Micro air vehicles (MAVs) with a wingspan of 15cm or shorter, and flight speed around 10ms have attracted substantial interest in recent years. There are several prominent features of MAV flight: (i) low Reynolds number (104-105), resulting in degraded aerodynamic performance, (ii) small physical dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and impact tolerance, and (iii) low flight speed, resulting in order one effect of the flight environment and intrinsically unsteady flight characteristics. Flexible wings utilizing membrane materials are employed by natural flyers such as bats and insects. Compared to a rigid wing, a membrane wing can better adapt to the stall and has the potential for morphing to achieve enhanced agility and storage consideration. We will discuss the aerodynamics of both rigid and membrane wings under the MAV flight condition. To understand membrane wing performance, the fluid and structure interaction is of critical importance. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble, and tip vortex, as well as structural dynamics in response to the surrounding flow field are discussed. Based on the computational capabilities for treating moving boundary problems, an automated wing shape optimization technique is also developed. Salient features of the flexible-wing-based MAV, including the vehicle concept, flexible wing design, novel fabrication methods, aerodynamic assessment, and flight data analysis are highlighted.

1.
Shyy
,
W.
,
Berg
,
M.
, and
Ljungqvist
,
D.
, 1999, “
Flapping and Flexible Wings for Biological and Micro Vehicles
,”
Prog. Aerosp. Sci.
0376-0421,
35
, pp.
455
506
.
2.
Grasmeyer
,
J. M.
, and
Keennon
,
M. T.
, 2001, “
Development of the Black Widow Micro Air Vehicle
,” AIAA Paper 2001-0127.
3.
Ifju
,
P.
,
Jenkins
,
D.
,
Ettinger
,
S.
,
Lian
,
Y.
,
Shyy
,
W.
, and
Waszak
,
R. M.
, 2002, “
Flexible-Wing-Based Micro Air Vehicles
,” AIAA Paper 2002-0705. An updated version was presented as Invited paper, Confederation of European Aerospace Societies Aerodynamics Conference, 10–12 June, (2003), London, UK.
4.
Weis-Fogh
,
T.
, 1973, “
Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production
,”
J. Exp. Biol.
0022-0949,
59
, pp.
169
230
.
5.
Lighthill
,
M. J.
, 1969, “
Hydrodynamics of Aquatic Animal Propulsion
,”
Annu. Rev. Fluid Mech.
0066-4189,
1
, pp.
413
445
.
6.
Chasman
,
D.
, and
Chakravarthy
,
S.
, 2001, “
Computational and Experimental Studies of Asymmetric Pitch/Plunge Flapping-The Secret of Biological Flyers
,” AIAA Paper 2001-0859.
7.
DeLaurier
,
J. D.
, 1993, “
An Aerodynamic Model for Flapping Wing Flight
,”
Aeronaut. J.
0001-9240,
97
, pp.
125
130
.
8.
Smith
,
M. J.
, (1996), “
Computational Considerations of an Euler/Navier-Stokes Aeroelastic Method for a Hovering Rotor
,”
J. Aircr.
0021-8669,
33
, pp.
429
434
.
9.
Dickinson
,
M. H.
,
Lehmann
,
F.
, and
Sane
,
S. P.
, 1999, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
0036-8075,
284
, pp.
1954
1960
.
10.
Ellington
,
C. P.
, 1984, “
The Aerodynamics of Hovering Insect Flight, I. The Quasi-Steady Analysis
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
35
, pp.
1
15
.
11.
Jones
,
K. D.
, and
Platzer
,
M. F.
, 1999, “
An Experimental and Numerical Investigation of Flapping-Wing Propulsion
,” AIAA Paper 1999-0995.
12.
Jones
,
K. D.
, and
Platzer
,
M. F.
, 2000, “
Flapping-Wing Propulsion for a Micro Air Vehicle
,” AIAA Paper 2000-0897.
13.
Jones
,
K. D.
, and
Platzer
,
M. F.
, 2003, “
Experimental Investigation of the Aerodynamic Characteristics of Flapping-Wing Micro Air Vehicles
,” AIAA Paper 2003-0418.
14.
Katz
,
J.
, 1979,
Low-Speed Aerodynamics: From Wing Theory to Panel Methods
,
McGraw–Hill
, San Francisco, CA.
15.
Kamakoti
,
R.
,
Berg
,
M.
,
Ljungqvist
,
D.
, and
Shyy
,
W.
, 2000, “
A Computational Study for Biological Flapping Wing Flight
,”
Trans. Aeronaut. Astronaut. Soc. Rep. China
,
32
, pp.
265
279
.
16.
Liu
,
H.
, and
Kawachi
,
K.
, 1998, “
A Numerical Study of Insect Flight
,”
J. Comput. Phys.
0021-9991,
146
, pp.
124
156
.
17.
Vest
,
N. S.
, 1996, “
Unsteady Aerodynamic Model of Flapping Wings
,”
AIAA J.
0001-1452,
34
, pp.
1435
1440
.
18.
Vest
,
M. S.
, and
Katz
,
J.
, 1999, “
Aerodynamic Study of a Flapping Wing Micro-UAV
,” AIAA Paper 1999-0994.
19.
Wang
,
Z. J.
, 2000, “
Vortex Shedding and Frequency Selection in Flapping Flight
,”
J. Fluid Mech.
0022-1120,
410
, pp.
323
341
.
20.
Templin
,
R. J.
, 2000, “
The Spectrum of Animal Flight: Insects to Pterosaurs
,”
Prog. Aerosp. Sci.
0376-0421,
36
, pp.
393
436
.
21.
Ho
,
S.
,
Nassef
,
H.
,
Pornsinsirirark
,
N.
,
Tai
,
Y. C.
, and
Ho
,
C. M.
, 2003, “
Unsteady Aerodynamics and Flow Control for Flapping Wing Flyers
,”
Prog. Aerosp. Sci.
0376-0421,
39
, pp.
635
681
.
22.
Bohorquez
,
F.
,
Rankins
,
F.
,
Baeder
,
J. D.
, and
Pines.
,
D. J.
, 2003, “
Hover Performance of Rotor Blades at Low Reynolds Numbers for Rotary Wing Micro Air Vehicles. An Experimental and CFD Study
,” AIAA Paper 2003-3930, 21st AIAA Applied Aerodynamics Conference, Orlando, FL.
23.
Lighthill
,
M. J.
, 1977, “
Introduction to the Scaling of Aerial Locomotion
,”
Scale Effects in Animal Locomotion
, T. J. Pedley, ed., Academic Press, New York, pp.
365
404
.
24.
Norberg
,
U. M.
, 1990,
Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and Evolution
,
Springer
, New York.
25.
Pennycuick
,
C. J.
, 1992,
Newton Rules Biology
,
Oxford University Press
, New York.
26.
Schmidt-Nielsen
,
K.
, 1984,
Scaling: Why Animal Size So Important?
,
Cambridge University Press
, New York.
27.
Tennekes
,
H.
, 1996,
The Simple Science of Flight (From Insects to Jumbo Jets)
,
MIT Press
, Boston, MA.
28.
Davis
,
W. R.
,
Kosicki
,
B. B.
,
Boroson
,
D. M.
, and
Kostishack
,
D. F.
, 1996, “
Micro Air Vehicles for Optical Surveillance
,”
Lincoln Lab. J.
0896-4130,
9
, pp.
197
214
.
29.
Shyy
,
W.
, and
Smith
,
R.
, 1997, “
A Study of Flexible Airfoil Aerodynamics With Application to Micro Aerial Vehicles
,” AIAA Paper No. 97-1933.
30.
Rayner
,
J. M. V.
, 1988, “
Form and Function in Avian Flight
,” in
Current Ornithology
, edited by
R. F.
Johnston
,
Plenum
, New York, Vol.
5
, pp.
1
66
.
31.
Rayner
,
J. M. V.
, 1979c, “
A New Approach to Animal Flight Mechanics
,”
J. Exp. Biol.
0022-0949,
80
, pp.
17
54
.
32.
Greenewalt
,
C. H.
, 1975, “
The Flight of Birds
,”
Trans. Am. Phil. Soc.
0065-9746,
65
, pp.
1
67
.
33.
Tobalske
,
B. W.
, and
Dial
,
K. P.
, 1996, “
Flight Kinematics of Black-Billed Magpies and Pigeons Over a Wide Range of Speeds
,”
J. Exp. Biol.
0022-0949,
199
, pp.
263
280
.
34.
Lissaman
,
P.B.S.
, 1983, “
Low-Reynolds-Number Airfoils
,”
Annu. Rev. Fluid Mech.
0066-4189,
15
, pp.
223
239
.
35.
Tani
,
I.
, 1964, “
Low-Speed Flows Involving Bubble Separations
,”
Progress in Aeronautical Science
,
D.
Küchemann
and
L. H. G.
Sterne
, eds.,
Pergamon
, New York, Vol.
5
, pp.
70
103
.
36.
Mueller
,
T. J.
, (ed.), 1998,
Proceedings of the Conference on Low Reynolds Number Aerodynamics
, University of Notre Dame,
Notre Dame
, IN.
37.
Mueller
,
T. J.
, (ed.), 2000,
Proceedings of the Conference on Fixed, Flapping and Rotary Wing Vehicles at Very Low Reynolds Numbers
, University of Notre Dame,
Notre Dame
, IN.
38.
Gad-el-Hak
,
M.
, 2001, “
Micro-Air-Vehicles: Can They be Controlled Better?
,”
J. Aircr.
0021-8669,
38
, pp.
419
429
.
39.
Lian
,
Y.
, and
Shyy
,
W.
, 2003, “
Three-Dimensional Fluid-Structure Interactions of a Membrane Wing for Micro Air Vehicle Applications
,” AIAA Paper 2003-1726, also accepted for publication in Journal of Aircraft.
40.
Lian
,
Y.
,
Shyy
,
W.
, and
Haftka
,
R.
, 2003, “
Shape Optimization of a Membrane Wing for Micro Air Vehicles
,” AIAA Paper 2003-0106, also accepted for publication in AIAA Journal.
41.
Anderson
,
J. D.
Jr.
, 1989,
Introduction to Flight
,
3rd ed
,
McGraw-Hill
, New York.
42.
Mueller
,
T. J.
, and
DeLaurier
,
J. D.
, 2003, “
Aerodynamics of Small Vehicles
,”
Annu. Rev. Fluid Mech.
0066-4189,
35
, pp.
89
111
.
43.
Ifju
,
P. G.
,
Ettinger
,
S.
,
Jenkins
,
D.
, and
Martinez
,
L.
, 2001, “
Composite Materials for Micro Air Vehicles
,”
SAMPE J.
0091-1062,
37
, pp.
7
12
.
44.
Lian
,
Y.
,
Shyy
,
W.
,
Viieru
,
D.
, and
Zhang
,
B.
, 2003, “
Membrane Wing Aerodynamics for Micro Air Vehicles
,”
Prog. Aerosp. Sci.
0376-0421,
39
, pp.
425
465
.
45.
Lian
,
Y.
,
Shyy
,
W.
,
Ifju
,
P.
, and
Verron
,
E.
, 2002, “
A Computational Model for Coupled Membrane-Fluid Dynamics
,” AIAA Paper 2002-2972, also
AIAA J.
0001-1452, 2003,
41
, pp.
2492
2494
.
46.
La Roche
,
U.
, and
Palffy
,
S.
, 1996, “
Wing Grid, A Novel Device for Reduction of Induced Drag on Wings
,”
ICAS 1996
,
Sorrento
, Italy.
47.
Viieru
,
D.
,
Lian
,
Y.
,
Shyy
,
W.
, and
Ifju
,
P.
, 2003, “
Investigation of Tip Vortex on Aerodynamic Performance of a Micro Air Vehicle
,” AIAA Paper 2003-3597.
48.
Viieru
,
D.
,
Shyy
,
W.
, and
Ifju
,
P.
, 2003, “
Effect of Tip Vortex on Wing Aerodynamics of Micro Aerial Vehicles
,” Technical Report, Department of Mechanical and Aerospace Engineering, University of Florida.
49.
Jones
,
B. M.
, 1938, “
Stalling
,”
J. R. Aeronaut. Soc.
0368-3931,
38
, pp.
747
770
.
50.
Young
,
A. D.
, and
Horton
,
H. P.
, 1966, “
Some Results of Investigation of Separation Bubbles
,”
AGARD Conf. Proc.
0549-7191,
4
, pp.
779
811
.
51.
Carmichael
,
B. H.
, 1981, “
Low Reynolds Number Airfoil Survey
,”
1
, NASA Contract Rep. NASA CR 165803, Aemes Aeronautical Laboratory, Moffet Field, CA.
52.
Gault
,
D. E.
, 1957, “
An Investigation at Low Speed of the Flow Over a Simulated Flat Plate at Small Angles of Attack Using Pitot Static and Hot-wire Probes
,” NACA TN-3876.
53.
Crompton
,
M. J.
, and
Barrett
,
R. V.
, 2000, “
Investigation of the Separation Bubble Formed Behind the Sharp Leading Edge of a Flat Plate at Incidence
,”
J. Aerosp. Eng.
0893-1321,
214
, pp.
157
176
.
54.
Gordnier
,
R. E.
, and
Visbal
,
M. R.
, 2002, “
Development of a Three-Dimensional Viscous Aeroelastic Solver for Nonlinear Panel Flutter
,”
J. Fluids Struct.
0889-9746,
16
, pp.
497
527
.
55.
Torres
,
G. E.
, and
Mueller
,
T. J.
, 2001, “
Aerodynamic Characteristics of Low Aspect Ratio Wings at Low Reynolds Number
,”
Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications
(Progress in Astronautics and Aeronautics Series),
T. J.
Mueller
, ed., AIAA,
Reston
, VA.,
195
, pp.
191
213
.
56.
Cummings
,
R. M.
,
Morton
,
S. A.
,
Siegel
,
S. G.
, and
Bosscher
,
S.
, 2003, “
Numerical Prediction and Wind Tunnel Experiment for a Pitching Unmanned Combat Air Vehicle
,” AIAA Paper 2003-0417.
57.
Waszak
,
R. M.
,
Jenkins
,
N. L.
, and
Ifju
,
P.
, 2001, “
Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle
,” AIAA Paper 2001-4005.
58.
Shyy
,
W.
,
Jenkins
,
D. A.
, and
Smith
,
R. W.
, 1997, “
Study of Adaptive Shape Airfoils at Low Reynolds Number in Oscillatory Flow
,”
AIAA J.
0001-1452,
35
, pp.
1545
1548
.
59.
Smith
,
R. W.
, and
Shyy
,
W.
, 1995, “
Computational Model of Flexible Membrane Wings in Steady Laminar Flow
,”
AIAA J.
0001-1452,
33
, pp.
1769
1777
.
60.
Liu
,
H. T.
, 1992, “
Unsteady Aerodynamics of a Wortmann Wing at Low Reynolds Number
,”
J. Aircr.
0021-8669,
29
, pp.
532
539
.
61.
Burgee
,
S.
,
Giunta
,
A. A.
,
Narducci
,
R.
,
Watson
,
L. T.
,
Grossman
,
B.
, and
Haftka
,
R. T.
, 1996, “
A Coarse Grained Parallel Variable-Complexity Multidisciplinary Optimization Paradigm
,”
Int. J. Supercomput. Appl.
0890-2720,
10
, pp.
269
299
.
62.
Hutchison
,
M. G.
,
Unger
,
E. R.
,
Mason
,
W. H.
,
Grossman
,
B.
, and
Haftka
,
R. T.
, 1994, “
Variable-Complexity Aerodynamic Optimization of a High-Speed Civil Transport Wing
,”
J. Aircr.
0021-8669,
31
, pp.
110
116
.
63.
Knill
,
D. L.
,
Giunta
,
A. A.
,
Baker
,
C. A.
,
Grossman
,
B.
,
Mason
,
W. H.
,
Haftka
,
R. T.
, and
Watson
,
L. T.
, 1999, “
Response Surface Methods Combining Linear and Euler Aerodynamics for Supersonic Transport Design
,”
J. Aircr.
0021-8669,
36
, pp.
75
86
.
64.
Mason
,
B. H.
,
Haftka
,
R. T.
,
Johnson
,
E. R.
, and
Farley
,
G. L.
, 1998, “
Variable Complexity Design of Composite Fuselage Frames by Response Surface Techniques
,”
Thin-Walled Struct.
0263-8231,
32
, pp.
235
261
.
65.
Drela
,
M.
, and
Giles
,
M. B.
, 1987, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
0001-1452,
25
, pp.
1347
1355
.
You do not currently have access to this content.