This paper is inspired by two articles on the title subject, namely by Koiter and by Sugiyama, Langthjem and Ryu. The former warned the engineering community to beware of the above forces. The latter maintained that these forces are realistic. It is hoped that this review sheds some additional light on an issue that seems to perplex many students of dynamic stability. The paper does not contain any new information unknown to researchers; it represents a critical review of pertinent papers dedicated to the topic of dynamic stability of structures under so called “follower” forces. The attempt here is to present an account of the literature in a manner that is both objective and humble. This paper reviews both the theoretical and experimental contributions to the theory of nonconservative problems with a single objective in mind, to attempt to answer a nagging question “Is the model of the statically applied follower forces useful?,” that arose due to the papers by Koiter and Sugiyama, Langthjem and Ryu. This article explores the static and dynamic stability criteria as pertaining to the nonconservative problems; the experimental side of the problem; the results pertaining to Beck’s column placed on homogenous or inhomogeneous elastic foundations; and criticisms expressed in the literature about the result on the immunity of the instability load to the Winkler foundation modulus: The paper then discusses Koiter’s ideas on nonconservative instability problems, and attempts to provide insights on the abovementioned question. Special emphasis is placed on pipes conveying fluid with or without an elastic foundation. It then summarizes the literature on the “follower forces.” Such a summary is inevitably incomplete because of the huge literature accumulated so far on the nonconservative problems in the theory of elastic stability. There are 202 references cited in this review article, and a supplementary bibliography is provided.

1.
Koiter
,
W. T.
,
1996
, “
Unrealistic Follower Forces
,”
J. Sound Vib.
,
194
, pp.
636
638
.
2.
Sugiyama
,
Y.
,
Langthjem
,
M. A.
, and
Ryu
,
B. J.
,
1999
, “
Realistic Follower Forces
,”
J. Sound Vib.
,
225
(
4
), pp.
779
782
.
3.
Bolotin, V. V., 1961, Nonconservative Problems in the Theory of Elastic Stability, Fizmatgiz Publishers, Moscow (in Russian) (English translation, Pergamon, New York, 1964).
4.
Timoshenko, S. P., and Gere, J. M., 1963, Theory of Elastic Stability, McGraw–Hill, Auckland, p. 156.
5.
Ziegler, H., 1968, Principles of Structural Stability, Waltham, MA.
6.
Leipholz, H. H. E., 1980, Stability of Elastic Systems, Sijthoff and Noordhoff.
7.
Dzhanelidze, G. Yu., 1958, “About Stability of a Column Under the Action of Follower Force,” Proceedings of the Leningrad Polytechnic Institute, No. 192, pp. 21–27 (in Russian).
8.
Reut, V. I., 1939, “About the Theory of Elastic Stability,” Proceedings of the Odessa Institute of Civil and Communal Engineering, No. 1.
9.
Nikolai, E. V., 1939, “About Criterion of Stability of Elastic Systems,” Proceedings of the Odessa Institute of Civil and Communal Engineering, No. 1 (in Russian).
10.
Pflu¨ger, A., 1950, Stabilita¨tsprobleme der Elastostatik, Springer-Verlag, Berlin, p. 217 (in German).
11.
Euler
,
L.
,
1778a
, “
Determinatio Onerum, Quae Columnae Gestare Valent
,”
Acta Acad. Sci. Petropolitanae
,
1
, pp.
121
145
(in Latin).
12.
Euler
,
L.
,
1778b
, “
Examen Insignis Puradoxi in Theoria Columnarum Occurentis
,”
Acta Acad. Sci. Petropolitanae
,
1
, pp.
146
162
(in Latin).
13.
Panovko, Ya. G., and Gubanova, I. I., 1987, Stability and Vibrations of Elastic Systems, Nauka, Moscow, p. 131 (in Russian, 4th ed.).
14.
Nikolai, E. V., 1955, Works in Mechanics, Gostekhizdat, Moscow, pp. 436–454 (in Russian).
15.
Todhunter, I., and Pearson, K., 1886, History of the Theory of Elasticity, Cambridge University Press, Vol. 1, pp. 39–50.
16.
Euler
,
L.
,
1778c
, “
De Altitudine Columnarum Sub Proprio Pondere Corruentium
,”
Acta Acad. Sci. Petropolitanae
,
1
, pp.
163
193
(in Latin).
17.
Feodosiev, V. I., 1950, Selected Problems and Questions in Strength of Materials, Gostekhizdat, Moscow, pp. 44, 183, and 184 (1st ed., in Russian).
18.
Ziegler
,
H.
,
1952
, “
Die Stabilita¨tskriterien der Elastomechanik
,”
Ingenieria, Mexico
,
20
(
1
), pp.
49
56
.
1.
Beck
,
M.
,
1952
, “
Die Knicklast des Einseitig Eingespannten Tangential Gedru¨ckten Stabes
,”
Z. Angew. Math. Phys.
,
3
, pp.
225
228
(in German);
2.
1952
,
3
,
476
477
(E).
1.
Beck
,
M.
,
1955
, “
Knickung Gerader Staebe Durch Druck und Konservative Torsion
,”
Ingenieria, Mexico
,
23
, pp.
231
253
(in German).
2.
Nemat-Nasser, S., 1973, On Elastic Stability Under Nonconservative Forces, University of Waterloo Press, Waterloo, Ontario, Canada.
3.
Herrmann, G., 1971, “Dynamics and Stability of Mechanical Systems Under Follower Forces,” NASA CR-1782.
4.
Dzhanelidze, G. Yu., 1965, “Stability of Elastic Systems Under Dynamic Loads,” Problems of Stability in Structural Mechanics, edited by V. V. Bolotin, I. M. Rabinovich, and A. F. Smirnov, Izdatelstvo Literatury po Stroitelstvu, Moscow, pp. 68–84 (in Russian).
5.
Herrmann
,
G.
,
1967
, “
Stability of Equilibrium of Elastic Systems Subjected to Non-conservative Forces
,”
Appl. Mech. Rev.
,
20
, pp.
103
108
.
6.
Sundararajan
,
C.
,
1975
, “
The Vibration and the Stability of Elastic Systems Subjected to Follower Forces
,”
Shock Vib. Dig.
,
7
, pp.
89
105
.
7.
Bogach
,
R.
, and
Janishevsky
R.
,
1985
, “
Analysis and Synthesis of Columns, Compressed by Follower Forces, From the Stability Point of View
,”
Adv. Mech.
,
8
(
3
), pp.
3
52
(in Russian).
8.
Bolotin, V. V., 1995, “Dynamic Stability of Structures,” in Nonlinear Stability of Structures, A. N. Kounadis and W. B. Kra¨tzig, eds., Springer-Verlag, Vienna, pp. 3–72.
9.
Bolotin
,
V. V.
,
1999
, “
Dynamic Instabilities in Mechanics of Structures
,”
Appl. Mech. Rev.
,
52
(
1
), pp.
R1–R9
R1–R9
.
10.
Langthjem
,
M. A.
, and
Sugiyama
,
Y.
,
2000
, “
Dynamic Stability of Columns Subjected to Follower Loads: A Survey
,”
J. Sound Vib.
,
238
(
5
), pp.
809
851
.
11.
Deineko
,
K. S.
, and
Leonov
,
M. Ya.
,
1955
, “
Dynamic Method of Investigation of Stability of a Compressed Column
,”
PMM
,
19
, pp.
738
744
(in Russian).
12.
Feodosiev, V. I., 1969, Ten Lectures-Conversations on Strength of Materials, Nauka, Moscow (in Russian).
13.
Kounadis
,
A. N.
,
1994
, “
On the Failure of Static Stability Analysis of Nonconservative Systems in Regions of Divergence Instability
,”
Int. J. Solids Struct.
,
31
(
15
), pp.
2099
2120
.
14.
Plaut
,
R.
,
1976
, “
Analysis of Nonconservative Elastic Systems
,”
J. Struct. Mech.
,
4
, pp.
395
416
.
15.
Kounadis
,
A. N.
,
1991
, “
On the Reliability of Postbuckling Analysis for Nonconservative Imperfect Systems
,”
Arch. Mech.
,
43
(
1
), pp.
95
105
.
16.
Kounadis
,
A. N.
,
Avraam
,
T.
, and
Mallis
,
J.
,
1992
, “
On the Reliability of Classical Divergence Instability Analysis of Ziegler’s Nonconservative Model
,”
Comput. Methods Appl. Mech. Eng.
,
95
, pp.
317
330
.
17.
Kounadis
,
A. N.
,
1997
, “
On Potential Dissipative Systems Exhibiting Periodic Attractors in Regions of Divergence
,”
Chaos, Solitons Fractals
,
8
(
4
), pp.
583
612
.
18.
Kounadis
,
A. N.
,
1998
, “
Qualitative Criteria for Dynamic Buckling of Imperfection Sensitive Nonconservative Systems
,”
Int. J. Mech. Sci.
,
40
(
10
), pp.
449
462
.
19.
Kounadis
,
A. N.
,
2001
, “
Nonclassical Stability Problems: Instability of Slender Tubes Under Pressure
,”
J. Aerosp. Sci.
,
14
(
1
), pp.
6
11
.
20.
Kounadis
,
A. N.
,
1992
, “
On the Paradox of the Destabilizing Effect of Damping in Non-Conservative Systems
,”
Int. J. Non-Linear Mech.
,
27
(
4
), pp.
597
609
.
21.
Kounadis, A. N., 2001, private comunication.
22.
Lee
,
G. E
, and
Reissner
,
E.
,
1975
, “
Note on a Problem of Beam Buckling
,”
Z. Angew. Math. Phys.
,
26
, pp.
839
841
.
23.
Neer
,
A.
, and
Baruch
,
M.
,
1977
, “
Note on Static and Dynamic Instability of a Nonuniform Beam
,”
Z. Angew. Math. Phys.
,
28
, pp.
735
740
.
24.
Dmitriyk
,
W.
,
1992
, “
The Static Stability Problems of an Elastic Continuum Subjected to Follower-Type Loading
,”
Int. J. Solids Struct.
,
29
(
3
), pp.
2545
2562
.
25.
Dmitriyk
,
W.
,
1993
, “
Static Solutions of the Leipholz Problem
,”
Int. J. Solids Struct.
,
30
(
15
), pp.
1997
2008
.
26.
Leipholz
,
H. H. E.
,
1962
, “
Die Knicklast des Einseitig Eingespannten Stabes Mit Gleichmaessig Verteilter, Tangentialer Laengsbelastung (in German)
,”
Z. Angew. Math. Phys.
,
6
, pp.
581
589
.
27.
Harding, S., (ed.), 1976, Can Theories Be Refuted?, Kluwer, Dordrecht.
28.
Lakatos, I., 1976, “Falsification and the Methodology of Scientific Research Programmes,” Can Theories Be Refuted?, S. Harding, ed., Kluwer, Dordrecht, pp. 205–247.
29.
Willems
,
N.
,
1966
, “
Experimental Verification of the Dynamic Stability of a Tangentially Loaded Cantilever Column
,”
J. Appl. Mech.
,
35
, pp.
460
461
.
30.
Huang
,
N. C.
,
Nachbar
,
W.
, and
Nemat-Nasser
,
S.
,
1967
, “
On Willems’ Experimental Verification of the Critical Load on Beck’s Problem
,”
J. Appl. Mech.
,
34
, pp.
243
245
.
31.
Goldbaum, I. Ya., 1956, “Experimental Apparatus for Investigating of Stability of Elastic Column in Presence of Follower Force,” Diploma, Leningrad Polytechnic Institute (in Russian, quoted by G. Yu. Dzhanelidze, 1958).
32.
Rzhanitsyn, A. R., 1955, Stability of Equilibrium of Elastic Systems, GITTL, Moscow (in Russian), pp. 161–162.
33.
Yagn
,
I. Yu.
, and
Parshin
,
L. K.
,
1966
, “
Experimental Study of Stability of a Column Compressed by a Follower Force
,”
Dokl. Akad. Nauk SSSR
,
167
(
1
), pp.
49
50
(in Russian).
34.
Wood
,
W. G.
,
Saw
,
S. S.
, and
Saunders
,
P. M.
,
1969
, “
The Kinetic Stability of a Tangentially Loaded Strut
,”
Proc. R. Soc. London, Ser. A
,
313
, pp.
239
248
.
35.
Pflu¨ger
,
A.
,
1955
, “
Zur Stabilita¨t des Tangential Gedru¨ckten Stabes
,”
Z. Angew. Math. Mech.
,
35
(5) (in German).
36.
Nemat-Nasser
,
S.
,
Prasad
,
S. N.
, and
Herrmann
,
G.
,
1966
, “
Destabilizing Effect of Velocity-Dependent Forces in Nonconservative Continuous Systems
,”
AIAA J.
,
4
, pp.
1276
1280
.
37.
Feldt
,
W. T.
,
Nemat-Naser
,
S.
,
Prasad
S. N.
, and
Herrmann
,
G.
,
1969
, “
Instability of a Mechanical System Induced by an Impinging Fluid Jet
,”
J. Appl. Mech.
,
36
, pp.
693
701
.
38.
Qiu
,
Z. L.
, and
Nemat-Nasser
,
S.
,
1985
, “
Instability of an Articulated Cantilever Induced by an Impinging Airjet
,”
Int. J. Solids Struct.
,
21
(
2
), pp.
145
154
.
39.
Sugiyama
,
Y.
,
1982
, “
Buckling of Generalized Reut Rod
,”
Solid Mechanics Archives
,
7
, pp.
433
466
.
40.
Sugiyama, Y., 1987, “Experiments On the Non-Conservative Problems of Elastic Stability,” Preprint ESP24.87035, 24th Annual Technical Meeting, Society of Engineering Science, (Sept. 20–23) Salt Lake City, Utah.
41.
Mullagulov
,
M. Kh.
,
1994
, “
Experimental-Theoretical Study of the Stability of Rods Compressed by Follower Forces
,”
Strength Mater.
,
26
(
6
), pp.
441
446
.
42.
Anderson
,
N. A.
, and
Done
,
G. T. S.
,
1971
, “
On the Partial Simulation of a Non-Conservative System by a Conservative System
,”
Int. J. Solids Struct.
,
7
, pp.
183
191
.
43.
Xiong
,
Y.
,
Wang
,
T. K.
, and
Tabarrok
,
B.
,
1990
, “
A Dynamic Method for Measuring the Critical Load of a Nonconservative Composite Column
,”
Dyn. Stab. Syst.
,
5
(
3
), pp.
183
190
.
44.
Xiong
,
Y.
, and
Wang
,
T. K.
,
1989
, “
On a Centripetally Loaded Model Simulating Beck’s Column
,”
Int. J. Solids Struct.
,
25
(
10
), pp.
1107
1113
.
45.
Xiong, Y., 1995, Private communication, February 23.
46.
Koiter, W. T., 1995, Private communication, February 20.
47.
Sugiyama
,
Y.
,
Katayama
,
T.
,
Kirayama
,
K.
, and
Ryu
,
B. J.
,
2000
, “
Experimental Verification of Dynamic Stability of Vertical Cantilevered Columns Subjected to a Subtangential Force
,”
J. Sound Vib.
,
236
(
2
), pp.
193
207
.
48.
Sugiyama, Y., 1997, “Some Experimental Verifications of Nonconservative Stability Problems,” Seminar The Danish Center for Applied Mathematics and Mechanics, The Technical University of Denmark, August 15. (Copies of transparencies communicated by Professor Y. Sugiyama.)
49.
Sugiyama
,
Y.
,
2000
, “
Experimental Verification of Dynamic Instability of Vertical Cantilevered Columns Subjected to a Subtangential Force
,”
J. Sound Vib.
,
236
(
2
), pp.
193
207
.
50.
Sugiyama, Y., Katayama, K., and Kinoi, S., 1990, “Experiment on Flutter of Cantilevered Columns Subjected to a Rocket Thrust,” 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Paper AIAA-90-0948, Long Beach, pp. 1893–1898.
1.
Sugiyama
,
Y.
,
Matsuike
,
J.
,
Ryu
,
B. J.
,
Katayama
,
K.
,
Kinoi
,
S.
, and
Enomoto
,
N.
,
1995
, “
Effect of Concentrated Mass on Stability of Cantilevers Under Rocket Thrust
,”
AIAA J.
,
33
, pp.
499
503
;
2.
34
, pp.
212
212
.
1.
Sugiyama
,
Y.
,
Katayama
,
K.
,
Kirayama
,
K.
, and
Ryu
,
B. J.
,
1999
, “
Experimental Verification of Dynamic Stability of Vertical Cantilevered Columns Subjected to a Sub-Tangential Force
,”
J. Sound Vib.
,
236
(
2
), pp.
193
207
.
2.
Sugiyama
,
Y.
,
Katayama
,
K.
, and
Kinoi
,
S.
,
1995
, “
Flutter of Cantilever Column Under Rocket Thrust
,”
J. Aerospace Eng.
,
8
(
1
), pp.
9
15
.
3.
Done
,
G. T. S.
,
1972
, “
Follower Force Instability of a Pod-Mounted Jet Engine
,”
Aeronaut. J.
, pp.
103
107
.
4.
Maier, G., 2000, private communication, November 8.
5.
Karihaloo, B., 2001, private communication, April 4.
6.
Karihaloo, B., 1969, “Stability of Some Non-Conservative Systems,” Ph.D. thesis, Moscow Civil Engineering Institute (in Russian).
7.
Karihaloo, B., 2000a, private communication, November 14.
8.
Karihaloo, B., 2000b, private communication, November 21.
9.
Babitsky, V. I., 1999, private communication, January 5.
10.
Babitsky
,
V. I.
, and
Chitayev
,
M. Y.
,
1996
, “
Adaptive High-Speed Resonant Robot
,”
Mechatronics
,
6
(
8
), pp.
897
913
.
11.
Singer, J., Arbocz, J., and Weller, T., 1997, Buckling Experiments, 1, pp. 1–3, Wiley, London (Vol. 2, 2002).
12.
Smith
,
T. E.
, and
Herrmann
,
G.
,
1972
, “
Stability of a Beam on an Elastic Foundation Subjected to a Follower Force
,”
J. Appl. Mech.
,
39
, pp.
628
629
.
13.
Celep, Z., 1977, “On the Stability of a Column On an Elastic Foundation Subjected to a Non-Conservative Load,” Proceedings of the Sixth National Science Congress, The Scientific and Technical Research Council of Turkey, pp. 301–311.
14.
Celep
,
Z.
,
1980
, “
Stability of a Beam on an Elastic Foundation Subjected to a Nonconservative Load
,”
J. Appl. Mech.
,
47
, pp.
111
120
.
15.
Sundararajan
,
C.
,
1976
, “
Stability of Columns on Elastic Foundations Subjected to Conservative or Nonconservative Forces
,”
J. Sound Vib.
,
37
, pp.
79
85
.
16.
Jacoby
,
A.
, and
Elishakoff
,
I.
,
1986
, “
Discrete-Continuous Elastic Foundation May Leave the Flutter Load of the Pflu¨ger Column Unaffected
,”
J. Sound Vib.
,
108
, pp.
523
523
.
17.
Elishakoff
,
I.
, and
Wang
,
X. F.
,
1987
, “
Generalization of Smith-Herrmann Problem With the Aid of Computerized Symbolic Algebra
,”
J. Sound Vib.
,
117
(
3
), pp.
537
542
.
18.
Hauger
,
W.
, and
Wetter
,
K.
,
1976
, “
Influence of an Elastic Foundation on the Stability of a Tangentially Loaded Column
,”
J. Sound Vib.
,
47
(
2
), pp.
296
299
.
1.
Smith
,
T. E.
, and
Herrmann
,
G.
,
1972
, “
Stability of a Beam on an Elastic Foundation Subjected to a Follower Force
,”
J. Appl. Mech.
,
39
, pp.
628
629
;
2.
Lee
,
S. Y.
, and
Yang
,
C. C.
,
1994
, “
Nonconservative Instability of Non-Uniform Beams Resting on an Elastic Foundation
,”
J. Sound Vib.
,
169
, pp.
433
444
.
1.
Parnes
,
R.
,
1977
, “
A Paradoxical Case in Stability Analysis
,”
AIAA J.
,
15
(
10
), pp.
1533
1534
.
2.
Zaslavsky
,
A.
,
1979
, “
Increased Length May Enhance Buckling Load
,”
Isr. J. Technol.
,
17
(3).
3.
Zaslavsky
,
A.
,
1981
, “
Discussion on Destabilizing Effect of Additional Restraint on Elastic Bar Structures
,”
Int. J. Mech. Sci.
,
23
(
6
), pp.
383
384
.
4.
Panovko
,
Ya. G.
, and
Sorokin
,
S. V.
,
1993
, “
The Paradoxical Influence of an Increase of Rigidity on Buckling Loads and Natural Frequencies for Elastic Systems
,”
Mech. Res. Commun.
,
20
(
1
), pp.
9
14
.
5.
Voloshin
,
I. I.
, and
Gromov
,
V. G.
,
1977
, “
On a Stability Criterion for a Bar on an Elastic Base Acted on by a Follower Force
,”
Mech. Solids
,
12
(
4
), pp.
148
150
.
6.
Wahed
,
I. F. A.
,
1975
, “
The Instability of a Cantilever on an Elastic Foundation Under Influence of a Follower Force
,”
J. Mech. Eng. Sci.
,
33
, pp.
219
222
.
7.
Anderson
,
G. L.
,
1975
, “
The Influence of Rotary Inertia, Tip Mass and Damping on the Stability of a Cantilever Beam On an Elastic Foundation
,”
J. Sound Vib.
,
43
, pp.
543
552
.
8.
Anderson
,
G. L.
,
1976
, “
The Influence of a Wieghardt Type Elastic Foundation on the Stability of Some Beams Subjected to Distributed Tangential Forces
,”
J. Sound Vib.
,
44
(
1
), pp.
103
118
.
9.
Becker
,
M.
,
Hauger
,
W.
, and
Winzen
,
W.
,
1977
, “
Influence of Internal and External Damping On the Stability of Beck’s Column On an Elastic Foundation
,”
J. Sound Vib.
,
54
(
3
), pp.
468
472
.
10.
Kar
,
R. C.
,
1980
, “
Stability of a Nonuniform Viscoelastic Cantilever Beam On a Viscoelastic Foundation Under the Influence of a Follower Force
,”
Solid Mech. Archives
,
4
, pp.
457
473
.
11.
Lee
,
H. P.
,
1996
, “
Dynamic Stability of a Tapered Cantilever Beam On an Elastic Foundation Subjected to a Follower Force
,”
Int. J. Solids Struct.
,
33
(
10
), pp.
1409
1424
.
12.
Sinha
,
S. C.
, and
Pawlowski
,
D. R.
,
1984
, “
Stability Analysis of a Tangentially Loaded Column with a Maxwell Type Viscoelastic Foundation
,”
Acta Mach.
,
52
, pp.
41
50
.
13.
Voloshin
,
I. I.
, and
Gromov
,
V. G.
,
1976
, “
Stability of Cantilevered Viscoelastic Bar Loaded by a Follower Force
,”
Mech. Solids
,
11
(
4
), pp.
157
161
.
14.
Sedov, L. I., 1980, Thoughts About Science and About Scientists, Nauka, Moscow (in Russian), p. 50.
15.
Koiter
,
W. T.
,
1985
, “
Elastic Stability
,”
Z. Flugwiss. Weltraumforsch.
,
9
(
4
), pp.
205
210
.
16.
Leipholz
,
H. H. E.
,
1988
, “
On the Occurrence of Non-Self-Adjointness in the Control of Elastic Structures
,”
Acta Mech.
,
73
, pp.
95
119
.
17.
Doak, P. E., 1995, private communication, March 9.
18.
Koiter
,
W. T.
,
1980
, “
Buckling of a Flexible Shaft Under Torque Loads Transmitted by Cardan Joints
,”
Ingenieurs
,
49
, pp.
369
373
.
19.
Rzhanitsyn, A. R., 1966, “Stability of Nonconservative Systems with Two Degrees of Freedom,” Proceedings of Second All-Union Congress on Theoretical and Applied Mechanics, Jan. 30–Feb. 5, 1964, Nauka, Moscow (in Russian), Vol. 3, pp. 276–294.
20.
Paı¨doussis
,
M. P.
,
1987
, “
Flow-Induced Instabilities of Cylindrical Structures
,”
Appl. Mech. Rev.
,
40
, pp.
163
175
.
21.
Paı¨doussis
,
M. P.
, and
Li
G. X.
,
1993
, “
Pipes Conveying Fluid: A Model Dynamical Problem
,”
J. Fluids Struct.
,
7
, pp.
137
204
.
22.
Chen, S. S., 1987, Flow-Induced Vibration of Circular Structures, Hemisphere, Washington, DC.
23.
Blevins, R. D., 1990, Flow-Induced Vibrations, Van Nostrand-Reinhold, New York.
24.
Paı¨doussis, M. P., 1998, Fluid-Structure Interaction, Slender Structures and Axial Flow, Academic, London.
25.
Herrmann
,
G.
, and
Nemat-Nasser
,
S.
,
1967
, “
Instability Modes of Cantilevered Bars Induced by Fluid Flow Through Attached Pipes
,”
Int. J. Solids Struct.
,
3
, pp.
39
52
.
26.
Nemat-Nasser
,
S.
, and
Herrmann
,
G.
,
1966
, “
Torsional Instability of Cantilevered Bars Subjected to Non-Conservative Loading
,”
J. Appl. Mech.
,
33
, pp.
102
121
.
27.
Bolotin, V. V., 1996, private communication, November 18.
28.
Crandall
,
S. H.
,
1995
, “
The Effect of Damping on the Stability of Gyroscopic Pendulums
,”
Z. Angew. Math. Phys.
,
46
,
special issue, S761–S780
special issue, S761–S780
.
29.
Paı¨doussis, M. P., 1986, “Flow-Instabilities of Cylindrical Structures,” Proceedings of the 10th U.S. National Congress of Applied Mechanics, J. P. Lamb, ed., pp. 155–170.
30.
Leipholz, H. H. E., 1970, Stability Theory, Academic, New York.
31.
Lamb
,
H.
,
1908
,
Proc. R. Soc. London, Ser. A
,
80
,
168
168
.
32.
Sugiyama
,
Y.
, and
Paı¨doussis
M. P.
,
1981
, “
Studies on Stability of Two-Degree-of-Freedom Articulated Pipes Conveying Fluid: The Effect of Characteristic Parameter Ratios
,”
Theor Appl. Mech.
,
31
,
333
342
.
33.
Zimmerman
,
D. C.
,
2000
, “
Model Validation and Verification of Large and Complex Space Structures
,”
Inverse Probl.
,
8
, pp.
93
118
.
34.
Inman
,
D. J.
, and
Minas
,
C.
,
1990
, “
Matching Analytical Models With Experimental Data in Mechanical Systems
,”
Control and Dynamics Systems
,
37
, pp.
327
363
.
35.
Lottati
,
I.
, and
Kornecki
,
A.
,
1986
, “
The Effect of Elastic Foundation and Dissipative Forces on the Stability of Fluid Conveying Pipes
,”
J. Sound Vib.
,
109
, pp.
327
338
.
36.
Roth
,
W.
,
1964
, “
Instabilitaet Durchstroemter Rohre
,”
Ingenieurs
,
33
, pp.
236
263
(in German).
37.
Becker
,
O.
,
1980
, “
Schwingungs-und Stabilitaets–Verhalten des Durchstroemten Rohres
,”
Kernenergie
,
23
, pp.
337
342
(in German).
38.
Becker
,
M.
,
Hauger
,
W.
, and
Winzen
,
W.
,
1978
, “
Exact Stability Analysis of Uniform Cantilevered Pipes Conveying Fluid or Gas
,”
Arch. Mech.
,
30
, pp.
757
768
.
39.
Impollonia
,
N.
, and
Elishakoff
,
I.
,
2000
, “
Effect of Elastic Foundation On Divergence and Flutter of an Articulated Pipe Conveying Fluid
,”
J. Fluids Struct.
,
14
, pp.
559
573
.
40.
Elishakoff
,
I.
, and
Impollonia
,
N.
,
2001
, “
Does a Partial Elastic Foundation Increase the Flutter Velocity of a Pipe Conveying Fluid?
,”
J. Appl. Mech.
,
68
, pp.
206
212
.
41.
Benjamin
,
T. B.
,
1961
, “
Dynamics of a System of Articulated Pipes Conveying Fluid: I Theory
,”
Proc. R. Soc. London, Ser. A
,
261
, pp.
487
499
.
42.
Gregory
,
R. W.
, and
Paı¨doussis
,
M. P.
,
1966a
, “
Unstable Oscillation of Tubular Cantilevers Conveying Fluid: II Experiments
,”
Proc. R. Soc. London, Ser. A
,
293
, pp.
512
527
.
43.
Djondjorov
,
P. A.
,
2001
, “
Dynamic Stability of Pipes Partly Resting On Winkler Foundation
,”
J. Theor. Appl. Mech. (Sofia)
,
31
(
3
), pp.
101
112
.
44.
Djondjorov
,
P.
,
Vassilev
,
V.
, and
Dzhupanov
,
V.
,
2001
, “
Dynamic Stability of Fluid Conveying Cantilever Pipes On Elastic Foundations
,”
J. Sound Vib.
,
247
(
3
), pp.
533
546
.
45.
Hauger
,
W.
, and
Vetter
,
K.
,
1976
, “
Influence of an Elastic Foundation and the Stability of a Tangentially Loaded Column
,”
J. Sound Vib.
,
42
, pp.
296
299
.
46.
Kacprzynski, J., and Kaliski, S., 1960, “Flutter of Deformable Rocket in Supersonic Flow,” Proceedings of the 2nd International Congress in the Aerospace Sciences, Zuerich, Sept. 12–16, pp. 911–925.
47.
Glaser, R. F., 1965, “Vibration and Stability of Analysis of Compressed Rocket Vehicles,” NASA TN D-2533.
48.
Feodosiev
,
V. I.
,
1965
, “
On a Problem of Stability
,”
PMM
,
2
, pp.
391
392
(in Russian).
49.
Beal
,
T. R.
,
1965
, “
Dynamic Stability of s Flexible Missile Under Constant and Pulsating Thrusts
,”
AIAA J.
,
3
, pp.
486
494
.
50.
Gopak
,
K. N.
,
1960
, “
Loss of Stability by a Free Column That Moves Accelerating Under Follower Force
,”
Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Metall. Topl.
, No. 4 (in Russian).
51.
Gopak
,
K. N.
,
1970
, “
Stability of a Free Column Under Distributed Follower Force
,”
Prikl. Mekh.
,
6
(
7
), pp.
116
118
(in Russian).
52.
Kaliski
,
S.
, and
Solarz
,
L.
,
1962
, “
Aeroelastic Vibration and Stability of Deformable Rotating Rocket in a Linearized Flow
,”
Proc. Vib. Probl.
,
3
(
1
), pp.
57
68
.
53.
Kaliski
,
S.
, and
Woroszyl
,
S.
,
1965
, “
Flutter of a Deformable Rocket in Supersonic Flow According to the Second Asymptotic Approximation
,”
Proc. Vib. Probl.
,
1
(
16
), pp.
49
80
.
54.
Solarz
,
L.
,
1969
, “
The Mechanism of the Loss of Stability of a Non-Guided Deformable Rocket
,”
Proc. Vib. Probl.
,
4
(
10
), pp.
425
441
.
55.
Anderson, G. L., and Walter, W. W., 1976, “Qualitative Stability Characteristics of a Flexible Missile Subjected to a Circulatory Thrust,” Proceedings of the 8th Southeastern Conference on Theoretical and Applied Mechanics, Virginia Polytechnic Institute, pp. 379–389.
56.
Mladenov
,
K. A.
, and
Sugiyama
,
Y.
,
1997
, “
Stability of a Jointed Free-Free Beam Under End Rocket Thrust
,”
J. Sound Vib.
,
199
, pp.
1
15
.
57.
Kirillov, O. N., and Seyranian, A. P., 1999, “Optimization and Stability of a Flying Column,” Proceedings, of the 3rd World Congress of Structural and Multidisciplinary Optimization, May 17–21, Buffalo, New York.
58.
Chaudhry, Z., and Rogers, C. A., 1991, “Response of Composite Beams to an Internal Actuator Force,” Paper AIAA-91-1166-CP, pp. 186–193.
59.
Tanaka, M., and Idehara, R., 1999, “Robust Shape Design of Non-Conservative Structural System With Piezoelectric Elements,” Proceedings of the Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, Buffalo, New York.
60.
Horikawa, H., June 1977, “Active Feedback Control of an Elastic Body Subjected to a Non-Conservative Force,” Ph.D. dissertation, Princeton University.
61.
Wu
,
J. J.
,
1976a
, “
Missile Stability Using Finite Elements–Unconstrained Variational Approach
,”
AIAA J.
,
14
, pp.
313
319
.
62.
Wu
,
J. J.
,
1976b
, “
On Missile Stability
,”
J. Sound Vib.
,
49
(
1
), pp.
141
147
.
63.
Park
,
Y. P.
,
1985
, “
Dynamic Stability of a Free-Free Timoshenko Beam Under Controlled Follower Force
,”
Proc. JSME Vibration Conference
,
85
, pp.
43
53
.
64.
Park
,
Y. P.
, and
Mote
,
C. D.
,
1985
, “
The Maximum Controlled Follower Force On a Free-Free Beam Carrying a Concentrated Mass
,”
J. Sound Vib.
,
98
(
2
), pp.
247
256
.
65.
Dzhupanov
,
V. A.
,
2001a
, “
Twelve Methodical Notes On the Paradoxical Results in a Class of Dynamical Problems, Part 1
,”
J. Theor. Appl. Mech. (Sofia)
,
31
(
3
), pp.
74
100
.
66.
Dzhupanov
,
V. A.
,
2001b
, “
Twelve Methodical Notes On the Paradoxical Results in a Class of Dynamical Problems, Part 2
,”
J. Theor. Appl. Mech. (Sofia)
,
31
(
4
), pp.
55
72
.
67.
Hetenyi, M., 1950, Handbook of Experimental Stress Analysis, 1st ed., Wiley, New York.
68.
Drucker, D. C., 1968, “Thoughts on the Present and Future Interrelation of Theoretical and Experimental Mechanics,” Experimental Mechanics, William M. Murray Lecture 1967, 8(3), pp. 97–106.
69.
Drucker, D. C., 1962, “On the Role of Experiment in the Development of Theory,” Proceedings of the 4th U.S. National Congress of Applied Mechanics, ASME, New York, pp. 15–33.
70.
Bolotin, V. V., 1971, “Stability of Viscoelastic Systems Subjected to Non-Conservative Forces,” Instability of Continuous Systems, edited by H. Leipholz, Springer, Berlin, pp. 349–360.
71.
Herrmann, G., 2000, private communication, December 1.
72.
Franklin, A., 1986, The Neglect of Experiment, Cambridge University Press, London.
73.
Bazˇant, Z., and Celodin, L., 1991, Stability of Structures, Oxford University Press, New York.
74.
Herrmann, G., 1971, “Determinism and Uncertainty in Stability,” in Instability of Continuous Systems, H. Leipholz, ed., Springer, Berlin, pp. 240–247.
75.
Bolotin
,
V. V.
, and
Zhinzher
,
N. I.
,
1969
, “
Damping and Stability of Elastic Systems Subjected to Non-Conservative Forces
,”
Int. J. Solids Struct.
,
5
(
9
), pp.
965
989
.
76.
Walker
,
J. A.
,
1972
, “
Mathematical Modeling of Discrete Nonconservative Dynamic Systems
,”
Int. J. Solids Struct.
,
18
, pp.
249
259
.
77.
Devaney, R. L., 1989, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Reading.
78.
Trefethen, L. N., 1998, “Maxims About Numerical Mathematics,” Computers, Science, and Life, SIAM News.
79.
Ziegler, H., 1971, “Trace Effects in Stability,” in Instability of Continuous Systems, H. Leipholz, ed., Springer, Berlin, pp. 96–111.
80.
Huang, N. C., 2001, private communication February 20.
81.
Sugiyama, Y., 1998, private communication, June 16.
82.
Bohn
,
M. P.
, and
Herrmann
,
G.
,
1974b
, “
Instabilities of Spatial Systems of Articulated Pipes Conveying Fluid
,”
J. Fluids Eng.
,
96
, pp.
289
296
.
83.
Rousselet
,
J.
, and
Herrmann
,
G.
,
1977
, “
Flutter of Articulated Pipes of Finite Amplitude
,”
J. Appl. Mech.
,
44
, pp.
154
157
.
84.
Rousselet
,
J.
, and
Herrmann
,
G.
,
1981
, “
Dynamic Behavior of Continuous Cantilevered Pipes Conveying Fluid Near Critical Velocities
,”
J. Appl. Mech.
,
48
, pp.
946
947
.
85.
Sugiyama
,
Y.
,
1984
, “
Studies On Stability of Two-Degree-of-Freedom Articulated Pipes Conveying Fluid (The Effect of a Spring Support and Lumped Mass)
,”
Bull. JSME
,
27
,
2658
2663
.
86.
Sugiyama
,
Y.
, and
Noda
,
T.
,
1981
, “
Studies On the Stability of Two-Degree-of-Freedom Articulated Pipes Conveying Fluid (Effect of an Attached Mass and Damping)
,”
Bull. JSME
,
24
,
1354
1362
.
87.
Seyranya
,
A. P.
,
1990
, “
Destabilization Paradox in Stability Problems of Nonconservative Systems
,”
Adv. Mech.
,
13
(
2
), pp.
89
124
(in Russian).
88.
Kounadis
,
A. N.
,
1983
, “
The Existence of Regions of Divergence Instability for Non-Conservative Systems Under Follower Forces
,”
Int. J. Solids Struct.
,
19
(
8
), pp.
725
733
.
89.
Kounadis, A. N., 1995, “Nonlinear Dynamic Buckling and Stability of Autonomous Dissipative Discrete Structural Systems: Nonpotential Systems,” in Nonlinear Stability of Structures, edited by A. N. Kounadis and W. B. Kra¨tzig, eds., Springer Verlag, Wien, pp. 143–168.
90.
Jensen
,
F.
,
1999
, “
Editorial: How to Succeed in Modeling
,”
Quality and Reliability Engineering
,
15
, p.
159
159
.
91.
Levanony
,
D.
, and
Baruch
,
M.
,
1987
, “
Dynamic Stability of a NonUniform Beam Modeled in a Two-Degree-of-Freedom System
,”
Z. Angew. Math. Phys.
,
38
, pp.
874
882
.
92.
Bismark-Nasr
,
M. N.
,
1995
, “
Dynamic Stability of Shallow Shells Subjected to Follower Forces
,”
AIAA J.
,
33
, pp.
335
360
.
93.
Baruch, M., 2001, private communication.
94.
Bolotin, V. V., and Grigoliuk, E. I., 1976, “Review of Stability Theory,” Mechanics in the SSSR in 50 Years, Nauka, Moscow (in Russian).
95.
Gorshkov
,
A. G.
, and
Shklyarchuk
,
F. N.
,
1966
, “
Stability of an Elastic Body of Revolution in the Gas Flow Under the Action of a Follower Force
,”
Inzh. Zh. Mekh. Tverd. Tela
, No.
5
, pp.
151
154
.
96.
Dmitriyk, W., 1996a, “Two Buckling Modes of the Adjoint Static Instability of the Nonconservative Problems,” Proceedings of the 26th Israel’s Mechanical Engineering Conference, May 21–22, pp. 495–497.
97.
Dmitriyk, W., 1996b, “Static Behavior of the Ziegler Pendulum,” Proceedings of the 26th Israel’s Mechanical Engineering Conference, May 21–22, pp. 209–211.
98.
Gregory
,
R. W.
, and
Paı¨doussis
,
M. P.
,
1966b
, “
Unstable Oscillation of Tubular Cantilevers Conveying Fluid. II. Experiments
,”
Proc. R. Soc. London, Ser. A
,
293
, pp.
528
542
.
99.
Paı¨doussis
,
M. P.
,
1970
, “
Dynamics of Tubular Cantilevers Conveying Fluid
,”
J. Mech. Eng. Sci.
,
12
, pp.
85
103
.
100.
Doak
,
P. E.
,
1996
, “
Editor-in-Chief, Reply
,”
J. Sound Vib.
,
194
(
4
), pp.
636
638
.
101.
Atanackovic, T. A., 1997, Stability of Elastic Rods, World Scientific, Singapore, p. 380.
102.
Alfutov, N. A., 2000, Stability of Elastic Structures, Springer, Berlin, p. 120.
103.
Sorensen, R. A., 1992, Thought Experiments, Oxford University Press, New York, p. 27.
104.
Hempel, C., 1965, Aspects of Scientific Explanation, Free Press, New York, p. 165.
105.
Mach, E., 1943, Popular Scientific Lectures, 5th ed., Open Court Publishers, La Salle, IL, p. 220.
106.
Krinsky, Sh., 1970, “The Nature and Function of ‘Gedankenexperimente’ in Physics,” Ph.D. thesis, University of Michigan, pp. 22, 229.
107.
Hiebert, E., 1974, “Mach’s Conception,” in The Intersection Between Science and Philosophy, Y. Elkana, ed., Humanities, Atlantic Highlands, NJ.
108.
Yagn, Yu. I., and Parshin, L. K., 1967, “Experimental Study of Stability of a Bar Under Compression by a Follower Force,” Proceedings of the Leningrad Polytechnic Institute, 278, pp. 52–54 (in Russian).
109.
Faber, T. E., 1995, Fluid Mechanics for Physicists, Cambridge University Press, p. 161.
110.
Lamb, Sir Horace, 1932, Hydrodynamics, 6th ed., Cambridge University Press (reprinted in 1993).
111.
Sugiyama
,
Y.
,
Ryu
,
S.-U.
, and
Langthjem
,
M. A.
,
2002
, “
Beck’s Column as the Ugly Duckling
,”
J. Sound Vib.
,
254
(
2
), pp.
407
410
.
112.
Natke, H. G., and Cempel, C., 1997, Model-Aided Diagnosis of Mechanical Systems, Springer, Berlin, p. 8.
113.
Popp, K., 1999, “Examples of Nonsmooth Mechanical Systems—An Overview,” Proceedings, IUTAM Symposium on Unilateral Multibody Contacts, F. Pfeiffer and Ch. Glockner, eds., Kluwer, Dordrecht, pp. 233–242.
Supplemental Bibliography
1.
Adali
,
S.
,
1982
, “
Stability of a Rectangular Plate Under Nonconservative and Compressive forces
,”
Int. J. Solids Struct.
,
18
(
12
), pp.
1043
1052
.
2.
Alfutov
,
N. A.
, and
Popov
,
B. G.
,
1988
, “
Stability of a Self-Gravitating Bar
,”
Mech. Solids
,
23
(
5
), pp.
175
178
.
3.
Anderson
,
G. L.
,
1972
, “
On the Role of the Adjoint Problem in Dissipative, Nonconservative Problems of Elastic Stability
,”
Meccanica
,
7
, pp.
165
173
.
4.
Augusti
,
G.
,
1968
, “
Instability of Struts Subject to Radiant Heat
,”
Meccanica
,
3
(
3
), pp.
167
176
.
5.
Barta, J., 1971, “Examples of the Stabilizing and Destabilizing Effects,” in Instability of Continuous Systems, H. Leipholz, ed., Springer, Berlin, pp. 263–265.
6.
Blottner
,
F. G.
,
1990
, “
Accurate Navier–Stokes Results for the Hypersonic Flow Over a Spheric Nosetip
,”
J. Spacecr. Rockets
,
27
(
2
), pp.
113
122
.
7.
Bohn
,
M. P.
, and
Herrmann
,
G.
,
1974
, “
The Dynamic Behavior of Articulated Pipes Conveying Fluid with Periodic Flow Rate
,”
J. Appl. Mech.
,
41
, pp.
55
62
.
8.
Choset
,
H.
, and
Henning
W.
,
1999
, “
A Follow-the-Leader Approach to Serpentine Robot Motion Planning
,”
J. Aerospace Engineering
,
12
(
2
) pp.
65
73
.
9.
Dermendjian-Ivanova
,
D. S.
,
1992
, “
Critical Flow Velocities of a Simply Supported Pipeline on an Elastic Foundation
,”
J. Sound Vib.
,
157
(
2
), pp.
370
374
.
10.
Dermendjian-Ivanova, D. S., and Dzhupanov, V. A., 1990, “Analytical and Numerical Investigations of the Hydroelasticity of One-Span Pipes in Their Parameter Apace,” J. Theor. Appl. Mech. (Sofia), 21(4), pp. 43–50 (in Bulgarian).
11.
De Rosa
,
M. A.
,
Colangelo
,
F.
, and
Messina
,
F.
,
Colangelo
,
F.
,
2003
, “
Dynamic Stability of Beams on Two-Parameter Elastic Soil Subjected to Partially Tangential Forces
,”
Mech. Res. Commun.
,
30
, pp.
187
191
.
12.
Dmitriyk, W., 2001, “Hidden Solutions of Stability Problems,” Proceedings of the 41st Israel’s Annual Conference of Aerospace Sciences, February 21–22.
13.
Doare´, O., and de Langre, E., 2002, “Effect of Length on the Instability of Hanging Pipes,” Proceedings of FSI, AE & FIV+N, November 17–22, Paper IMACE 2002-34018, New Orleans, Louisiana.
14.
Doare´
,
O.
, and
de Langre
,
E.
,
2002
, “
Local and Global Stability of Fluid-Conveying Pipes on Elastic Foundations
,”
J. Fluids Struct.
,
16
(
1
), pp.
1
14
.
15.
Done
,
G. T. S.
,
1973
, “
Damping Configurations That Have a Stabilizing Influence On Nonconservative Systems
,”
Int. J. Solids Struct.
,
9
, pp.
203
215
.
16.
Duhem, P., 1976, “Physical Theory and Experiment,” Can Theories Be Refuted?, S. G. Hardling, ed., Reidel, Dordrecht, p. 1.
17.
Dzhupanov, V. A., 2000, “Principle of Equal Presence in the Problem of the Dynamic Interaction of a Cantilever Pipe Conveying Fluid with Elasto-viscous Medium,” Flow-Induced Vibration, S. Ziada and Th. Staubli, eds., Balkema, Rotterdam, pp. 355–362.
18.
Elishakoff, I., 2001, personal communication, 18 July.
19.
Elishakoff
,
I.
, and
Jacoby
,
A.
,
1987
, “
Influence of Various Types of Elastic Foundation On the Divergence and Flutter of Ziegler’s Model Structure
,”
Z. Angew. Math. Phys.
,
38
, pp.
779
784
.
20.
Feodosiev
,
V. I.
,
1984
, “
Some Unusual Examples of Equilibrium Stability of Elastic Systems
,”
Mech. Solids
,
19
(
1
), pp.
123
128
.
21.
de Finetti, B., 1974, Theory of Probability: A Critical Introductory Treatment, Wiley, New York.
22.
Fung, Y. C., and Sechler, E. E., 1960, “Instability of Thin Elastic Shells,” Structural Mechanics, J. N. Goodier and N. J. Hoff, eds., Pergamon, New York, pp. 115–168.
23.
Gladwell
,
G. M. L.
,
1990
, “
Follower Forces: Leipholz’s Early Researches in Elastic Stability
,”
Basin Res.
,
17
, pp.
277
286
.
24.
Glen, J., and Littner, G., eds., 1984, A Dictionary of Mathematics, Harper and Row, London, p. 130.
25.
Goroshko, O. A., 1965, Dynamics of Elastics Structure in Conditions of a Free Flight, Naukova Dumka, Kiev (in Russian).
26.
Hacking, I., 1983, Representing and Intervening, Cambridge University Press.
27.
Hagedorn
,
P.
,
1970
, “
On the Destabilizing Effect of Non-Linear Damping in Nonconservative Systems with Follower Forces
,”
Int. J. Non-Linear Mech.
,
5
, pp.
341
358
.
28.
Herrmann
,
G.
, and
Nemat-Nasser
,
S.
,
1967
, “
Instability Modes of Cantilevered Bars Induced by Fluid Flow Through Attached Pipes
,”
Int. J. Solids Struct.
,
3
, pp.
39
52
.
29.
Herrmann, G., Nemat-Naser, S., and Prasad, S. N., 1966, “Models Demonstrating Instability of Non-Conservative Mechanical Systems,” Technical Report No. 66-4, The Technological Institute Department of Civil Engineering, Northwestern University.
30.
Higuchi, K., 1992, “Experimental Study On Dynamic Instabilities of a Column Thrusted by Non-Conservative Forces,” Paper AIAA-92-2331-CP.
31.
Horgan
,
J.
,
1995
, “
From Complexity to Perplexity
,”
Sci. Am.
,
272
(
6
), pp.
104
109
.
32.
Huseyin
,
K.
,
1976
, “
Vibrations and Stability of Mechanical Systems
,”
Shock Vib. Dig.
, No. 8, 56–65.
33.
Huseyin, K., 1978, Vibrations and Stability of Multiple Parameter Systems, International Publishing, Alphen aan den Rijin, p. 58.
34.
Kalmbach
,
C. F.
,
Dowell
,
E. H.
, and
Moon
,
F. C.
,
1974
, “
The Suppression of a Dynamic Instability of an Elastic Body Using Feedback Control
,”
Int. J. Solids Struct.
,
10
, pp.
361
367
.
35.
Katayama, K., July 1997, “Experimental Verification of the Effect of Rocket Thrust on the Dynamic Stability of Cantilever Columns,” Ph.D. thesis, Osaka Prefecture University.
36.
Katsitadze, O. I., 1970, “About Stability of Columns During the Dynamic Loading by Axial Follower Forces,” Stroitelnaya Mekhanika i Raschet Sooruzhenii, No. 2, pp. 76–77 (in Russian).
37.
Kemp, P., 1997, The Oxford Dictionary of Literary Quotations, p. 114, Oxford University Press, Oxford.
38.
Kirillov
,
O. N.
, and
Seyranian
,
A. P.
,
2002
, “
Solution to the Hermann-Smith Problem
,”
Dokl. Phys.
,
47
(
10
), pp.
767
771
.
39.
Kolkka
,
R. W.
,
1984
, “
On the Non-Linear Beck’s Problem with External Damping
,”
Int. J. Non-Linear Mech.
,
14
, pp.
497
505
.
40.
Konikow
,
L. F.
, and
Bredehoeft
,
Y. D.
,
1992
, “
Grounduster Models Cannot be Validated
,”
Adv. Water Resour.
,
15
, pp.
75
78
.
41.
Kordas
,
Z.
, and
Zyczkowski
,
M.
,
1964
, “
On the Loss of Stability of a Rod Under a Super-Tangential Force
,”
Arch. Mech. Stosow
,
15
(
1
), pp.
7
31
.
42.
Kornecki
,
A.
,
1973
, “
On the Character of Instability of Certain Aeroelastic Systems
,”
J. Appl. Mech.
,
40
, pp.
616
617
.
43.
Kounadis
,
A. N.
,
1977
, “
Stability of Elastically Restrained Timoshenko Cantilevers with Attached Masses Subjected to a Follower Force
,”
J. Appl. Mech.
,
44
, pp.
731
736
.
44.
Kounadis
,
A. N.
, and
Simitses
,
G. J.
,
1997
, “
Non-Conservative Systems with Syymmetrizable Stiffness Matrices Exhibiting Limit Cycles
,”
Int. J. Solids Struct.
,
32
(
3
), pp.
315
529
.
45.
Lakatos, I., 1970, “Falsification and the Methodology of Scientific Research Programmes,” Criticism of Growth of Knowledge, I. Lakatos and D. Musgrave, eds., Cambridge University Press, Cambridge, pp. 91–196.
46.
de Langre
,
E.
, and
Ouvrard
,
A. E.
,
1999
, “
Absolute and Convective Bending Instabilities in Fluid Conveying Fluids
,”
J. Fluids Struct.
,
13
, pp.
663
680
.
47.
Leijnse
,
A.
, and
Hassanizadeh
,
S. M.
,
1994
, “
Model Definition and Model Validation
,”
Adv. Water Resour.
,
17
, pp.
197
200
.
48.
Leipholz, H., 1975, Die Direkte Methode der Variationsrechnung und Eigenwertprobleme der Technik, edited by G. Braun, Karlsruhe, p. 175 (in German).
49.
Leipholz, H. H. E., 1987, Stability Theory, Teubner, Stuttgart.
50.
Lottati
,
I.
, and
Elishakoff
,
I.
,
1987
, “
A New “Destabilization” Phenomenon: Influence of Rotary Damping
,”
Ingenieurs
,
57
, pp.
413
419
.
51.
Mahrenholtz
,
O.
, and
Boyact
,
R.
,
1981
, “
On the Shape of Characteristic Curves for Optimal Structures Under Non-Conservative Loads
,”
Ingenieurs
,
50
, pp.
141
148
.
52.
Matsumoto
,
G. Y.
, and
Mote
,
C. D.
,
1972
, “
Time Delay Instabilities in Large Order Systems with Controlled Follower Forces
,”
J. Dyn. Syst., Meas., Control
,
39
, pp.
330
334
.
53.
Menditto
,
G.
,
1974
, “
Elastic Stability of a Uniform Cantilevered Beam on Elastic Foundation with a Shear Layer Subjected to a Follower Force
,”
Meccanica
,
9
(
4
), pp.
299
303
.
54.
Morgan
,
M. R.
, and
Sinha
,
S. C.
,
1983
, “
Influencing of a Viscoelastic Foundation On the Stability of Beck’s Column: An Exact Analysis
,”
J. Sound Vib.
,
91
(
1
), pp.
85
101
.
55.
Mottershead
,
J. E.
,
Ouyang
,
H.
,
Cartemell
,
M. P.
, and
Friswell
,
M. I.
,
1997
, “
Parametric Resonances in an Annular Disc, With a Rotating System of Distributed Mass and Elasticity, and the Effects of Friction and Damping
,”
Proc. R. Soc. London, Ser. A
,
453
, pp.
1
19
.
56.
Nemat-Nasser, S., 1996, “Experimental Studies of Instability of Elastic Systems Subjected to Non-Conservative Loads” (private communication, October 7).
57.
Oreskes
,
N.
,
Shrader-Frechetle
,
K.
, and
Belitz
,
K.
,
1994
, “
Verification, Validation and Confirmation of Numerical Models in the Earth Sciences
,”
Science
,
263
, pp.
641
646
, 4.
58.
Paı¨doussis
,
M. P.
,
1970
, “
Dynamics of Tubular Cantilevers Conveying Fluid
,”
J. Mech. Eng. Sci.
,
12
(
2
), pp.
98
105
.
59.
Paı¨doussis
,
M. P.
,
1992
, “
Calvin Rice Lecture: Some Curiosity Driven Research in Fluid Structure Interactions and Its Current Applications
,”
J. Pressure Vessel Technol.
,
115
, pp.
2
14
.
60.
Paı¨doussis
,
M. P.
, and
Deksnis
,
E. B.
,
1970
, “
Articulated Models of Cantilevers Containing Fluid: The Study of a Paradox
,”
J. Mech. Eng. Sci.
,
12
, pp.
288
300
.
61.
Panovko
,
Ya. G.
, and
Sorokin
,
S. V.
,
1987
, “
Quasi-Stability of Viscoelastic Systems with Follower Forces
,”
Mech. Solids
,
2
, pp.
128
132
.
62.
Panovko, Ya. G., 1985, Mechanics of Deformable Solid Body, Nauka, Moscow, pp. 43–51 (in Russian).
63.
Parker, S. P., (ed.), 1984, McGraw-Hill Dictionary of Scientific and Technical Terms, 3rd ed., McGraw–Hill, New York, p. 1032.
64.
Plaut
,
R. H.
,
1993
, “
Comments On Critical Flow Velocities of a Simply Supported Pipeline on an Elastic Foundation
,”
J. Sound Vib.
,
168
(
3
), p.
548
548
.
65.
Prasad
,
S. N.
, and
Herrmann
,
G.
,
1969
, “
The Usefulness of Adjoint Systems in Solving Nonconservative Stability Problems of Elastic Continua
,”
Int. J. Solids Struct.
,
5
, pp.
727
735
.
66.
Prasad
,
S. N.
, and
Herrmann
,
G.
,
1970
, “
Stability of a Cantilevered Bar Subjected to a Transverse Follower Force of Fluid Jet
,”
Ingenieurs
,
39
(
5
), pp.
341
356
.
67.
Roache, P., 1998, Verification and Validation in Computational Science and Engineering, Hermosa Publishers, Albuquerque.
68.
Ryu
,
B. Y.
, and
Sugiyama
,
Y.
,
1994
, “
Dynamic Stability of Cantilevered Timoshenko Columns Subjected to a Rocket Thrust
,”
Comput. Struct.
,
51
(
4
), pp.
331
335
.
69.
Sasou
,
K.
, and
Reason
,
J.
,
1999
, “
Team Errors: Definition and Taxonomy
,”
Reliability Eng. Sys. Safety
,
65
, pp.
1
9
.
70.
Seyranyan
,
A. P.
,
1994
, “
Collision of Eigenvalues in Linear Oscillatory Systems
,”
J. Appl. Math. Mech.
,
58
(
5
), pp.
805
813
.
71.
Seyranyan
,
A. P.
,
1996
, “
Stabilization of Nonconservative Systems By Deceptive Forces and Uncertainties in the Critical Load
,”
Phys. Dokl.
,
41
(
5
), pp.
214
217
.
72.
Seyranyan, A. P., 2001, private communication (March).
73.
Semler
,
C.
,
Alighanbari
,
H.
, and
Paı¨doussis
,
M. P.
,
1998
, “
A Physical Explanation of the Destabilizing Effect of Damping
,”
J. Appl. Mech.
,
65
, pp.
642
648
.
74.
Smith
,
T. E.
,
1969
, “
Buckling of a Beam on a Wieghardt-Type Elastic Foundation
,”
Z. Angew. Math. Phys.
,
43
, pp.
641
645
.
75.
Stein
,
R. A.
, and
Tobriner
,
W. M.
,
1970
, “
Vibration of Pipes Containing Flowing Fluids
,”
J. Appl. Mech.
,
37
, pp.
906
916
.
76.
Sugiyama, Y., 1983, “Stabilizing Effect of Damping on the Stability of Non-Conservative Systems Conveying Fluid,” Solid Mechanics Archives, 8, 337–362.
77.
Sugiyama
,
Y.
,
Kashima
,
K.
, and
Kawagoe
,
H.
,
1976
, “
On an Unduly Simplified Model in the Non-Conservative Problems of Elastic Stability
,”
J. Sound Vib.
,
45
, pp.
237
247
.
78.
Sugiyama
,
Y.
,
Katayama
,
T.
,
Kanki
,
E.
,
Nishino
,
K.
, and
A˚kesson
,
B.
,
1996
, “
Stabilization of Cantilevered Flexible Structures By Means of an Internal Flowing Fluid
,”
J. Fluids Struct.
,
10
, pp.
653
661
.
79.
Sugiyama, Y., Ryu, S.-U., Hamatani, M., and Iwama, T., 2003, “Computational Approach to Damped Beck’s Column,” International Conference “Physics and Control,” Invited Session “Stability and Control Problems in Mechanics: Nonconservativeness, Bifunctions, Singularities” (Seyranian, A. P. and Kirillov, O. N., organizers).
80.
Sundararajan
,
C.
,
1973
, “
A Theorem on the Stability of Elastic Systems
,”
Z. Angew. Math. Phys.
,
24
, pp.
287
290
.
81.
Sundararajan
,
C.
,
1976
, “
Influence of an Elastic End Support On the Vibration and Stability of Beck’s Column
,”
Int. J. Mech. Sci.
,
18
, pp.
213
241
.
82.
Sundararamaiah
,
V.
, and
Venkateswara
,
Rao G.
,
1983
, “
Stability of Short Beck and Leipholz Columns On Elastic Foundations
,”
AIAA J.
,
21
(
7
), pp.
1053
1054
.
83.
Tanaka, M., Tamura, K., and Idehara, R., 1997, “Optimization of Adaptive Beck’s Column With Piezoelectric Elements,” Proceedings of the Second World Congress of Structural and Multidisciplinary Optimization, W. Gutkovski and Z. Mroz, eds., Vol. 1, pp. 399–404.
84.
Tani
,
J.
, and
Sudani
,
Y.
,
1995
, “
Active Flutter Surpresion of a Vertical Pipe Conveying Fluid
,”
JSME Int. J. Ser. C
,
38
(
1
), pp.
55
58
.
85.
Thompson, J. M. T., 1982, Instabilities and Catastrophes in Science and Engineering, Wiley, New York.
86.
Thompson
,
J. M. T.
,
1982
, “‘
Paradoxical’ Mechanics Under Fluid Flow
,”
Nature (London)
,
296
, pp.
135
137
.
87.
Thomsen, J. J., 1997, Vibrations and Stability, McGraw–Hill, London.
88.
Venkateswara Rao
,
G.
, and
Kanaka Raju
,
K.
,
1982
, “
Stability of Tapered Cantilever Columns With an Elastic Foundation Subjected to a Concentrated Follower Force at the Free End
,”
J. Sound Vib.
,
81
(
1
), pp.
147
151
.
89.
Walker
,
J. A.
,
1978
, “
A Note On Stabilizing Damping Configurations for Linear Non-Conservative Systems
,”
Int. J. Solids Struct.
,
9
(
12
), pp.
1543
1545
.
90.
Walter
,
W. W.
, and
Levinson
,
M.
,
1968
, “
Destabilization of a Nonconservatively Loaded Elastic System Due to Rotary Inertia
,”
Can. Aeronaut. Space Institute
,
1
(
2
), pp.
91
93
.
91.
Webster, N., and Teall, E. N., 1984, New Concise Webster’s Dictionary, Modern Publishing, p. 210.
92.
Wein, B., 2001, Intellectual honesty, The Jerusalem Post International Edition, November 30.
93.
Xiong, Y., 1988, “Theoretical and Experimental Investigations On the Vibration and Stability of Non-Conservative Systems,” Ph.D. thesis, Beijing University (in Chinese).
94.
Xiong
,
Y.
, and
Tabarrok
,
B.
,
1993
, “
A Note On the Dynamic Behavior of Discretized Non-Conservative Systems
,”
J. Sound Vib.
,
162
(
3
), pp.
429
439
.
95.
Xiong, Y., and Wang, T. K., 1987, “Stability of a Beck-Type Laminated Column,” Proceedings of the Sixth International Conference of Composite Materials, ICCM VI, England, 5, 38–5.46.
96.
Xiong
,
Y.
, and
Wang
,
T. K.
,
1988
, “
A Centripetal-Load Model to Beck’s Column
,”
ACTA Aeronaut. Astronaut. Sinica
,
9
, pp.
A.290–A293
A.290–A293
.
97.
Ylken
,
A.
, and
Mikkola
,
M.
,
1967
, “
A Beam On a Wieghardt-Type Elastic Foundation
,”
Int. J. Solids Struct.
,
3
, pp.
617
633
.
98.
Ziegler, H., 1956, “On the Concepts of Elastic Stability,” in Advances in Applied Mechanics, Academic, New York, Vol. 4, pp. 351–403.
99.
Zorii
,
L. M.
, and
Chernukha
,
Yu. A.
,
1971
, “
Influence of Supports On the Dynamic Stability of Elastic Column
,”
Prikl. Mekh.
,
7
(
2
), pp.
134
136
(in Russian).
You do not currently have access to this content.