This paper reviews the studies on the kinematics, hydrodynamics, and performance of median and paired fin (MPF) in fish and biomimetic mechanical systems from the viewpoint of enhancing the propulsive and maneuvering performance of marine vehicles at low speeds. Precise maneuverability and stability at low swimming speeds by use of MPF propulsion seem to be advantageous in complex habitats such as coral reefs. MPF propulsion in fish consists of undulatory fin motion and oscillatory fin motion. The kinematics of MPF in fish and mechanical systems in both groups is discussed. Hydrodynamic models and experimental data of undulatory and oscillatory motions of MPF in fish and mechanical system are reviewed. Pectoral fin propulsion has two categories which represent biomechanical extremes in the use of appendages for propulsion: drag-based and lift-based mechanisms of thrust production. The hydrodynamic characteristics of the two mechanisms are compared. The performance of fish and vehicles with MPF is reviewed from the viewpoint of maneuverability. Especially, performance of a recently developed fish-like body with a pair of undulatory side fins, a model ship with a pair of ray-wing-type propulsors, and an underwater vehicle with two pairs of mechanical pectoral fins are discussed.

1.
Breder
,
C. M.
, 1926, “
The Locomotion of Fishes
,”
Zoologica (N.Y.)
0044-507X,
4
, pp.
159
291
.
2.
Lindsey
,
C. C.
, 1978,
Fish Physiology
,
W. S.
Hoar
and
D. J.
Randall
, eds.,
Academic
, New York, Vol.
7
, pp.
1
100
.
3.
Webb
,
P. W.
, 1982, “
Locomotor Patterns in the Evolution of Actinopterygian Fishes
,”
Am. Zool.
0003-1569,
22
, pp.
329
342
.
4.
Korsmeyer
,
K. E.
,
Steffensen
,
J. F.
, and
Herskin
,
J.
, 2002, “
Energetics of Median and Paired Fin Swimming, Body and Caudal Fin Swimming, and Gait Transition in Parrotfish (Scarus schlegeli) and Triggerfish (Rhinecanthus aculeatus)
,”
J. Exp. Biol.
0022-0949,
205
, pp.
1253
1263
.
5.
Blake
,
R. W.
, 1977, “
On Ostraciiform Locomotion
,”
J. Mar. Biol. Assoc. U.K.
0025-3154,
57
, pp.
1047
1055
.
6.
Blake
,
R. W.
, 1978, “
On Balistiform Locomotion
,”
J. Mar. Biol. Assoc. U.K.
0025-3154,
58
, pp.
73
80
.
7.
Blake
,
R. W.
, 1979, “
The Swimming of the Mandarin Fish Synchiropus picturatus (Callionyiidae: Teleostei)
,”
J. Mar. Biol. Assoc. U.K.
0025-3154,
59
, pp.
421
428
.
8.
Blake
,
R. W.
, 1981, “
Undulatory Median Fin Propulsion of Two Teleosts With Different Modes of Life
,”
Can. J. Zool.
0008-4301,
58
, pp.
2116
2119
.
9.
Blake
,
R. W.
, 1983, in
Fish Biomechanics
,
P. W.
Webb
and
D.
Weihs
, eds.,
Praeger
, New York, pp.
214
247
.
10.
Blake
,
R. W.
, 1976, “
On Seahorse Locomotion
,”
J. Mar. Biol. Assoc. U.K.
0025-3154,
56
, pp.
939
949
.
11.
Blake
,
R. W.
, 1979, “
The Mechanics of Labriform Locomotion. I. Labriform Locomotion in the Angelfish (Pterophyllum eimekei): An Analysis of the Power Stroke
,”
J. Exp. Biol.
0022-0949,
82
, pp.
255
271
.
12.
Webb
,
P. W.
, 1973, “
Kinematics of Pectoral Fin Propulsion in Cymatogaster Aggregata
,”
J. Exp. Biol.
0022-0949,
59
, pp.
697
710
.
13.
Webb
,
P. W.
, and
Blake
,
R. W.
, 1985, in
Functional Vertebrate Morphology
,
M.
Hildebrand
,
D. M.
Bramble
,
K. F.
Liem
, and
D. B.
Wake
, eds.,
Harvard University Press
, Cambridge MA, pp.
110
128
.
14.
Vogel
,
S.
, 1994,
Life in Moving Fluids
,
2nd ed.
,
Princeton University Press
, Princeton, NJ, pp.
283
287
.
15.
Geerlink
,
P. J.
, 1983, “
Pectoral Fin Kinematics of Coris Formosa (Teleostei, Labridae)
,”
Neth. J. Zool.
0028-2960,
33
, pp.
515
531
.
16.
Gibb
,
A.
,
Ja
,
Jayne
,
B. C.
, and
Lauder
,
G. V.
, 1994, “
Kinematics of Pectoral Fin Locomotion in the Bluegill Sunfish Lepomis macrochirus
,”
J. Exp. Biol.
0022-0949,
189
, pp.
133
161
.
17.
Drucker
,
E. G.
, and
Jensen
,
J. S.
, 1996, “
Pectoral Fin Locomotion in the Striped Surfperch. I. Kinematic Effects of Swimming Speed and Body Size
,”
J. Exp. Biol.
0022-0949,
199
, pp.
2235
2242
.
18.
Lauder
,
G. V.
, and
Jayne
,
B. C.
, 1996, “
Pectoral Fin Locomotion in Fishes: Testing Drag-Based Models Using Three-Dimensional Kinematics
,”
Am. Zool.
0003-1569,
36
, pp.
567
581
.
19.
Westneat
,
M. W.
, 1996, “
Functional Morphology of Aquatic Flight in Fishes: Mechanical Modeling, Kinematics and Electromyography of Labriform Locomotion
,”
Am. Zool.
0003-1569,
36
, pp.
582
598
.
20.
Walker
,
J. A.
, and
Westneat
,
M. W.
, 1997, “
Labriform Propulsion in Fishes: Kinematics of Flapping Aquatic Flight in the Bird Wrasse Gomphosus varius (Labridae)
,”
J. Exp. Biol.
0022-0949,
200
, pp.
1549
1569
.
21.
Klausewitz
,
W.
, 1965, “
Die Bewegungsweise der Geigenrochen-aus Funktioneller und Stammesgeschichtlicher Sicht
,”
Natur Museum
,
95
, pp.
97
108
.
22.
Roberts
,
B. L.
, 1969, “
The Buoyancy and Locomotory Movements of Electric Rays
,”
J. Mar. Biol. Assoc. U.K.
0025-3154,
49
, pp.
621
640
.
23.
Daniel
,
T. L.
, 1988, “
Forward Flapping Flight From Flexible Fins
,”
Can. J. Zool.
0008-4301,
66
, pp.
630
638
.
24.
Rosenberger
,
L. J.
, and
Westneat
,
M. W.
, 1999, “
Functional Morphology of Undulatory Pectoral Fin Locomotion in the Stingray Taeniura Lymma
,”
J. Exp. Biol.
0022-0949,
202
, pp.
3523
3539
.
25.
Webb
,
P. W.
, 1994, “
The Biology of Fish Swimming
,” in
Mechanics and Physiology of Animal Swimming
,
L.
Maddock
,
Q.
Bone
, and
J. M. V.
Rayner
, eds.,
Cambridge University Press
, Cambridge, MA, pp.
45
62
.
26.
Klausewitz
,
W.
, 1964, “
Der Lokomotionsmodus der Flugelrochen (Myliobatoidei)
,”
Zool. Anz.
0044-5231,
173
, pp.
110
120
.
27.
Rosenberger
,
L. J.
, 2001, “
Pectoral Fin Locomotion in Batoid Fishes: Unsteady Undulation Versus Oscillation
,”
J. Exp. Biol.
0022-0949,
204
, pp.
379
394
.
28.
Bartol
,
I. K.
,
Patterson
,
M. R.
, and
Mann
,
R. L.
, 2001, “
Swimming Mechanisms and Behavior of the Shallow-Water Brief Squid Lolliguncula brevis
,”
J. Exp. Biol.
0022-0949,
204
, pp.
3655
3682
.
29.
Sfakiotakis
,
M.
,
Lane
,
D. M.
, and
Davies
,
B. C.
, 2000, “
Development of a ‘Fin Actuator’ for the Investigation of Undulating Fin Propulsion
,”
First International Symposium on Aqua Bio-Mechanism
, pp.
265
270
.
30.
Toda
,
Y.
,
Fukui
,
K.
,
Uto
,
S.
, and
Tanaka
,
N.
, 2003, “
Fundamental Study on Swimming of a Fish-Like Body With Two Undulating Side Fins
,”
Second Int. Symp. on Aqua Bio-Mechanism
(CD-ROM).
31.
Kashiwadani
,
T.
, and
Yokoyama
,
N.
, 2003, “
Physical Model of a Ray-Wing Type Propulsor for Underwater Vehicles and Its Propulsive Performance in Water
,”
Second Int. Symp. on Aqua Bio-Mechanism
(CD-ROM).
32.
Kato
,
N.
, and
Furushima
,
M.
, 1996, “
Pectoral Fin Model for Manuever of Underwater Vehicles
,”
Proc. 1996 IEEE AUV Symp.
, pp.
49
56
.
33.
Kato
,
N.
,
Liu
,
H.
, and
Morikawa
,
H.
, 2002, “
Biology-Inspired Precision Maneuvering of Underwater Vehicles
,”
Proc. of 12th Int. Offshore and Polar Engineering Conference (ISOPE)
, Vol.
2
, pp.
269
276
.
34.
Kato
,
N.
, and
Liu
,
H.
, 2003, “
Optimization of Motion of a Mechanical Pectoral Fin
,”
JSME Int. J., Ser. C
1340-8062,
46
, pp.
1356
1362
.
35.
Kemp
,
M.
,
Hobson
,
B.
,
Janet
,
J.
,
Pell
,
C.
, and
Tytell
,
E.
, 2001, “
Assessing the Performance of Oscillating Fin Thruster Vehicles
,”
Proc. of 12th Int. Symp. on Unmanned, Untethered, Submersible Technology
(CD-ROM).
36.
Kemp
,
M.
,
Hobson
,
B.
,
Janet
,
J.
, and
Pell
,
C.
, 2003, “
Energetics of the Oscillating Fin Thruster
,”
Proc. of 12th Int. Symp. on Unmanned, Untethered, Submersible Technology
(CD-ROM).
37.
Licht
,
S.
,
Polidoro
,
V.
,
Flores
,
M.
,
Hover
,
F.
, and
Triantafyllou
,
M.
, 2003, “
Design and Projected Performance of a Flapping Foil AUV
,”
Proc. of 12th Int. Symp. on Unmanned, Untethered, Submersible Technology
(CD-ROM).
38.
Lighthill
,
M. J.
, and
Blake
m
R.
, 1990, “
Biofluiddynamics of Balistform and Gymnotiform Locomotion—Part I: Biological Background and Analaysis by Elongated-Body Theory
,”
J. Fluid Mech.
0022-1120,
212
, pp.
183
207
.
39.
Lighthill
,
M. J.
, 1990, “
Biofluiddynamics of Balistiform and Gymnotiform Locomotion. Part. 2. The Pressure Distribution Arising in Two-Dimensional Irrotational Flow From a General Symmetrical Motion of a Flexible Flat Plate Normal to Itself
,”
J. Fluid Mech.
0022-1120,
213
, pp.
1
10
.
40.
Lighthill
,
M. J.
, 1990, “
Biofluiddynamics of Balistiform and Gymnotiform Locomotion. Part 3. Momentum Enhancement in the Presence of a Body of Elliptic Cross-Section
,”
J. Fluid Mech.
0022-1120,
213
, pp.
11
20
.
41.
Lighthill
,
M. J.
, 1990, “
Biofluiddynamics of Balistiform and Gymnotiform Locomotion. Part 4. Short-Wavelength Limitations on Momentum Enhancement
,”
J. Fluid Mech.
0022-1120,
213
, pp.
21
28
.
42.
Lighthill
,
M. J.
, and
Blake
,
R. W.
, 1990, “
Biofluiddynamics of Balistiform and Gymnotiform Locomotion. Part 1. Biological Background, and Analysis by Elongated-Body Theory
,”
J. Fluid Mech.
0022-1120,
212
, pp.
183
207
.
43.
Blake
,
R. W.
, 1983, “
Swimming in the Electric-Eels and Knifefishes
,”
Can. J. Zool.
0008-4301,
61
, pp.
1432
1441
.
44.
Daniel
,
T. L.
, 1988, “
Forward Flapping Flight From Flexible Fins
,”
Can. J. Zool.
0008-4301,
66
, pp.
630
638
.
45.
Wu
,
T.
, 1961, “
Swimming of Waving Plate
,”
J. Fluid Mech.
0022-1120,
10
, pp.
321
344
.
46.
Wu
,
T.
, 1971a, “
Hydromechanics of Swimming Propulsion. Part 1. Swimming of a Two Dimensional Flexible Plate at Variable Forward Speeds in an Inviscid Fluid
,”
J. Fluid Mech.
0022-1120,
46
, pp.
337
355
.
47.
Wu
,
T.
, 1971b, “
Hydromechanics of Swimming Propulsion. Part 2. Some Optimum Shape Problems
,”
J. Fluid Mech.
0022-1120,
46
, pp.
521
544
.
48.
Wu
,
T.
, 1971c, “
Hydromechanics of Swimming Propulsion. Part 3. Swimming and Optimum Movements of Slender Fish With Side Fins
,”
J. Fluid Mech.
0022-1120,
46
, pp.
545
568
.
49.
Cheng
,
J.-Y.
,
Zhuang
,
L.-X.
, and
Tong
,
B.-G.
, 1991, “
Analysis of Swimming Three-Dimensional Waving Plates
,”
J. Fluid Mech.
0022-1120,
232
, pp.
341
355
.
50.
Pedley
,
T. J.
, and
Hill
,
S. J.
, 1999, “
Large-Amplitude Undulatory Fish Swimming: Fluid Mechanics Coupled to Internal Mechanics
,”
J. Exp. Biol.
0022-0949,
202
, pp.
3431
3438
.
51.
Blake
,
R. W.
, 1980, “
The Mechanics of Labriform Locomotion. II. An Analysis of the Recovery Stroke and the Overall Fin-Beat Cycle Propulsive Efficiency in the Angelfish
,”
J. Exp. Biol.
0022-0949,
85
, pp.
337
342
.
52.
Blake
,
R. W.
, 1981, “
Influence of Pectoral Fin Shape Thrust and Drag in Labriform Locomotion
,”
J. Zool.
0022-5460,
194
, pp.
53
66
.
53.
Walker
,
J. A.
, and
Westneat
,
M. W.
, 2000, “
Mechanical Performance of Aquatic Rowing and Flying
,”
Proc. R. Soc. London, Ser. B
0962-8452,
267
, pp.
1875
1881
.
54.
Daniel
,
T. L.
, 1984, “
Unsteady Aspects of Aquatic Locomotion
,”
Am. Zool.
0003-1569,
24
, pp.
121
134
.
55.
Dickinson
,
M. H.
, and
Gotz
,
K. G.
, 1993, “
Unsteady Aerodynamic Performance of Model Wings at Low Reynolds Numbers
,”
J. Exp. Biol.
0022-0949,
174
, pp.
45
64
.
56.
Ellington
,
C. P.
,
Van den Berg
,
C.
, and
Willmott
,
A. P.
, 1996, “
Leading-Edge Vortices in Insect £ight
,”
Nature (London)
0028-0836,
384
, pp.
626
630
.
57.
Dickinson
,
M. H.
, 1994, “
The Ejects of Wing Rotation on Unsteady Aerodynamic Performance at Low Reynolds Numbers
,”
J. Exp. Biol.
0022-0949,
192
, pp.
179
206
.
58.
Dickinson
,
M. H.
, and
Gotz
,
K. G.
, 1996, “
The Wake Dynamics and Fight Forces of the Fruit £y Drosophila Melanogaster
,”
J. Exp. Biol.
0022-0949,
199
, pp.
2085
2104
.
59.
Dickinson
,
M. H.
,
Lehmann
,
F.-O.
, and
Sane
,
S. P.
, 1999, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
0036-8075,
284
, pp.
1954
1960
.
60.
Kato
,
N.
, 1999, “
Hydrodynamic Characteristics of Mechanical Pectoral Fin
,”
ASME Trans. J. Fluids Eng.
0098-2202,
121
, pp.
605
613
.
61.
Liu
,
H.
, and
Kato
,
N.
, 2004, “
Computation of Unsteady Flow Past a Biomimetric Fin
,”
J. Bionics Eng.
1
(
2
),
108
120
.
62.
Ramamurti
,
R.
,
Sandberg
,
W. C.
,
Löhner
,
R.
,
Walker
,
J. A.
, and
Westneat
,
M. W.
, 2002, “
Fluid Dynamics of Flapping Aquatic Flight in the Bird Wrasse: 3-D Unsteady Computations With Fin Deformation
,”
J. Exp. Biol.
0022-0949,
205
, pp.
2997
3008
.
63.
Drucker
,
E. G.
, and
Lauder
,
G. V.
, 1999, “
Locomotor Forces on a Swimming Fish: Three-Dimensional Vortex Wake Dynamics Quantified Using Digital Particle Image
,”
J. Exp. Biol.
0022-0949,
202
, pp.
2393
2412
.
64.
Drucker
,
E. G.
, and
Lauder
,
G. V.
, 2000, “
A Hydrodynamic Analysis of Fish Swimming Speed: Wake Structure and Locomotor Force in Slow and Fast Labriform Swimmers
,”
J. Exp. Biol.
0022-0949,
203
, pp.
2379
2393
.
65.
Lauder
,
G. V.
,
Nauen
,
J.
, and
Drucker
,
E. G.
, 2002, “
Experimental Hydrodynamics and Evolution: Function of Median Fins in Ray-Finned Fishes
,”
Integr. Comp. Biol.
1540-7063,
42
, pp.
1009
1017
.
66.
Drucker
,
E. G.
, and
Lauder
,
G. V.
, 2002, “
Wake Dynamics and Locomotor Function in Fishes: Interpreting Evolutionary Patterns in Pectoral Fin Design
,”
Integr. Comp. Biol.
1540-7063,
42
, pp.
997
1008
.
67.
Walker
,
J. A.
, and
Westneat
,
M. W.
, 2002, “
Performance Limits of Labriform Propulsion and Correlates With Fin Shape and Motion
,”
J. Exp. Biol.
0022-0949,
205
, pp.
177
187
.
68.
Wallker
,
J. A.
, 2000, “
Does a Rigid Body Limit Maneuverability?
J. Exp. Biol.
0022-0949,
203
, pp.
3391
3396
.
69.
Gerstner
,
C. L.
, 1999, “
Maneuverability of Four Species of Coral-Reef Fish That Differ in Body and Pectoral-Fin Morphology
,”
Can. J. Zool.
0008-4301,
77
, pp.
1102
1110
.
70.
Kato
,
N.
, 2000, “
Control Performance in Horizontal Plane of a Fish Robot With Mechanical Pectoral Fins
,”
IEEE J. Ocean. Eng.
0364-9059,
25
, pp.
121
129
.
71.
Kato
,
N.
, 2002, “
Pectoral Fin Controllers
,” in
Neurotechnology for Biomimetic Robots
,
J.
Ayers
,
J. J.
Davis
, and
A.
Rudolph
, eds.,
MIT Press
, Cambridge, MA, pp.
325
347
.
72.
Kato
,
N.
,
Liu
,
H.
, and
Morikawa
,
H.
, 2003, “
Biology-Inspired Precision Maneuvering of Underwater Vehicles (Part 2)
,”
Proc. of 13th International Offshore and Polar Engineering Conference (ISOPE)
, pp.
178
185
.
73.
Kato
,
N.
,
Liu
,
H.
, and
Morikawa
,
H.
, 2004, “
Biology-Inspired Precision Maneuvering of Underwater Vehicles (Part 3)
,”
Proc. of 14th International Offshore and Polar Engineering Conference (ISOPE)
(submitted).
74.
Kato
,
N.
,
Bugi
,
W. W.
, and
Suzuki
,
Y.
, 2000, “
Development of Biology-Inspired Autonomous Underwater Vehicle ‘BASS-III’ With High Maneuverability
,”
Proc. of the 2000 International Symposium on Underwater Technology
(
IEEE
), pp.
84
89
.
You do not currently have access to this content.