nonequilibrium problems is due to the hierarchy and evolution of microstructures with various physics and rates at various length levels in solids. Then, some distinctive thoughts to pinpoint the obstacles and outcome are outlined. Section 3 highlights some paradigms of statistical averaging and new thoughts to deal with the problems involving multiple space and time scales, in particular the nonequilibrium damage evolution to macroscopic failure. In Sec. 4, several frameworks of mesomechanics linking multiple space and time scales, like dislocation theory, physical mesomechanics, Weibull theory, and stochastic theory, are briefly reviewed and the mechanisms underlying the trans-scale coupling are elucidated. Then we turn to the frameworks mainly concerning damage evolution in Sec. 5, namely, statistical microdamage mechanics and its trans-scale approximation. Based on various trans-scale frameworks, some possible mechanisms governing the trans-scale coupling are reviewed and compared in Sec. 6. Since the insight into the very catastrophic transition at failure is closely related to strong trans-scale coupling, some new concepts on nonequilibrium and strong interaction are discussed in Sec. 7. Finally, this review is concluded with a short summary and some suggestions. “This review article cites 130 references.”

1.
Tsien
,
S. H.
, 1962,
Physical Mechanics
,
Science Press
, Beijing (in Chinese).
2.
Marder
,
M.
, and
Fineberg
,
J.
, 1996, “
How Things Break
,”
Phys. Today
0031-9228,
49
(
9
), pp.
24
29
.
3.
Bazant
,
Z. P.
, and
Chen
,
E. P.
, 1997, “
Scaling of Structural Failure
,”
Appl. Mech. Rev.
0003-6900,
50
(
10
), pp.
593
627
.
4.
Becker
,
K. C.
,
Byington
,
C. S.
,
Forbes
,
N. A.
, and
Nickerson
,
G. W.
, 1998, “
Predicting and Preventing Machine Failures
,”
Ind. Phys.
1082-1848,
4
(
4
), pp.
20
23
.
5.
Miller
,
K. J.
, 1999, “
A Historical Perspective of the Important Parameters of Metal Fatigue and Problems for the Next Century
,”
Fatigue 99 Proc. 7th Int. Fatigue Congress
,
X. R.
Wu
and
Z. G.
Wang
, eds.,
Higher Education Press
,
Beijing
, pp.
15
40
.
6.
Glimm
,
J.
, and
Sharp
,
D. H.
, 1997, “
Multiscale Science: A Challenge for the Twenty-First Century
,”
SIAM News
,
30
(
8
), pp.
1
7
.
7.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. Phys. Soc., London, Sect. A
0370-1298,
A241
(
1226
), pp.
376
396
.
8.
Mura
,
T.
, 1982,
Micromechanics of Defects in Solids
,
Martinus Nijhoff Publishers
, The Hague.
9.
Budiansky
,
B.
, 1983, “
Micromechanics
,”
Advances and Trends in Structural and Solid Mechanics
,
A. K.
Noor
and
J. M.
Housner
, eds.,
Pergamon Press
, Oxford, pp.
3
12
.
10.
Kachanov
,
L. M.
, 1986,
Introduction to Continuum Damage Mechanics
,
Matinus Nijhoff
, Dordrecht.
11.
Lemaitre
,
J.
, 1992,
A Course on Damage Mechanics
,
Springer-Verlag
, Heidenberg.
12.
Chaboche
,
J. L.
, 1988, “
Continuum Damage Mechanics, I General Concepts
,”
ASME J. Appl. Mech.
0021-8936,
55
(
1
), pp.
59
64
.
13.
Krajcinovic
,
D.
, 1998, “
Selection of Damage Parameter: Art or Science?
,”
Mech. Mater.
0167-6636,
28
(
1–4
), pp.
165
179
.
14.
Haritos
,
G. K.
,
Hager
,
J. W.
,
Amos
,
A. K.
,
Salkind
,
M. J.
, and
Wang
,
A. S. D.
, 1988, “
Mesomechanics: The Microstructure-Mechanics Connection
,”
Int. J. Solids Struct.
0020-7683,
24
(
11
), pp.
1081
1096
.
15.
E
,
Weinan
, and
Engquist
,
B.
, 2003, “
The Heterogeneous Multiscale Methods
,”
Commun. Math. Sci.
1539-6746,
1
(
1
), pp.
87
132
.
16.
Brandt
,
A.
, 2001, “
Multiscale Scientific Computation: Review 2001
,”
Multiscale and Multiresolution Methods: Theory and Applications
,
T. J.
Barth
,
T. F.
Chan
, and
R.
Haimes
, eds.,
Springer Verlag
, Heidelberg.
17.
Li
,
J.
, and
Kwauk
,
M.
, 2003, “
Exploring Complex Systems in Chemical Engineering—The Multi-Scale Methodology
,”
Chem. Eng. Sci.
0009-2509,
58
(
3–6
), pp.
521
535
.
18.
Chong
,
L.
, and
Ray
,
L. B.
, 2002, “
Whole-Istic Biology
,”
Science
0036-8075,
295
(
5560
), p.
1661
.
19.
Bulatov
,
V.
,
Cleri
,
F.
,
Colombo
,
L.
,
Lewis
,
L.
, and
Mousseau
,
N.
, 2001,
MRS Proc. on Advances in Materials Theory and Modeling: Bridging Over Multiple-Length and Time Scales
, Vol.
677
, MRS,
Warrendale
, PA.
20.
Needleman
,
A.
, 2000, “
Computational Mechanics at the Mesoscale
,”
Acta Mater.
1359-6454,
48
(
1
), pp.
105
124
.
21.
Mishnaevsky
,
L. L.
, and
Schmauder
,
S.
, 2001, “
Continuum Mesomechanical Finite Element Modeling in Material Development: A State of-the-art Review
,”
Appl. Mech. Rev.
0003-6900,
54
(
1
), pp.
49
67
.
22.
Cui
,
J. Z.
, and
Yang
,
H. Y.
, 1996, “
A Dual Coupled Method of Boundary Value Problems of PDE With Coefficients of Small Period
,”
Int. J. Comput. Math.
0020-7160,
14
(
2
), pp.
159
174
.
23.
Cui
,
J. Z.
,
Shin
,
T. M.
, and
Wang
,
Y. L.
, 1999, “
The Two-Scale Analysis Method for Bodies With Small Periodic Configurations
,”
Struct. Eng. Mech.
1225-4568,
l7
(
6
), pp.
601
614
.
24.
Cuitino
,
A. M.
,
Stainier
,
L.
,
Wang
,
G.
,
Strachan
,
A.
,
Cagin
,
T.
,
Goodard
,
W. A.
, III
, and
Ortiz
,
M.
, 2001, “
A Multiscale Approach for Modeling Crystalline Solids
,”
J. Comput.-Aided Mater. Des.
0928-1045,
8
(
2–3
), pp.
127
149
.
25.
Curtin
,
W. A.
, 1999, “
Stochastic Damage Evolution and Failure in Fiber-Reinforced Composites
,”
Adv. Appl. Mech.
0065-2156,
36
, pp.
164
248
.
26.
Curtin
,
W. A.
, and
Scher
,
H.
, 1997, “
Time-Dependent Damage Evolution and Failure in Materials I Theory
,”
Phys. Rev. B
0163-1829,
55
(
18
), pp.
12038
12050
.
27.
Herrmann
,
H. J.
, and
Roux
,
S.
, 1990,
Statistical Models for the Fracture of Disordered Media
,
North-Holland
, Amsterdam.
28.
Meakin
,
P.
, 1991, “
Models for Material Failure and Deformation
,”
Science
0036-8075,
252
(
5003
), pp.
226
234
.
29.
Liang
,
N. G.
,
Liu
,
H. Q.
, and
Xu
,
H. Q.
, 1997, “
A Multi-Scale Network Model and Parameter Optimization of Discontinuous Fiber Reinforced Composites
,”
Macro-Micro/Meso Mechanical Properties of Materials
,
M.
Tokuda
and
B. Y.
Xu
, eds.,
Mie Academic Press
, pp.
269
275
.
30.
Hansen
,
A.
,
Hinrichsen
,
E. L.
, and
Roux
,
S.
, 1991, “
Roughness of Crack Interfaces
,”
Phys. Rev. Lett.
0031-9007,
66
(
19
), pp.
2476
2479
.
31.
Schmittbuhl
,
J.
,
Hansen
,
A.
, and
Batrouni
,
G. G.
, 2003, “
Roughness of Interfacial Crack Fronts: Stress-Weighted Percolation in the Damage Zone
,”
Phys. Rev. Lett.
0031-9007,
90
(
4
), pp.
045505
.
32.
Hansen
,
A.
, and
Schmittbuhl
,
J.
, 2003, “
Original of the Universal Roughness Exponent of Brittle Fracture Surfaces: Stress-Weighted Percolation in the Damage Zone
,”
Phys. Rev. Lett.
0031-9007,
90
(
4
), pp.
045504
.
33.
Panin
,
V. E.
, 1998, “
Foundation of Physical Mesomechanics
,”
Phys. Mesomechanics
,
1
(
1
), pp.
5
20
.
34.
SIAM Journal on Multiscale Modeling and Simulation.
35.
Sih
,
G. C.
, 2000,
Mesomechanics 2000 Role of Mechanics for Development of Science and Technology
,
G. C.
Sih
, ed.,
Tsinghua University Press
, Beijing, China.
36.
Pyrz
,
R.
,
Schjødt-Thomsen
,
J.
,
Rauhe
,
J. C.
,
Thomsen
,
T.
, and
Jensen
,
L. R.
, 2002,
New Challenges in Mesomechanics 2002
,
R.
Pyrz
,
J.
Schjødt-Thomsen
,
J. C.
Rauhe
,
T.
Thomsen
, and
L. R.
Jensen
, eds.,
Aalborg University
, Denmark.
37.
Sih
,
G. C.
, and
Spyropoulos
,
C. P.
, 2002,
Inter. Symp. of Multiscaling in Mechanics
,
G. C.
Sih
and
C. P.
Spyropoulos
, eds.,
National Technical University of Athens Press
, Athens.
38.
Tuler
,
F. R.
, and
Butcher
,
B. M.
, 1968, “
A Criterion for the Time Dependence of Dynamic Fracture
,”
Int. J. Fract. Mech.
0020-7268,
4
(
4
), pp.
431
437
.
39.
Shen
,
L. T.
,
Zhao
,
S. D.
,
Bai
,
Y. L.
, and
Luo
,
L. M.
, 1992, “
Experimental Study on the Criteria and Mechanism of Spallation in an Al Alloy
,”
Int. J. Impact Eng.
0734-743X,
12
(
1
), pp.
9
19
.
40.
Zhu
,
Z. X.
, 1985, private communication.
41.
Dremin
,
A. N.
,
Molodets
,
A. M.
,
Melkumov
,
A. I.
, and
Kolesmikov
,
A. V.
, 1992, “
On Anomalous of Steel Spall Strength and its Relationship to Martinsitic Transformation
,”
Shock Wave and High Strain Rate Phenomena in Materials
,
M. A.
Meyers
,
L. E.
Murr
, and
K. P.
Staudhammer
, eds.,
Dekker
, New York, pp.
751
757
.
42.
Kanel
,
G. I.
,
Rasorenov
,
S. V.
, and
Fortov
,
V. E.
, 1992, “
The Dynamic Strength of Copper Single Crystals
,”
Shock Wave and High Strain Rate Phenomena in Materials
,
M. A.
Meyers
,
L. E.
Murr
, and
K. P.
Staudhammer
, eds.,
Dekker
, New York, pp.
775
782
.
43.
Kanel
,
G. I.
,
Rasorenov
,
S. V.
, and
Utkin
,
A. V.
, 1995, “
Spallation in Solids Under Shock-Wave Loading: Analysis of Dynamic Flow, Methodology of Measurements, and Constitutive Factors
,”
High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation
,
L.
Davison
,
D. E.
Grady
, and
M.
Shahinpoor
, eds.,
Springer-Verlag
, New York, pp.
1
24
.
44.
Davison
,
L.
, and
Stevens
,
A. L.
, 1972, “
Continuum Measures of Spall Damage
,”
J. Appl. Phys.
0021-8979,
43
(
3
), pp.
988
994
.
45.
Davison
,
L.
, and
Stevens
,
A. L.
, 1973, “
Thermomechanical Constitution of Spalling Elastic Bodies
,”
J. Appl. Phys.
0021-8979,
44
(
2
), pp.
668
674
.
46.
Meyers
,
M. A.
, 1994,
Dynamic Behaviour of Materials
,
Wiley
, New York.
47.
Grady
,
D. E.
, and
Kipp
,
M. E.
, 1993, “
Dynamic Fracture and Fragmentation
,”
High-Pressure Shock Compression of Solids
,
J. R.
Asay
and
M.
Shahinpoor
, eds.,
Springer-Verlag
, New York, pp.
265
332
.
48.
Grady
,
D. E.
, 1988, “
The Spall Strength of Condensed Matter
,”
J. Mech. Phys. Solids
0022-5096,
36
(
3
), pp.
353
384
.
49.
Clifton
,
R. J.
, 2000, “
Response of Materials Under Dynamic Loading
,”
Int. J. Solids Struct.
0020-7683,
37
(
1–2
), pp.
105
113
.
50.
Voyiadjis
,
G. Z.
,
Palazotto
,
A. N.
, and
Gao
,
X. L.
, 2002, “
Modeling of Metallic Materials at High Strain Rates With Continuum Damage Mechanics
,”
Appl. Mech. Rev.
0003-6900,
55
(
5
), pp.
481
493
.
51.
Hayhurst
,
D. R.
,
Dimmer
,
P. R.
, and
Morrison
,
C. J.
, 1984, “
Development of Continuum Damage in the Creep Rupture of Notched Bars
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
A311
(
1516
), pp.
103
129
.
52.
Field
,
J. E.
,
Swallowe
,
G. M.
, and
Heavens
,
S. N.
, 1982, “
Ignition Mechanisms of Explosives During Mechanical Deformation
,”
Proc. R. Soc. London, Ser. A
1364-5021,
A382
(
1782
), pp.
231
244
.
53.
Hansen
,
A.
,
Hinrichsen
,
E. L.
, and
Roux
,
S.
, 1991, “
Scale-Invariant Disorder in Fracture and Related Breakdown Phenomena
,”
Phys. Rev. B
0163-1829,
43
(
1B
), pp.
665
678
.
54.
Bochenek
,
B.
, and
Pyrz
,
R.
, 2002, “
Reconstruction Methodology for Planar and Spatial Random Microstructure
,”
New Challenges in Mesomechanics 2002
,
R.
Pyrz
,
J.
Schjødt-Thomsen
,
J. C.
Rauhe
,
T.
Thomsen
, and
L. R.
Jensen
, eds.,
Det Obelske familiefond
, Denmark.
55.
Reichl
,
L. E.
, 1980,
A Modern Course in Statistical Physics
,
University of Texas Press
, Austin.
56.
McDowell
,
D. L.
, 1997, “
Applications of Continuum Damage Mechanics to Fatigue and Fracture
,” STP 1315, pp.
1
3
.
57.
Horie
,
Y.
,
Davison
,
L.
, and
Thadhani
,
N. N.
, 2002,
High-Pressure Shock Compression of Solids VI
,
Springer
, New York.
58.
Sih
,
G. C.
, 2002, “
Preface
,”
Int Symp of Multiscaling in Mechanics
G. C.
Sih
and
C. P.
Spyropoulos
, eds.,
National Technical University of Athens Press
, Athens.
59.
Pantelides
,
S. T.
, 1992, “
What is Materials Physics, Anyway?
,”
Phys. Today
0031-9228,
45
(
9
), pp.
67
69
.
60.
Zhao
,
K. H.
, 1991,
Qualitative and Quasi-Quantitative Physics
,
High Education Press
, Beijing (in Chinese).
61.
Wang
,
Z. X.
, 1965,
Introduction to Statistical Physics
,
High Education Press
, Beijing (in Chinese).
62.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1958,
Statistical Physics
, translated by E. Peierls and R. F. Peierls,
Pergamon Press
, London.
63.
Jiang
,
D. Q.
,
Qian
,
M.
, and
Qian
,
M. P.
, 2004,
Mathematical Theory of Non-equilibrium Steady State
,
Springer
, Berlin.
64.
Kadanoff
,
L. P.
, 2000,
Statistical Physics (Statics, Dynamics and Renormalization)
,
World Scientific
, Singapore.
65.
Grüneisen
,
E.
, 1926,
Handbuch der Physik
,
Springer
, Berlin (in German).
66.
Aidun
,
J. B.
,
Lo
,
D. C. S.
,
Trucano
,
T. G.
, and
Fye
,
R. M.
, 1999, “
Representative Volume Size: A Comparison of Statistical Continuum Mechanics and Statistical Physics
,” SAND99-1176.
67.
Xia
,
M. F.
,
Song
,
Z. Q.
,
Xu
,
J. B.
,
Zhao
,
K. H.
, and
Bai
,
Y. L.
, 1996, “
Sample-Specific Behavior in Failure Models of Disordered Media
,”
Commun. Theor. Phys.
0253-6102,
25
(
1
), pp.
49
54
.
68.
Arcangelis
,
L. D.
, 1989, “
Scaling Behavior in Fracture Models
,”
Phys. Scr., T
0281-1847,
T29
, pp.
234
238
.
69.
He
,
G. W.
,
Xia
,
M. F.
,
Ke
,
F. J.
, and
Bai
,
Y. L.
, 2004, “
Multiscale Coupling: Challenges and Opportunities
,”
Progress in Natural Sciences
,
14
, pp.
463
466
.
70.
Wang
,
H. Y.
,
He
,
G. W.
,
Xia
,
M. F.
,
Ke
,
F. J.
, and
Bai
,
Y. L.
, 2004, “
Multi-Scale Coupling in Complex Mechanical Systems
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
1677
1686
.
71.
Bai
,
Y. L.
,
Xia
,
M. F.
,
Wei
,
Y. J.
, and
Ke
,
F. J.
, 2002, “
Non-Equilibrium Evolution of Collective Microdamage and its Coupling With Mesoscopic Heterogeneities and Stress Fluctuations
,”
High-Pressure Shock Compression of Solids VI
,
Y.
Horie
,
L.
Davison
,
N. N.
Thadhani
, eds.,
Springer
, NY, pp.
255
278
.
72.
Barenblatt
,
G. I.
, 1992, “
Micromechanics of Fracture
,”
Theoretical and Applied Mechanics
,
S. R.
Bodner
,
J.
Singer
,
A.
Solan
, and
J.
Hashin
, eds.,
Elesevier Science
, Amsterdam, pp.
25
52
.
73.
Orowen
,
E.
, 1934, “
Zur kristallplastizität
,”
Z. Phys.
0044-3328,
89
, pp.
605
659
, (in German).
74.
Taylor
,
G.
, 1934, “
Mechanism of Plastic Deformation of Crystals, Part I: Theoretical
,”
Proc. R. Soc. London, Ser. A
0950-1207,
A145
(
855
), pp.
362
387
.
75.
Polyani
,
M.
, 1934, “
Über Eine Art Gitterströrung, die Einen Kristall Plastisch Machen Könnte
,”
Z. Phys.
0044-3328,
89
, pp.
660
664
, (in German).
76.
Kroener
,
E.
, 1958, “
Kontinuumstheorie der Versetzungen und Eigenspannungen
,”
Handbook of Physics
,
Springer
, Berlin.
77.
Kroener
,
E.
, 1962, “
Dislocation and Continuum Mechanics
,”
Appl. Mech. Rev.
0003-6900,
15
(
8
), pp.
599
606
.
78.
Nix
,
W. D.
, and
Gao
,
H.
, 1998, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradeinr Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
46
(
3
), pp.
411
425
.
79.
Dai
,
L. H.
,
Ling
,
Z.
, and
Bai
,
Y. L.
, 1999, “
A Strain Gradient-Strengthening Law for Particle Reinforced Metal Matrix Omposites
,”
Scr. Mater.
1359-6462,
41
(
3
), pp.
245
251
.
80.
Sih
,
G. C.
, 2000, “
Micromechanics Associated With Thermal/Mechanical Interaction for Polycrystals
,”
Mesomechanics 2000
,
G. C.
Sih
, ed.,
Tsinghua University Press
, Beijing, pp.
1
18
.
81.
Panin
,
V. E.
, 1998, “
Overview on Mesomechanics of Plastic Deformation and Fracture of Solids
,”
Theor. Appl. Fract. Mech.
0167-8442,
30
(
1
), pp.
1
11
.
82.
Golebiewska-Lasota
,
A. A.
, 1979, “
Dislocation and Gauge Invariance
,”
Int. J. Eng. Sci.
0020-7225,
17
(
3
), pp.
329
333
.
83.
Golebiewska-Lasota
,
A. A.
, and
Edelen
,
D. G. B.
, 1979, “
On the Gauge Transformations Admitted by the Equations of Defect Dynamics
,”
Int. J. Eng. Sci.
0020-7225,
17
(
3
), pp.
335
339
.
84.
Kadic
,
A.
, and
Edelen
,
D. G. B.
, 1983, “
A Gauge Theory of Dislocation and Disclinations
,”
Lecture Notes in Physics
,
Springer-Verlag
, Heidelberg.
85.
Duan
,
Z. P.
,
Huang
,
Y. L.
, and
Wang
,
W. B.
, 1989, “
Gauge Field Theory of Defects
,”
Adv. Mech.
0137-3722,
19
(
2
), pp.
172
194
(in Chinese).
86.
Weibull
,
W.
, 1951, “
A Statistixcal Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
0021-8936,
18
(
3
), pp.
293
297
.
87.
Coleman
,
B. D.
, 1958, “
On the Strength of Classical Fibers and Fiber Bundles
,”
J. Mech. Phys. Solids
0022-5096,
7
(
1
), pp.
60
70
.
88.
Daniel
,
H. E.
, 1945, “
The Statistical Theory of the Strength of Bundles
,”
Proc. R. Soc. London, Ser. A
1364-5021,
A183
(
995
), pp.
405
435
.
89.
Harlow
,
D. G.
, and
Phoenix
,
S. L.
, 1978, “
The Chain-of-Bundles Probability Model for the Strength of Fiberous Materials, I: Analysis and Conjectures
,”
J. Compos. Mater.
0021-9983,
12
(
2
), pp.
195
214
.
90.
Du
,
S. Y.
, and
Wang
,
B.
, 1998,
Mesomechanics of Composite Materials
,
Science Press
, Beijing, (in Chinese).
91.
Krajinovic
,
D.
, 1996,
Damage Mechanics
,
Elsevier Science B.V.
, Amstredam.
92.
Xia
,
M. F.
,
Zhang
,
X. H.
,
Xu
,
X. H.
,
Ke
,
F. J.
, and
Bai
,
Y. L.
, 2002, “
Catastrophe Transition and Critical Sensitivity in Brittle Media With Mesoscopic Heterogeneity
,”
Int Symp. of Multiscaling in Mechanics
,
G. C.
Sih
and
C. P.
Spyropoulos
, eds.,
National Technical University of Athens Press
, Athens, pp.
96
101
.
93.
Curran
,
D. R.
,
Seaman
,
L.
, and
Shockey
,
D. A.
, 1987, “
Dynamic Failure of Solids
,”
Phys. Rep.
0370-1573,
147
(
5–6
), pp.
253
388
.
94.
Cock
,
A. C. F.
, and
Ashby
,
M. F.
, 1982, “
On Creep Fracture by Void Growth
,”
Prog. Mater. Sci.
0079-6425,
27
(
3–4
), pp.
189
244
.
95.
McClintock
,
F. A.
, 1974, “
Statistics of Brittle Fracture
,”
Fracture Mechanics of Ceramics
,
R. C.
Bradt
, ed.,
Plenum Press
, New York, pp.
93
114
.
96.
Xing
,
X. S.
, 1966, “
Statistical Theory of Brittle Fracture
,”
Acta Phys. Sin.
1000-3290,
22
(
4
), pp.
487
493
(in Chinese).
97.
Xing
,
X. S.
, 1986, “
The Microscopic Mechanism and Non-Equilibrium Statistical Nature of Brittle Fracture
,”
Adv. Mech.
0137-3722,
16
(
4
), pp.
495
510
(in Chinese).
98.
Bai
,
Y. L.
,
Ke
,
F. J.
, and
Xia
,
M. F.
, 1991, “
Formulation of Statistical Evolution of Microcracks in Solids
,”
Acta Mech. Sin.
0459-1879,
7
(
1
), pp.
59
66
.
99.
Xia
,
M. F.
,
Han
,
W. S.
,
Ke
,
F. J.
, and
Bai
,
Y. L.
, 1995, “
Statistical Meso-Scopic Damage Mechanics and Damage Evolution Induced Catastrophe
,”
Adv. Mech.
0137-3722,
25
(
1
), pp.
1
40
, 145–173 (in Chinese).
100.
Bai
,
Y. L.
,
Ling
,
Z.
,
Luo
,
L. M.
, and
Ke
,
F. J.
, 1992, “
Initial Development of Microdamage Under Impact Loading
,”
ASME J. Appl. Mech.
0021-8936,
59
(
3
), pp.
622
627
.
101.
Han
,
W. S.
,
Xia
,
M. F.
,
Shen
,
L. T.
, and
Bai
,
Y. L.
, 1997, “
Statistical Formulation and Experimental Determination of Growth Rate of Micrometre Cracks Under Impact Loading
,”
Int. J. Solids Struct.
0020-7683,
34
(
22
), pp.
2905
2925
.
102.
Ke
,
F. J.
,
Bai
,
Y. L.
, and
Xia
,
M. F.
, 1990, “
Evolution of Ideal Micro-Crack System
,”
Sci. China, Ser. A: Math., Phys., Astron. Technol. Sci.
1001-6511,
33
(
12
), pp.
1447
1459
.
103.
Han
,
W. S.
, and
Bai
,
Y. L.
, 1995, “
Embryo-Damage Induced Nucleation of Microcracks in an Aluminium Alloy Under Impact Loading
,”
Acta Metall. Mater.
0956-7151,
43
(
6
), pp.
2157
2162
.
104.
Xia
,
M. F.
,
Ke
,
F. J.
,
Lu
,
Y. H.
, and
Bai
,
Y. L.
, 1991, “
Effect of Stochastic Extension in Ideal Microcrack System
,”
Sci. China, Ser. A: Math., Phys., Astron. Technol. Sci.
1001-6511,
34
(
5
), pp.
579
589
.
105.
Li
,
H. L.
, and
Huang
,
Z. P.
, 1996, “
Effect of Evolution Rate-Sensitivity on Statistical Evolution of Microvoids
,”
Sci. China, Ser. A: Math., Phys., Astron.
1006-9283,
39
(
12
), pp.
1332
1339
.
106.
Li
,
Q.
,
He
,
Z. R.
, and
Song
,
M. S.
, 1996, “
Nonequilibrium Statistical Theory of Damage and Fracture for Glassy Polymers, 1: The Statistical Distribution and Evolution of Microcracks in Glassy Polymers
,”
Macromol. Theory Simul.
1022-1344,
5
(
2
), pp.
183
197
.
107.
Hong
,
Y. S.
,
Lu
,
Y. H.
,
Fang
,
B.
, and
Bai
,
Y. L.
, 1997, “
Collective Evolution Characteristics and Computer Simulation of Short Fatigue Cracks
,”
Philos. Mag. A
0141-8610,
75
(
6
), pp.
1517
1531
.
108.
Van Papenfuss
,
P. C.
, and
Muschik
,
W.
, 2003, “
Mesoscopic Theory of Microcracks
,”
Arch. Mech.
0373-2029,
55
(
5–6
), pp.
481
499
.
109.
Papenfuss
,
C.
,
Van
,
P.
, and
Muschik
,
W.
, 2000, “
Mesoscopic Dynamics of Microcracks
,”
Phys. Rev. E
1063-651X,
62
(
5
), pp.
6206
6215
.
110.
Papenfuss
,
C.
,
Van
,
P.
, and
Muschik
,
W.
, 2002, “
Griffith Cracks in the Mesoscopic Microcrack Theory
,” published online, Condensed Matter, abstract, cond-mat/0211207.
111.
Lemanska
,
M.
,
Englman
,
R.
, and
Jaeger
,
Z.
, 1997, “
Transport Treatment of Crack Population in Finite Medium
,”
Int. J. Impact Eng.
0734-743X,
19
(
3
), pp.
257
272
.
112.
Kiselev
,
S. P.
, and
Kiselev
,
V. P.
, 2002, “
Superdeep Penetration of Particles into a Metal Target
,”
Int. J. Impact Eng.
0734-743X,
27
(
2
), pp.
135
152
.
113.
Bai
,
Y. L.
,
Bai
,
J.
,
Li
,
H. L.
,
Ke
,
F. J.
, and
Xia
,
M. F.
, 2000, “
Damage Evolution, Localization and Failure of Solids Subjected to Impact Loading
,”
Int. J. Impact Eng.
0734-743X,
24
(
6–7
), pp.
685
701
.
114.
Bai
,
Y. L.
,
Xia
,
M. F.
,
Ke
,
F. J.
, and
Li
,
H. L.
, 2002, “
Closed Trans-Scale Statistical Microdamage Mechanics
,”
Acta Mech. Sin.
0459-1879,
18
(
1
), pp.
1
17
.
115.
Wang
,
H. Y.
,
Bai
,
Y. L.
, and
Wei
,
Y. J.
, 2002 “
Analysis of Spallation Based on Trans-Scale Formulation of Damage Evolution
,”
Proc. of 2nd Int. Conf. on Structural Stability and Dynamics
,
C. M.
Wang
,
G. R.
Liu
, and
K. K.
Ang
, eds.,
World Scientific
, Singapore, pp.
955
964
.
116.
Wang
,
H. Y.
,
Bai
,
Y. L.
,
Xia
,
M. F.
, and
Ke
,
F. J.
, 2004, “
μm- and μs-Damage Evolution, Energy Dissipation and its Trans-Scale Effects on Macroscopic Failure
,”
Mechanics of Materials
(in press).
117.
Bai
,
Y. L.
,
Han
,
W. S.
, and
Bai
,
J.
, 1997, “
A Statistical Evolution Equation of Microdamage and its Application
,” ASTM STP 1315, pp.
150
162
.
118.
Holland
,
J. H.
, 1998,
Emergence: From Chaos to Order
,
Addison-Wesley
, Redwood City, CA.
119.
Economou
,
D. J.
,
Panagopoulos
,
L.
, and
Meyyappan
,
M.
, 1998, “
Examining Scale-up and Computer Simulation in Tool Design for 300-mm Wafer Processing
,”
Microelectronics
0026-2692,
16
(
7
), pp.
101
113
.
120.
Bai
,
Y. L.
, and
Dodd
,
B.
, 1992,
Adiabatic Shear Localization
,
Pergamon Press
, Oxford.
121.
Nicolis
,
G.
, and
Prigogine
,
I.
, 1977, “
Self-Organization in Nonequilibrium Systems
,”
Wiley
, New York.
122.
Bai
,
Y. L.
,
Xia
,
M. F.
,
Wang
,
H. Y.
, and
Ke
,
F. J.
, 2003, “
Characteristic Dimensionless Numbers in Multi-Scale and Rate-Dependent Processes
,”
China Particuology
,
1
(
1
), pp.
7
12
.
123.
Xia
,
M. F.
,
Ke
,
F. J.
,
Wei
,
Y. J.
,
Bai
,
J.
,
Bai
,
Y. L.
, 2000, “
Evolution Induced Catastrophe in a Nonlinear Dynamical Model of Material Failures
,”
Nonlinear Dyn.
0924-090X,
22
(
2
), pp.
203
224
.
124.
Xia
,
M. F.
,
Ke
,
F. J.
,
Bai
,
J.
,
Bai
,
Y. L.
, 1997, “
Threshold Diversity and Trans-Scales Sensitivity in a Nonlinear Evolution Model
,”
Phys. Lett. A
0375-9601,
236
(
1–2
), pp.
60
64
.
125.
Xia
,
M. F.
,
Wei
,
Y. J.
,
Ke
,
F. J.
, and
Bai
,
Y. L.
, 2002, “
Critical Sensitivity and Trans-Scale Fluctuations in Catastrophic Rupture
,”
Pure Appl. Geophys.
0033-4553,
159
(
10
), pp.
2491
2509
.
126.
Sahimi
,
M.
, and
Arbabi
,
S.
, 1993, “
Mechanics of Disordered Solids
,”
Phys. Rev. B
0163-1829,
47
(
2
), pp.
713
722
.
127.
Jaeger
,
J. C.
, and
Cook
,
N. G. W.
, 1979,
Fundamentals of Rock Mechanics
,
Chapman & Hall
, London.
128.
Zhang
,
X. H.
,
Xu
,
X. H.
,
Xia
,
M. F.
,
Ke
,
F. J.
, and
Bai
,
Y. L.
, 2004, “
Critical Sensitivity in Driven Nonlinear Threshold Systems
,”
Pure Appl. Geophys.
0033-4553,
161
(
9–10
), pp.
1931
1944
.
129.
Sornette
,
D.
, 2000,
Critical Phenomena in Natural Sciences
,
Springer-Verlag
, Berlin.
130.
Rundle
,
J. B.
,
Klein
,
W.
,
Turcotte
,
D. L.
, and
Malamud
,
D.
, 2000, “
Precursory Seismic Activation and Critical Point Phenomena
,”
Pure Appl. Geophys.
0033-4553,
157
(
11–12
), pp.
2165
2182
.
You do not currently have access to this content.