The present work is concerned with deterministic nonlinear phenomena arising in the finite-amplitude dynamics of elastic suspended cables. The underlying theoretical framework has been addressed in Part I of this Special Issue, where the mechanical system and its mathematical modeling have been presented, and different techniques for the analysis of nonlinear dynamics have been illustrated with reference to the suspended cable. Herein, we discuss the main features of system regular and complex response, and the associated bifurcational behavior. Nonlinear phenomena are considered separately for single-degree-of-freedom and multidegree-of-freedom cable models, by distinguishing between theoretical and experimental results and comparing them with each other. Regular and nonregular vibrations are considered either in the absence of internal resonance or under various internal/external, and possibly simultaneous, resonance conditions. The most robust classes of steady periodic motions, the relevant response scenarios in control parameter space, and the main features of multimodal interaction phenomena are summarized. Bifurcation and chaos phenomena are discussed for the single-dof model by analyzing the local and global features of steady nonregular dynamics. For the experimental model, the most meaningful scenarios of transition to chaos are illustrated, together with the properties of the ensuing quasiperiodic and chaotic attractors. Finally, the important issues of determining system dimensionality and identifying properly reduced-order theoretical models of cable are addressed. There are 185 references listed in this review article.

1.
Rega
G
(
2004
),
Nonlinear vibrations of suspended cables, Part I: Modeling and analysis
,
Appl. Mech. Rev.
57
(
6
),
443
478
.
2.
Carrier
GF
(
1945
),
On the nonlinear vibration problem of the elastic string
,
Q. Appl. Math.
3
,
157
165
.
3.
Anand
GV
(
1966
),
Nonlinear resonance in stretched strings with viscous damping
,
J. Acoust. Soc. Am.
40
,
1517
1528
.
4.
Anand
GV
(
1969
),
Stability of nonlinear oscillations of a stretched string
,
J. Acoust. Soc. Am.
46
,
667
677
.
5.
Narashima
R
(
1968
),
Nonlinear vibration of an elastic string
,
J. Sound Vib.
8
,
134
146
.
6.
Antman
SS
(
1980
),
The equations for large vibrations of strings
,
Am. Math. Monthly
87
,
359
370
.
7.
Miles
J
(
1984
),
Resonant, nonplanar motion of a stretched string
,
J. Acoust. Soc. Am.
75
,
1505
1510
.
8.
Tufillaro
NB
(
1989
),
Nonlinear and chaotic string vibrations
,
Am. J. Phys.
57
,
408
414
.
9.
Johnson
JM
, and
Bajaj
AK
(
1989
),
Amplitude modulated and chaotic dynamics in resonant motion of strings
,
J. Sound Vib.
128
,
87
107
.
10.
O’Reilly
O
, and
Holmes
PJ
(
1992
),
Non-linear, non-planar and non-periodic vibrations of a string
,
J. Sound Vib.
153
,
413
435
.
11.
Leissa
AW
, and
Saad
AM
(
1994
),
Large amplitude vibrations of strings
,
ASME J. Appl. Mech.
61
,
296
301
.
12.
Nayfeh
SA
,
Nayfeh
AH
, and
Mook
DT
(
1995
),
Nonlinear response of a taut string to longitudinal and transverse end excitation
,
J. Vib. Control
1
,
307
334
.
13.
Rubin
MB
, and
Gottlieb
O
(
1996
),
Numerical solutions of forced vibration and whirling of a nonlinear string using the theory of a Cosserat point
,
J. Sound Vib.
197
,
85
101
.
14.
Nayfeh AH, and Mook DT (1979), Nonlinear Oscillations, Wiley, New York.
15.
Luongo
A
,
Rega
G
, and
Vestroni
F
(
1984
),
Planar non-linear free vibrations of an elastic cable
,
Int. J. Non-Linear Mech.
19
,
39
52
.
16.
Rega
G
,
Vestroni
F
, and
Benedettini
F
(
1984
),
Parametric analysis of large-amplitude free vibrations of a suspended cable
,
Int. J. Solids Struct.
20
,
95
105
.
17.
Takahashi
K
, and
Konishi
Y
(
1987a
),
Non-linear vibrations of cables in three-dimensions, Part I: Nonlinear free vibrations
,
J. Sound Vib.
118
,
69
84
.
18.
Irvine
HM
, and
Caughey
TK
(
1974
),
The linear theory of free vibrations of a suspended cable
,
Proc. R. Soc. London, Ser. A
341
,
299
315
.
19.
Takahashi
K
,
Wu
Q
, and
Nakamura
S
(
2003
),
In-plane antisymmetric response of cables through bifurcation under symmetric sinusoidally time-varying load
,
J. Sound Vib.
268
,
1
14
.
20.
Rega G, Lacarbonara W, and Nayfeh AH (2000), Reduction methods for nonlinear vibrations of spatially continuous systems with initial curvature, IUTAM Symp Recent Developments in Nonlinear Oscillations of Mechanical Systems, E Kreuzer and N van Dao (eds), Solid Mechanics and Its Applications, 77, 235–246, Kluwer, Dordrecht.
21.
Lacarbonara
W
(
1999
),
Direct treatment and discretizations of nonlinear spatially continuous systems
,
J. Sound Vib.
221
,
849
866
.
22.
Arafat
HN
, and
Nayfeh
AH
(
2003
),
Nonlinear responses of suspended cables to primary resonance excitations
,
J. Sound Vib.
266
,
325
354
.
23.
Gattulli
V
,
Martinelli
L
,
Perotti
F
, and
Vestroni
F
(
2004
),
Nonlinear oscillations of cables under harmonic loading using analytical and finite element models
,
Comput. Methods Appl. Mech. Eng.
193
,
69
85
.
24.
Desai
YM
,
Popplewell
N
,
Shah
A
, and
Buragohain
DN
(
1988
),
Geometric nonlinear analysis of cable supported structures
,
Comput. Struct.
29
,
1001
1009
.
25.
Martinelli
L
, and
Perotti
F
(
2001
),
Numerical analysis of the nonlinear dynamic behaviour of suspended cables under turbulent wind excitation
,
Int. J. Struct. Stab. Dyn.
1
,
207
233
.
26.
Rienstra SW (1988), A nonlinear theory of free vibrations of single and coupled suspended elastic cables, Report WD 88-06, Katholieke Univ Nijmegen, The Netherlands.
27.
Rienstra SW (1990), Nonlinear free vibrations of coupled spans of suspended cables, Proc. 3rd Eur. Conf. Mathematics in Industry, J Manley et al. (eds), Kluwer and Teubner, Stuttgart, 133–144.
28.
Rawlins
CB
(
2004
),
Effect of non-linearity in free large oscillations of a shallow catenary
,
J. Sound Vib.
273
,
857
874
.
29.
Irvine HM (1981), Cable Structures, MIT Press (1992, Dover Publ, New York).
30.
Benedettini
F
, and
Rega
G
(
1987
),
Nonlinear dynamics of an elastic cable under planar excitation
,
Int. J. Non-Linear Mech.
22
,
497
509
.
31.
Gattulli
V
,
Pasca
M
, and
Vestroni
F
(
1997
),
Nonlinear oscillations of a nonresonant cable under in-plane excitation with a longitudinal control
,
Nonlinear Dyn.
14
,
139
156
.
32.
Benedettini
F
, and
Rega
G
(
1989
),
Planar non-linear oscillations of elastic cables under superharmonic resonance conditions
,
J. Sound Vib.
132
,
353
366
.
33.
Benedettini
F
,
Rega
G
, and
Salvatori
A
(
1992
),
Prediction of bifurcation and chaos for an asymmetric elastic oscillator
,
Chaos, Solitons Fractals
2
,
303
321
.
34.
Rega
G
, and
Benedettini
F
(
1989
),
Planar non-linear oscillations of elastic cables under subharmonic resonance conditions
,
J. Sound Vib.
132
,
367
381
.
35.
Rega G (1995), Bifurcation and chaos in the Helmholtz-Duffing oscillator, Bifurcation and Chaos, J Awrejcewicz (ed), Springer-Verlag, Berlin, 191–215.
36.
Szemplinska-Stupnicka
W
, and
Bajkowski
J
(
1986
),
The 1/2-subharmonic resonance and its transition to chaotic motion in a nonlinear oscillator
,
Int. J. Non-Linear Mech.
21
,
401
419
.
37.
Rega
G
,
Benedettini
F
, and
Salvatori
A
(
1991
),
Periodic and chaotic motions of an unsymmetric oscillator in nonlinear structural dynamics
,
Chaos, Solitons Fractals
1
,
39
54
.
38.
Benedettini
F
, and
Rega
G
(
1990
),
Numerical simulations of chaotic dynamics in a model of elastic cable
,
Nonlinear Dyn.
1
,
23
38
.
39.
Moon FC (1992), Chaotic and Fractal Dynamics, Wiley, New York.
40.
Parker TS, and Chua LO (1989), Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, New York.
41.
Hsu
CS
(
1992
),
Global analysis by cell mapping
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
2
,
727
771
.
42.
Seydel R (1994), Practical Bifurcation and Stability Analysis, Springer-Verlag, New York.
43.
Guckenheimer J, and Holmes P (1983), Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag, New York.
44.
Wiggins S (1990), Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York.
45.
Abraham RH, and Shaw CD (1992), Dynamics: The Geometry of Behaviour, Addison-Wesley, Redwood City.
46.
Rega
G
,
Salvatori
A
, and
Benedettini
F
(
1995
),
Numerical and geometrical analysis of bifurcation and chaos for an asymmetric elastic nonlinear oscillator
,
Nonlinear Dyn.
7
,
249
272
.
47.
Rega
G
, and
Salvatori
A
(
1996a
),
Bifurcation structure at 1/3-subharmonic resonance in an asymmetric nonlinear elastic oscillator
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
6
,
1529
1546
.
48.
Ueda
Y
(
1991
),
Survey of regular and chaotic phenomena in the forced Duffing oscillator
,
Chaos, Solitons Fractals
1
,
199
231
.
49.
Grebogi
C
,
Ott
E
, and
Yorke
JA
(
1983
),
Crises, sudden changes in chaotic attractors, and transient chaos
,
Physica D
7
,
181
200
.
50.
Grebogi
C
,
Ott
E
, and
Yorke
JA
(
1987
),
Basin boundary metamorphoses: Changes in accessible boundary orbits
,
Physica D
24
,
243
262
.
51.
Kleczka M, Kreuzer E, and Wilmers C (1989), Crises in mechanical systems, IUTAM Symp Nonlinear Dynamics in Engineering Systems, W Schiehlen (ed), Springer-Verlag, Berlin-Heidelberg, 141–148.
52.
Soliman
MS
, and
Thompson
JMT
(
1991
),
Basin organization prior to a tangled saddle-node bifurcation
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
1
,
107
118
.
53.
Sommerer
JC
, and
Grebogi
C
(
1992
),
Determination of crisis parameter values by direct observation of manifold tangencies
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
2
,
383
396
.
54.
Katz
AL
, and
Dowell
EH
(
1994
),
From single well chaos to cross well chaos: A detailed explanation in terms of manifold intersections
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
4
,
933
941
.
55.
Rega G, and Salvatori A (1996b), Attractor-basin sudden bifurcation mechanisms in nolinear structural dynamics, Proc. Int. Conf. Nonlinearity, Bifurcation and Chaos, J Awrejcewicz and CH Lamarque (eds), Lodz, 222–225.
56.
Lai YC, Grebogi C, and Yorke JA (1992), Sudden change in the size of chaotic attractors: How does it occur? Applied Chaos, JH Kim and J Stringer (eds), Wiley, New York, 441–455.
57.
Salvatori A, and Rega G (1996), Computational characterization of attractor-basin structure in the nonlinear dynamics of multidegree-of-freedom structural models, Structural Dynamics, G Augusti, C Borri, and P Spinelli (eds), Balkema, Rotterdam, 341–348.
58.
Nayfeh
AH
, and
Balachandran
B
(
1989
),
Modal interactions in dynamical and structural systems
,
Appl. Mech. Rev.
42
,
S175–S201
S175–S201
.
59.
Nayfeh AH (2000), Nonlinear Interactions. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science, New York.
60.
Lacarbonara
W
,
Rega
G
, and
Nayfeh
AH
(
2003
),
Resonant nonlinear normal modes of shallow one-dimensional structural systems, Part I: Analytical treatment
,
Int. J. Non-Linear Mech.
38
,
851
872
.
61.
Lacarbonara
W
, and
Rega
G
(
2003
),
Resonant nonlinear normal modes of shallow one-dimensional structural systems, Part II: Activation/orthogonality conditions
,
Int. J. Non-Linear Mech.
38
,
873
887
.
62.
Srinil
N
,
Rega
G
, and
Chucheepsakul
S
(
2004
),
Three-dimensional nonlinear coupling and dynamic tension in the large amplitude free vibrations of arbitrarily sagged cables
,
J. Sound Vib.
269
,
823
852
.
63.
Benedettini
F
,
Rega
G
, and
Vestroni
F
(
1986
),
Modal coupling in the free nonplanar finite motion of an elastic cable
,
Meccanica
21
,
38
46
.
64.
Luongo
A
,
Rega
G
, and
Vestroni
F
(
1982
),
Monofrequent oscillations of a nonlinear model of suspended cable
,
J. Sound Vib.
82
,
247
259
.
65.
Yamaguchi H, Miyata T, and Ito M (1978), A behaviour on nonlinear dynamic response of cable systems, Proc. 24th Symp. Structural Engineering, 55–61.
66.
Takahashi
K
, and
Konishi
Y
(
1987b
),
Non-linear vibrations of cables in three-dimensions, Part II: Out-of-plane vibration under in-plane sinusoidally time-varying load
,
J. Sound Vib.
118
,
85
97
.
67.
Iyengar
RN
, and
Rao
GVV
(
1988
),
Free vibrations and parametric instability of a laterally loaded cable
,
J. Sound Vib.
127
,
231
243
.
68.
Pasca
M
,
Vestroni
F
, and
Gattulli
V
(
1998
),
Active longitudinal control of wind-induced oscillations of a suspended cable
,
Meccanica
33
,
255
266
.
69.
Zhao
YY
,
Wang
LH
,
Chen
DL
, and
Jiang
LZ
(
2002
),
Non-linear dynamic analysis of the two-dimensional simplified model of an elastic cable
,
J. Sound Vib.
255
,
43
59
.
70.
El-Attar
M
,
Ghobarah
A
, and
Aziz
TS
(
2000
),
Non-linear cable response to multiple support periodic excitation
,
Eng. Struct.
22
,
1301
1312
.
71.
Tadjbakhsh
IG
, and
Wang
Y
(
1990
),
Wind-driven nonlinear oscillations of cables
,
Nonlinear Dyn.
1
,
265
291
.
72.
Cardona
A
,
Lerusse
A
, and
Ge´radin
M
(
1998
),
Fast Fourier nonlinear vibration analysis
,
Comput. Mech.
22
,
128
142
.
73.
Al-Noury
SI
, and
Ali
SA
(
1985
),
Large-amplitude vibrations of parabolic cables
,
J. Sound Vib.
101
,
451
462
.
74.
Luongo
A
,
Rega
G
, and
Vestroni
F
(
1987
),
On large-amplitude vibrations of cables
,
J. Sound Vib.
116
,
573
575
.
75.
Luongo
A
,
Paolone
A
, and
Piccardo
G
(
1998
),
Postcritical behaviour of cables undergoing two simultaneous galloping modes
,
Meccanica
33
,
229
242
.
76.
Nielsen
SRK
, and
Kirkegaard
PH
(
2002
),
Super and combinatorial harmonic response of flexible elastic cables with small sag
,
J. Sound Vib.
251
,
79
102
.
77.
Berlioz A, and Lamarque CH (2005), Nonlinear vibrations of an inclined cable, J. Vibr. Acoust. (accepted).
78.
Xu
YL
, and
Yu
Z
(
1999
),
Non-linear vibration of cable-damper systems. Part II: Application and verification
,
J. Sound Vib.
225
,
465
481
.
79.
Triantafyllou
MS
(
1984
),
The dynamics of taut inclined cables
,
Q. J. Mech. Appl. Math.
37
,
421
440
.
80.
Pakdemirli
M
,
Nayfeh
SA
, and
Nayfeh
AH
(
1995
),
Analysis of one-to-one autoparametric resonances in cables—Discretization vs direct treatment
,
Nonlinear Dyn.
8
,
65
83
.
81.
Perkins
NC
(
1992
),
Modal interactions in the non-linear response of elastic cables under parametric/external excitation
,
Int. J. Non-Linear Mech.
27
,
233
250
.
82.
Zhang
W
, and
Tang
Y
(
2002
),
Global dynamics of the cable under combined parametrical and external excitations
,
Int. J. Non-Linear Mech.
37
,
505
526
.
83.
Rao
GVV
, and
Iyengar
RN
(
1991
),
Internal resonance and nonlinear response of a cable under periodic excitation
,
J. Sound Vib.
149
,
25
41
.
84.
Lee
CL
, and
Perkins
NC
(
1992
),
Nonlinear oscillations of suspended cables containing a two-to-one internal resonance
,
Nonlinear Dyn.
3
,
465
490
.
85.
Savovich MK, and Ivovich VA (2003), Analysis of two-to-one autoparametric vibration in cable structures: analytical development and numerical treatment, Proc. 5th Int. Symp. Cable Dynamics, Santa Margherita Ligure, AIM, Lie`ge, 205–212.
86.
Chang
WK
,
Ibrahim
RA
, and
Afaneh
AA
(
1996
),
Planar and nonplanar nonlinear dynamics of suspended cables under random in-plane loading, Part I: Single internal resonance
,
Int. J. Non-Linear Mech.
31
,
837
859
.
87.
Luongo
A
, and
Piccardo
G
(
1998
),
Nonlinear galloping of sagged cables in 1:2 internal resonance
,
J. Sound Vib.
214
,
915
940
.
88.
Lee CL, and Perkins NC (1993), Experimental investigation of isolated and simultaneous internal resonances in suspended cables, Nonlinear Vibration ASME, DE-54, 21–31.
89.
Benedettini F, Rega G, and Alaggio R (1996), Experimental analysis of the finite dynamics of a suspended cable, Vibration of Nonlinear, Random, and Time-Varying Systems ASME, DE-84-1, 543–552.
90.
Rega
G
,
Alaggio
R
, and
Benedettini
F
(
1997
),
Experimental investigation of the nonlinear response of a hanging cable, Part I: Local analysis
,
Nonlinear Dyn.
14
,
89
117
.
91.
Lee
CL
, and
Perkins
NC
(
1995
),
Three-dimensional oscillations of suspended cables involving simultaneous internal resonances
,
Nonlinear Dyn.
8
,
45
63
.
92.
Chang
WK
, and
Ibrahim
RA
(
1997
),
Multiple internal resonance in suspended cables under random in-plane loading
,
Nonlinear Dyn.
12
,
275
303
.
93.
Benedettini
F
,
Rega
G
, and
Alaggio
R
(
1995
),
Nonlinear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions
,
J. Sound Vib.
182
,
775
798
.
94.
Ibrahim
RA
, and
Chang
WK
(
1999
),
Stochastic excitation of suspended cables involving three simultaneous internal resonances using Monte Carlo simulation
,
Comput. Methods Appl. Mech. Eng.
168
,
285
304
.
95.
Rega
G
,
Lacarbonara
W
,
Nayfeh
AH
, and
Chin
CM
(
1999
),
Multiple resonances in suspended cables: Direct versus reduced-order models
,
Int. J. Non-Linear Mech.
34
,
901
924
.
96.
Nayfeh
AH
,
Arafat
HN
,
Chin
CM
, and
Lacarbonara
W
(
2002
),
Multimode interactions in suspended cables
,
J. Vib. Control
8
,
337
387
.
97.
Benedettini F, and Rega G (1994), Analysis of finite oscillations of elastic cables under internal/external resonance conditions, Nonlinear and Stochastic Dynamics ASME, AMD-192, 39–46.
98.
Irvine
HM
, and
Griffin
JH
(
1976
),
On the dynamic response of a suspended cable
,
Earthquake Eng. Struct. Dyn.
4
,
389
402
.
99.
Rega
G
, and
Luongo
A
(
1980
),
Natural vibrations of suspended cables with flexible supports
,
Comput. Struct.
12
,
65
75
.
100.
Ni
YQ
,
Lou
WJ
, and
Ko
JM
(
2000
),
A hybrid pseudo-force/Laplace transform method for non-linear transient response of a suspended cable
,
J. Sound Vib.
238
,
189
214
.
101.
Zheng
G
,
Ko
JM
, and
Ni
YQ
(
2002
),
Super-harmonic and internal resonances of a suspended cable with nearly commensurable natural frequencies
,
Nonlinear Dyn.
30
,
55
70
.
102.
Pilipchuk
VN
, and
Ibrahim
RA
(
1997
),
Strong nonlinear modal interaction in shallow suspended cables with oscillating ends
,
Chaos, Solitons Fractals
8
,
637
657
.
103.
Pilipchuk
VN
, and
Ibrahim
RA
(
1999
),
Nonlinear modal interactions in shallow suspended cables
,
J. Sound Vib.
227
,
1
28
.
104.
Cheng
SP
, and
Perkins
NC
(
1992
),
Closed-form vibration analysis of sagged cable/mass suspensions
,
ASME J. Appl. Mech.
59
,
923
928
.
105.
Benedettini
F
, and
Rega
G
(
1997
),
Experimental investigation of the nonlinear response of a hanging cable, Part II: Global analysis
,
Nonlinear Dyn.
14
,
119
138
.
106.
Molteno
TCA
, and
Tufillaro
NB
(
1990
),
Torus doubling and chaotic string vibrations: Experimental results
,
J. Sound Vib.
137
,
327
330
.
107.
O’Reilly
O
(
1993
),
Global bifurcations in the forced vibration of a damped string
,
Int. J. Non-Linear Mech.
28
,
337
351
.
108.
Di Egidio
A
,
Luongo
A
, and
Vestroni
F
(
1996
),
Nonstationary nonplanar free motions of an orbiting string with multiple internal resonances
,
Meccanica
31
,
363
381
.
109.
Alaggio
R
, and
Rega
G
(
2000
),
Characterizing bifurcations and classes of motion in the transition to chaos through 3D-tori of a continuous experimental system in solid mechanics
,
Physica D
137
,
70
93
.
110.
Rega
G
, and
Alaggio
R
(
2001
),
Spatio-temporal dimensionality in the overall complex dynamics of an experimental cable/mass system
,
Int. J. Solids Struct.
38
,
2049
2068
.
111.
Takens F (1981), Detecting strange attractors in turbulence, Dynamical Systems and Turbulence, DA Rand and LS Young (eds), Springer Lecture Notes in Mathematics, 898, New York, 266–281.
112.
Holmes P, Lumley JL, and Berkooz G (1996), Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics, Cambridge Univ Press, New York.
113.
Ruelle
D
, and
Takens
F
(
1971
),
On the nature of turbulence
,
Commun. Math. Phys.
20
,
167
192
.
114.
Newhouse
S
,
Ruelle
D
, and
Takens
F
(
1978
),
Occurrence of strange axiom-A attractors near quasiperiodic flows on Tm m⩾3,
Commun. Math. Phys.
64
,
35
40
.
115.
Battelino
PM
,
Grebogi
C
,
Ott
E
, and
Yorke
JA
(
1989
),
Chaotic attractors on a 3-torus, and the torus break-up
,
Physica D
39
,
299
314
.
116.
Baesens
C
,
Guckenheimer
J
,
Kim
S
, and
MacKay
RS
(
1991
),
Three coupled oscillators: Mode-locking, global bifurcation and toroidal chaos
,
Physica D
49
,
387
475
.
117.
Anishchenko
VS
,
Safonova
MA
,
Feudel
U
, and
Kurths
J
(
1994
),
Bifurcations and transition to chaos through three-dimensional tori
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
4
,
595
607
.
118.
Shilnikov L, Shilnikov A, Turaev D, and O Chua L (1998), Methods of Qualitative Theory in Nonlinear Dynamics, World Scientific Series on Nonlinear Science Series A (4), World Scientific Publ, Singapore.
119.
Glendinning
P
, and
Sparrow
C
(
1984
),
Local and global behaviour near homoclinic orbits
,
J. Stat. Phys.
35
,
645
696
.
120.
Rucklidge
AM
(
2001
),
Global bifurcations in the Takens-Bogdanov normal form with D4 symmetry near the O2 limit
,
Phys. Lett. A
284
,
99
111
.
121.
Alaggio R, and Rega G (2002), Homoclinic bifurcation to chaos in a suspended cable-mass: Experimental characterization and theoretical interpretative model, XXX Summer School, Advanced Problems in Mechanics (Book of Abstracts, 19), St Petersburg, Russia.
122.
Rega G, Benedettini F, and Alaggio R (1997b), Experimental and theoretical investigation of nonlinear dynamics in an elastic system with initial curvature, Interaction between Dynamics and Control in Advanced Mechanical Systems, DH van Campen (ed), Solid Mechanics and Its Applications, 52, Kluwer, Dordrecht, 337–344.
123.
Alaggio R, and Rega G (2001), Exploiting results of experimental nonlinear dynamics for reduced-order modeling of a suspended cable, ASME Des. Eng. Tech. Conf., 18th Bienn. Conf. Mechanical Vibration and Noise, DETC01/VIB-21554, CD-Rom, Pittsburgh PA.
124.
Nayfeh AH, and Balachandran B (1995), Applied Nonlinear Dynamics, Wiley, New York.
125.
Rega
G
(
1996
),
Non-linearity, bifurcation and chaos in the finite dynamics of different cable models
,
Chaos, Solitons Fractals
7
,
1507
1536
.
126.
Steindl
A
, and
Troger
H
(
2001
),
Some computational efficient strategies for dimension reduction
,
Int. J. Solids Struct.
38
,
2131
2147
.
127.
Rega G, and Troger H (eds) (2005), Dimension Reduction of Dynamical Systems: Methods, Modles, Applications, Special Issue of Nonlinear Dyn. (to appear).
128.
Cusumano
JP
, and
Sharkady
MT
(
1995
),
An experimental study of bifurcation, chaos and dimensionality in a system forced through a bifurcation parameter
,
Nonlinear Dyn.
8
,
467
489
.
129.
Kappagantu
RV
, and
Feeny
BF
(
2000
),
Part II: Proper orthogonal modal modeling of a frictionally excited beam
,
Nonlinear Dyn.
23
,
1
11
.
130.
Georgiou IT, and Schwartz IB (2001), POD (K-L) analysis of the interaction free dynamics of a beam/pendulum configuration: An experimental study, ASME Des. Eng. Tech. Conf., 18th Bienn. Conf. Mechanical Vibration and Noise, DETC01/VIB-21409, CD-Rom, Pittsburgh PA.
131.
Ma X, Vakakis AF, and Bergman LA (2001), Karhunen-Loeve decomposition for reducing the order and monitoring the dynamics of coupled oscillators, ASME Des. Eng. Tech. Conf., 18th Bienn Conf. Mechanical Vibration and Noise, DETC01/VIB-21404, CD-Rom, Pittsburgh PA.
132.
Mane´ R (1981), On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical Systems and Turbulence, DA Rand and LS Young (eds), Springer Lecture Notes in Mathematics, 898, New York, 230–242.
133.
Cusumano
JP
, and
Bai
BY
(
1993
),
Period-infinity periodic motions, chaos, and spatial coherence in a 10 degree of freedom impact oscillator
,
Chaos, Solitons Fractals
3
,
515
535
.
134.
Feeny
BF
, and
Kappagantu
R
(
1998
),
On the physical interpretation of proper orthogonal modes in vibrations
,
J. Sound Vib.
211
,
607
616
.
135.
Kerschen
G
, and
Golinval
JC
(
2002
),
Physical interpretation of the proper orthogonal modes using the singular value decomposition
,
J. Sound Vib.
249
,
849
865
.
136.
Lin
WZ
,
Lee
KH
,
Lu
P
,
Lim
SP
, and
Liang
YC
(
2002
),
The relationship between eigenfunctions of Karhunen-Loe`ve decomposition and the modes of distributed parameter vibration system
,
J. Sound Vib.
252
,
527
544
.
137.
Ma
X
, and
Vakakis
AF
(
1999
),
Karhunen-Loeve decomposition of the transient dynamics of a multibay truss
,
AIAA J.
37
,
939
946
.
138.
Kappagantu
R
, and
Feeny
BF
(
1999
),
An optimal modal reduction of a system with frictional excitation
,
J. Sound Vib.
224
,
863
877
.
139.
Azeez
MFA
, and
Vakakis
AF
(
2001
),
Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations
,
J. Sound Vib.
240
,
859
889
.
140.
Amabili M, Sarkar A, and Pai¨doussis MP (2003), Reduced-order P.O.D. models for nonlinear vibrations of cylindrical shells, ASME Int. Mech. Eng. Congr., IMECE2003-55445, CD-Rom, Washington, DC.
141.
Kerschen
G
,
Feeny
BF
, and
Golinval
JC
(
2003
),
On the exploitation of chaos to build reduced-order models
,
Comput. Meth. Appl. Mech. Eng.
192
,
1785
1795
.
142.
Georgiou IT (2005), Advanced proper orthogonal decomposition tools: Using reduced order models to identify normal modes of oscillation and slow invariant manifolds in the dynamics of planar nonlinear rods, Nonlinear Dyn. (accepted).
143.
Troger H, and Steindl A (1991), Nonlinear Stability and Bifurcation Theory: An Introduction for Engineers and Applied Scientists, Springer-Verlag, Wien.
144.
Rega G, Srinil N, Lacarbonara W, and Chucheepsakul S (2004), Resonant nonlinear normal modes of inclined sagged cables, Proc. Euromech. Coll. Nonlinear Modes of Vibrating Systems, Fre´jus, Press of ENTPE, Vaulx en Velin, 7–10.
145.
Srinil N (2004), Large-amplitude 3-D dynamic analysis of arbitrarily sagged inclined extensible cables, PhD dissertation, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand.
146.
Feeny
BF
(
2002
),
On the proper orthogonal modes and normal modes of continuous vibration systems
,
J. Vibr. Acoust.
124
,
157
160
.
147.
Kerschen G, Golinval JC, Vakakis AF, and Bergman LA (2005), The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview, Nonlinear Dyn. (accepted).
148.
Sofi
A
,
Borino
G
, and
Muscolino
G
(
2002
),
Dynamic analysis of prestressed cables with uncertain Pretension
,
Meccanica
37
,
67
84
.
149.
Di Paola M, Muscolino G, and Sofi A (2002), Nonlinear random vibrations of a suspended cable under wind loading, 4th Int. Conf. Comp. Stochastic Mechanics (CSM4), 159–168.
150.
Ibrahim
RA
(
2004
),
Nonlinear vibrations of suspended cables, Part III: Random excitation and interaction with fluid flow
,
Appl. Mech. Rev.
57
,
515
549
.
151.
Lacarbonara W, Paolone A, and Vestroni F (2004), Accurate description of statics and dynamics of nonshallow cables, Tenth Conf. on Nonlinear Vibrations, Stability, and Dynamics of Structures (CDRom of Abstracts), Blacksburg, VA.
152.
Tjavaras
AA
,
Zhu
Q
,
Liu
Y
,
Triantafyllou
MS
, and
Yue
DKP
(
1998
),
The mechanics of highly-extensible cables
,
J. Sound Vib.
213
,
709
737
.
153.
Srinil
N
,
Rega
G
, and
Chucheepsakul
S
(
2003
),
Large-amplitude three-dimensional free vibrations of inclined sagged elastic cables
,
Nonlinear Dyn.
33
,
129
154
.
154.
Srinil N, Rega G, and Chucheepsakul S (2003), Nonlinear interaction in the 3D free vibrations of horizontal and inclined sagged cables, Proc. 5th Int. Symp. Cable Dynamics, Santa Margherita Ligure, AIM, Lie`ge, 77–84.
155.
Gobot
JI
, and
Grosenbaugh
MA
(
2001
),
Application of the generalized-α method to the time integration of the cable dynamic equations
,
Comput. Meth. Appl. Mech. Eng.
190
,
4817
4829
.
156.
Newberry
DL
, and
Perkins
NC
(
1997
),
Investigation of resonant tensioning in submerged cables subjected to lateral excitation
,
Int. J. Offshore Polar Eng.
7
,
48
53
.
157.
Chang
WK
,
Pilipchuk
V
, and
Ibrahim
RA
(
1997
),
Fluid flow-induced nonlinear vibration of suspended cables
,
Nonlinear Dyn.
14
,
377
406
.
158.
Hu
HY
, and
Jin
DP
(
2001
),
Nonlinear dynamics of a suspended travelling cable subject to transverse fluid excitation
,
J. Sound Vib.
239
,
515
529
.
159.
Kim WJ, and Perkins NC (2001), Coupled slow and fast dynamics of flow excited elastic cable systems, ASME Des. Eng. Tech. Conf., 18th Bienn. Conf. Mechanical Vibration and Noise, DETC 01/VIB-21589, CD-ROM, Pittsburgh PA.
160.
Tanaka H (2003), Aerodynamics of cables, Proc 5th Int Symp Cable Dynamics, Santa Margherita Ligure, AIM, Lie`ge, 11–25.
161.
Lu
CL
, and
Perkins
NC
(
1994
),
Nonlinear spatial equilibria and stability of cables under uni-axial torque and thrust
,
ASME J. Appl. Mech.
61
,
879
886
.
162.
Lu
CL
, and
Perkins
NC
(
1995
),
Complex spatial equilibria of U-joint supported cables under torque, thrust and self-weight
,
Int. J. Non-Linear Mech.
30
,
271
285
.
163.
Gottlieb
O
, and
Perkins
,
NC
(
1999
),
Local and global bifurcation analyses of a spatial cable elastica
,
ASME J. Appl. Mech.
66
,
352
360
.
164.
Koh
CG
,
Zhang
Y
, and
Quek
ST
(
1999
),
Low-tension cable dynamics: Numerical and experimental studies
,
J. Eng. Mech. Div.
125
,
347
354
.
165.
Wu
Q
,
Takahashi
K
, and
Nakamura
S
(
2003
),
Non-linear vibrations of cables considering loosening
,
J. Sound Vib.
261
,
385
402
.
166.
Wu
Q
,
Takahashi
K
, and
Nakamura
S
(
2004
),
Non-linear response of cables subjected to periodic support excitation considering cable loosening
,
J. Sound Vib.
271
,
453
463
.
167.
Luongo A, and Piccardo G (1996), On the influence of the torsional stiffness on non-linear galloping of suspended cables, Proc. 2nd Eur. Nonlinear Oscillation Conf., Prague, 273–276.
168.
Goyal S, Perkins NC, and Lee CL (2003), Torsional buckling and writhing dynamics of elastic cables and DNA, ASME Des. Eng. Techn. Conf., 19th Bienn. Conf. Mechanical Vibration and Noise, DETC2003/MECH-48322, CD-Rom, Chicago IL.
169.
Koh
CG
, and
Rong
Y
(
2004
),
Dynamic analysis of large displacement cable motion with experimental verification
,
J. Sound Vib.
272
,
187
206
.
170.
Ni
YQ
,
Ko
JM
, and
Zheng
G
(
2002
),
Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity
,
J. Sound Vib.
257
,
301
319
.
171.
Triantafyllou
MS
, and
Yue
DKP
(
1995
),
Damping amplification in highly extensible hysteretic cables
,
J. Sound Vib.
186
,
355
368
.
172.
Leamy
MJ
, and
Gottlieb
O
(
2000
),
Internal resonances in whirling strings involving longitudinal dynamics and material non-linearities
,
J. Sound Vib.
236
,
683
703
.
173.
Han
SM
, and
Grosenbaugh
MA
(
2004
),
Non-linear free vibration of a cable against a straight obstacle
,
J. Sound Vib.
273
,
337
361
.
174.
Chen LQ, (2005) Analysis and control of transverse vibrations of axially moving strings, Appl. Mech. Rev. (to appear).
175.
Perkins
NC
, and
Mote
Jr
CD
(
1987
),
Three-dimensional vibration of travelling elastic cables
,
J. Sound Vib.
114
,
325
340
.
176.
Luo
ACJ
, and
Mote
Jr
CD
(
2000
),
Equilibrium solutions and existence for traveling, arbitrarily sagged elastic cables
,
ASME J. Appl. Mech.
67
,
148
154
.
177.
Wang
Y
, and
Luo
ACJ
(
2004
),
Dynamics of traveling, inextensible cables
,
Comm. Nonlin. Sci. Num. Simul.
9
,
531
542
.
178.
Wang
YM
(
2000
),
The transient dynamics of a cable-mass system due to the motion of an attached accelerating mass
,
Int. J. Solids Struct.
37
,
1361
1383
.
179.
Al-Qassab
M
,
Nair
S
, and
O’Leary
J
(
2003
),
Dynamics of an elastic cable carrying a moving mass particle
,
Nonlinear Dyn.
33
,
11
32
.
180.
Muscolino G, and Sofi A (2003), Dynamics of a suspended cable under moving masses, Proc. 5th Int. Symp. Cable Dynamics, Santa Margherita Ligure, AIM, Lie`ge, 109–116.
181.
Fujino
Y
,
Warnitchai
P
, and
Pacheco
BM
(
1993
),
Active stiffness control of cable vibration
,
ASME J. Appl. Mech.
60
,
953
984
.
182.
Fujino
Y
, and
Susumpow
T
(
1994
),
An experimental study on active control of in-plane cable vibration by axial support motion
,
Earthquake Eng. Struct. Dyn.
23
,
1283
1297
.
183.
Canbolat
H
,
Dawson
D
,
Rahn
CD
, and
Nagarkatti
S
(
1998
),
Adaptive boundary control of out-of-plane cable vibration
,
ASME J. Appl. Mech
65
,
963
969
.
184.
Gehle
RW
, and
Masri
SF
(
1998
),
Active control of shallow, slack cable using the parametric control of end tension
,
Nonlinear Dyn.
17
,
77
94
.
185.
Gattulli
V
, and
Vestroni
F
(
2000
),
Nonlinear strategies for longitudinal control in the stabilization of an oscillating suspended cable
,
Dyn. Control
10
,
359
374
.
You do not currently have access to this content.