This review article is the first of three parts of a Special Issue dealing with finite-amplitude oscillations of elastic suspended cables. This part is concerned with system modeling and methods of analysis. After shortly reporting on cable historical literature and identifying the topic and scope of the review, the article begins with a presentation of the mechanical system and of the ensuing mathematical models. Continuum equations of cable finite motion are formulated, their linearized version is reported, and nonlinear discretized models for the analysis of 2D or 3D vibration problems are discussed. Approximate methods for asymptotic analysis of either single or multi-degree-of-freedom models of small-sag cables are addressed, as well as asymptotic models operating directly on the original partial differential equations. Numerical tools and geometrical techniques from dynamical systems theory are illustrated with reference to the single-degree-of-freedom model of cable, reporting on measures for diagnosis of nonlinear and chaotic response, as well as on techniques for local and global bifurcation analysis. The paper ends with a discussion on the main features and problems encountered in nonlinear experimental analysis of vibrating suspended cables. This review article cites 226 references.

1.
Irvine HM (1981), Cable Structures, MIT Press (1992, Dover Publ, New York).
2.
Triantafyllou
MS
(
1984a
),
Linear dynamics of cables and chains
,
Shock Vib. Dig.
16
,
9
17
.
3.
Triantafyllou
MS
(
1987
),
Dynamics of cables and chains
,
Shock Vib. Dig.
19
,
3
5
.
4.
Triantafyllou
MS
(
1991
),
Dynamics of cables, towing cables and mooring systems
,
Shock Vib. Dig.
23
,
3
8
.
5.
Starossek
U
(
1994
),
Cable dynamics: A review
,
Int J Struct Eng
Mar
,
171
176
.
6.
Routh EJ (1868), The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies (1955, 6th edition, Dover Publ, New York).
7.
Rohrs
JH
(
1851
),
On the oscillations of a suspended cable
,
Trans. Cambridge Philos. Soc.
9
,
379
398
.
8.
Pugsley
AG
(
1949
),
On the natural frequencies of suspension chains
,
Q. J. Mech. Appl. Math.
II
,
412
418
.
9.
Saxon
DS
, and
Cahn
AS
(
1953
),
Modes of vibration of a suspended chain
,
Q. J. Mech. Appl. Math.
VI
(
3
),
273
285
.
10.
Simpson
A
(
1966
),
Determination of the in-plane natural frequencies of multispan transmission lines by a transfer matrix method
,
Proc. Inst. Electr. Eng.
113
,
870
878
.
11.
Soler
AI
(
1970
),
Dynamic response of single cables with initial sag
,
J. Franklin Inst.
290
,
377
387
.
12.
Carrier
GF
(
1945
),
On the non-linear vibration problem of the elastic string
,
J. Q. Appl. Math.
3
,
157
165
.
13.
Irvine
HM
, and
Caughey
TK
(
1974
),
The linear theory of free vibrations of a suspended cable
,
Proc. R. Soc. London, Ser. A
341
,
299
315
.
14.
Rega G, and Luongo A (1978), Free oscillations of suspended cables (in Italian), Rep II-236, Istituto di Scienza delle Costruzioni, Univ of Rome.
15.
Leonard
JW
, and
Recker
WW
(
1972
),
Nonlinear dynamics of cables with low initial tension
,
J. Eng. Mech. Div.
98
,
293
309
.
16.
West
HH
,
Geshwindner
LF
, and
Suhoski
JE
(
1975
),
Natural vibrations of suspension cables
,
J. Struct. Div. ASCE
101
,
2277
2291
.
17.
Henghold
WM
,
Russell
JJ
, and
Morgan
JD
(
1977
),
Free vibrations of cable in three dimensions
,
J. Struct. Div. ASCE
103
,
1127
1136
.
18.
Gambhir
ML
, and
Batchelor
B de V
(
1978
),
Parametric study of free vibration of sagged cable
,
Comput. Struct.
8
,
641
648
.
19.
Rosenthal
F
(
1981
),
Vibrations of slack cables with discrete masses
,
J. Sound Vib.
78
,
573
583
.
20.
Fried
I
(
1982
),
Large deformation static and dynamic finite element analysis of extensible cables
,
Comput. Struct.
15
,
315
319
.
21.
Migliore
HJ
, and
Webster
RL
(
1979
),
Current methods for analyzing dynamic cable response
,
Shock Vib. Dig.
11
,
3
16
.
22.
Migliore
HJ
, and
Webster
RL
(
1982
),
Current methods for analyzing dynamic cable response—1979 to the present
,
Shock Vib. Dig.
14
,
19
24
.
23.
Tjavaras
AA
,
Zhu
Q
,
Liu
Y
,
Triantafyllou
MS
, and
Yue
DKP
(
1998
),
The mechanics of highly-extensible cables
,
J. Sound Vib.
213
,
709
737
.
24.
Ni
YQ
,
Lou
WJ
, and
Ko
JM
(
2000
),
A hybrid pseudo-force/Laplace transform method for non-linear transient response of a suspended cable
,
J. Sound Vib.
238
,
189
214
.
25.
Chucheepsakul
S
, and
Wongsa
S
(
2001
),
Effect of axial stretching on large amplitude free vibration of a suspended cable
,
Struct. Eng. Mech.
11
,
185
197
.
26.
Srinil
N
,
Rega
G
, and
Chucheepsakul
S
(
2004
),
Three-dimensional nonlinear coupling and dynamic tension in the large amplitude free vibrations of arbitrarily sagged cables
,
J. Sound Vib.
269
,
823
852
.
27.
Wu
Q
,
Takahashi
K
, and
Nakamura
S
(
2003
),
Non-linear vibrations of cables considering loosening
,
J. Sound Vib.
261
,
385
402
.
28.
Koh
CG
, and
Rong
Y
(
2004
),
Dynamic analysis of large displacement cable motion with experimental verification
,
J. Sound Vib.
272
,
187
206
.
29.
Desai
YM
,
Popplewell
N
,
Shah
AH
, and
Buragohain
DN
(
1988
),
Geometric nonlinear analysis of cable supported structures
,
Comput. Struct.
29
,
1001
1009
.
30.
Desai
YM
,
Yu
P
,
Popplewell
N
, and
Shah
AH
(
1995
),
Finite element modelling of transmission line galloping
,
Comput. Struct.
57
,
407
420
.
31.
Zhang
QL
, and
Peil
U
(
1999
),
Dynamic behaviors of cables in parametrically unstable zones
,
Comput. Struct.
73
,
437
443
.
32.
Karoumi
R
(
1999
),
Some modeling aspects in the nonlinear finite element analysis of cable supported bridges
,
Comput. Struct.
71
,
397
412
.
33.
Sofi
A
,
Borino
G
, and
Muscolino
G
(
2002
),
Dynamic analysis of prestressed cables with uncertain pretension
,
Meccanica
37
,
67
84
.
34.
Ni
YQ
,
Ko
JM
, and
Zheng
G
(
2002
),
Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity
,
J. Sound Vib.
257
,
301
319
.
35.
Martinelli
L
, and
Perotti
F
(
2001
),
Numerical analysis of the nonlinear dynamic behavior of suspended cables under turbulent wind excitation
,
Int J Struct. Stab. Dyn.
1
,
207
233
.
36.
Gattulli
V
,
Martinelli
L
,
Perotti
F
, and
Vestroni
F
(
2004
),
Nonlinear oscillations of cables under harmonic loading using analytical and finite element models
,
Comput. Methods Appl. Mech. Eng.
193
,
69
85
.
37.
Zheng
G
,
Ko
JM
, and
Ni
YQ
(
2002
),
Super-harmonic and internal resonances of a suspended cable with nearly commensurable natural frequencies
,
Nonlinear Dyn.
30
,
55
70
.
38.
Proc Int Symp on Cable Dynamics (1995), Lie`ge (1999, Trondheim; 2001, Montre´al; 2003, Santa Margherita Ligure), AIM, Lie`ge.
39.
Irvine
HM
(
1976
), Discussion on “
Natural vibrations of suspension cables
,” by HH West et al.,
J. Struct. Div. ASCE
102
,
1286
1288
.
40.
Rega
G
(
1996
),
Non-linearity, blfurcation and chaos in the finite dynamics of different cable models
,
Chaos, Solitons Fractals
7
,
1507
1536
.
41.
Rega
G
(
2004
),
Nonlinear vibrations of suspended cables, Part II: Deterministic phenomena
,
Appl. Mech. Rev.
57
,
479
514
.
42.
Ibrahim
RA
(
2004
),
Nonlinear vibrations of suspended cables, Part III: Random excitation and interaction with fluid flow
,
Appl. Mech. Rev.
57
,
515
549
.
43.
Reismann
H
, and
Pawlik
P
(
1977
),
Dynamics of initially stressed hyperelastic solids
,
Solid Mech. Arch.
2
,
129
185
.
44.
Luongo
A
,
Rega
G
, and
Vestroni
F
(
1984
),
Planar non-linear free vibrations of an elastic cable
,
Int. J. Non-Linear Mech.
19
,
39
52
.
45.
Perkins
NC
, and
Mote
Jr
CD
(
1987
),
Three-dimensional vibration of travelling elastic cables
,
J. Sound Vib.
114
,
325
340
.
46.
Takahashi
K
, and
Konishi
Y
(
1987a
),
Non-linear vibrations of cables in three-dimensions, Part I: Nonlinear free vibrations
,
J. Sound Vib.
118
,
69
84
.
47.
Takahashi
K
, and
Konishi
Y
(
1987b
),
Non-linear vibrations of cables in three-dimensions, Part II: Out-of-plane vibration under in-plane sinusoidally time-varying load
,
J. Sound Vib.
118
,
85
97
.
48.
Benedettini
F
,
Rega
G
, and
Alaggio
R
(
1995
),
Nonlinear oscillations of a four-degree-of freedom model of a suspended cable under multiple internal resonance conditions
,
J. Sound Vib.
182
,
775
798
.
49.
Gattulli
V
,
Pasca
M
, and
Vestroni
F
(
1997
),
Nonlinear oscillations of a nonresonant cable under in-plane excitation with a longitudinal control
,
Nonlinear Dyn.
14
,
139
156
.
50.
Chang
WK
,
Pilipchuk
V
, and
Ibrahim
RA
(
1997
),
Fluid flow-induced nonlinear vibration of suspended cables
,
Nonlinear Dyn.
14
,
377
406
.
51.
Rega
G
,
Lacarbonara
W
,
Nayfeh
AH
, and
Chin
CM
(
1999
),
Multiple resonances in suspended cables: Direct versus reduced-order models
,
Int. J. Non-Linear Mech.
34
,
901
924
.
52.
Luo
ACJ
, and
Mote
Jr
CD
(
2000
),
Equilibrium solutions and existence for traveling, arbitrarily sagged elastic cables
,
ASME J. Appl. Mech.
67
,
148
154
.
53.
Nayfeh
AH
,
Arafat
HN
,
Chin
CM
, and
Lacarbonara
W
(
2002
),
Multimode interactions in suspended cables
,
J. Vib. Control
8
,
337
387
.
54.
Lee
CL
, and
Perkins
NC
(
1992
),
Nonlinear oscillations of suspended cables containing a two-to-one internal resonance
,
Nonlinear Dyn.
3
,
465
490
.
55.
Triantafyllou
MS
, and
Howell
CT
(
1994
),
Dynamic response of cables under negative tension: An ill-posed problem
,
J. Sound Vib.
173
,
433
447
.
56.
Chang
WK
, and
Ibrahim
RA
(
1997
),
Multiple internal resonance in suspended cables under random in-plane loading
,
Nonlinear Dyn.
12
,
275
303
.
57.
Triantafyllou
MS
(
1985
),
The dynamics of translating cables
,
J. Sound Vib.
103
,
171
182
.
58.
Perkins
NC
(
1992a
),
Modal interactions in the non-linear response of elastic cables under parametric/external excitation
,
Int. J. Non-Linear Mech.
27
,
233
250
.
59.
Zhang
W
, and
Tang
Y
(
2002
),
Global dynamics of the cable under combined parametrical and external excitations
,
Int. J. Non-Linear Mech.
37
,
505
526
.
60.
Luongo
A
, and
Piccardo
G
(
1998
),
Nonlinear galloping of sagged cables in 1:2 internal resonance
,
J. Sound Vib.
214
,
915
940
.
61.
Srinil
N
,
Rega
G
, and
Chucheepsakul
S
(
2003
),
Large-amplitude three-dimensional free vibrations of inclined sagged elastic cables
,
Nonlin Dyn
33
,
129
154
.
62.
Srinil N (2004), Large-amplitude 3-D dynamic analysis of arbitrarily sagged inclined extensible cables, PhD dissertation, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand.
63.
Nayfeh AH, and Pai PF (2004), Linear and Nonliner Structural Mechanics, Wiley Series in Nonlinear Science, New York.
64.
Yamaguchi
H
,
Miyata
T
, and
Ito
M
(
1982
),
Dynamics of a suspended cable in three dimensions
,
Trans. JSCE
14
,
424
427
.
65.
Simpson
A
(
1972
),
On the oscillatory motions of translating elastic cables
,
J. Sound Vib.
20
,
177
189
.
66.
Kauderer H (1958), Nichtlinear Mechanik, Springer-Verlag, Berlin.
67.
Rehfield
LW
(
1974
),
Nonlinear flexural oscillations of shallow arches
,
AIAA J.
12
,
91
93
.
68.
Nayfeh AH, and Mook DT (1979), Nonlinear Oscillations, Wiley, New York.
69.
Burgess
JJ
, and
Triantafyllou
MS
(
1988
),
The elastic frequencies of cables
,
J. Sound Vib.
120
,
153
165
.
70.
Triantafyllou
MS
, and
Yue
DKP
(
1995
),
Damping amplification in highly extensible hysteretic cables
,
J. Sound Vib.
186
,
355
368
.
71.
Behbahani-Nejad
M
, and
Perkins
NC
(
1996
),
Freely propagating waves in elastic cables
,
J. Sound Vib.
196
,
189
202
.
72.
Antman SAS (1995), Nonlinear Problems of Elasticity, Springer-Verlag, New York.
73.
Shih
B
, and
Tadjbakhsh
IG
(
1984
),
Small-amplitude vibrations of extensible cables
,
J. Eng. Mech. Div.
110
,
569
576
.
74.
Srinil N, Rega G, and Chucheepsakul S (2003), Nonlinear interaction in the 3D free vibrations of horizontal and inclined sagged cables, Proc. 5th Int. Symp. Cable Dynamics, Santa Margherita Ligure, AIM, Lie`ge, 77–84.
75.
Al-Qassab
M
, and
Nair
S
(
2003
),
Wavelet-Galerkin method for free vibrations of elastic cable
,
J. Eng. Mech. Div.
129
,
350
357
.
76.
Al-Qassab
M
, and
Nair
S
(
2004
),
Wavelet-Galerkin method for the free vibrations of an elastic cable carrying an attached mass
,
J. Sound Vib.
270
,
191
206
.
77.
Irvine
HM
, and
Griffin
JH
(
1976
),
On the dynamic response of a suspended cable
,
Earthquake Eng. Struct. Dyn.
4
,
389
402
.
78.
Cheng
SP
, and
Perkins
NC
(
1992
),
Closed-form vibration analysis of sagged cable/mass suspensions
,
ASME J. Appl. Mech.
59
,
923
928
.
79.
Sergev
SS
, and
Iwan
WD
(
1981
),
The natural frequencies and mode shapes of cables with attached masses
,
J. Energy Resour. Technol.
103
,
237
242
.
80.
Leissa
AW
(
1974
),
On a curve veering aberration
,
Z. Angew. Math. Phys.
25
,
99
111
.
81.
Triantafyllou
MS
(
1984b
),
The dynamics of taut inclined cables
,
Q. J. Mech. Appl. Math.
37
,
421
440
.
82.
Triantafyllou
MS
, and
Triantafyllou
GS
(
1991
),
Frequency coalescence and mode localization phenomena: A geometric theory
,
J. Sound Vib.
150
,
485
500
.
83.
Lin
HP
, and
Perkins
NC
(
1995
),
Free vibration of complex cable/mass systems: Theory and experiment
,
J. Sound Vib.
179
,
131
149
.
84.
Desai
YM
,
Yu
P
,
Shah
AH
, and
Popplewell
N
(
1996
),
Perturbation-based finite element analyses of transmission line galloping
,
J. Sound Vib.
191
,
469
489
.
85.
Benedettini
F
, and
Rega
G
(
1987
),
Nonlinear dynamics of an elastic cable under planar excitation
,
Int. J. Non-Linear Mech.
22
,
497
509
.
86.
Hagedorn
P
, and
Scha¨fer
B
(
1980
),
On non-linear free vibrations of an elastic cable
,
Int. J. Non-Linear Mech.
15
,
333
339
.
87.
Rega
G
,
Vestroni
F
, and
Benedettini
F
(
1984
),
Parametric analysis of large-amplitude free vibrations of a suspended cable
,
Int. J. Solids Struct.
20
,
95
105
.
88.
Takahashi
K
,
Wu
Q
, and
Nakamura
S
(
2003
),
In-plane antisymmetric response of cables through bifurcation under symmetric sinusoidally time-varying load
,
J. Sound Vib.
268
,
1
14
.
89.
Cai
Y
, and
Chen
SS
(
1994
),
Dynamics of elastic cable under parametric and external resonances
,
J. Eng. Mech. Div.
120
,
1786
1802
.
90.
Takahashi
K
(
1991
),
Dynamic stability of cables subjected to an axial periodic load
,
J. Sound Vib.
144
,
323
330
.
91.
Lilien
JL
, and
Pinto da Costa
A
(
1994
),
Vibration amplitudes caused by parametric excitation of cable stayed structures
,
J. Sound Vib.
174
,
69
90
.
92.
Perkins
NC
(
1992b
), Discussion of “
Dynamic stability of cables subjected to an axial periodic load
,”
J. Sound Vib.
156
,
361
365
.
93.
Arafat
HN
, and
Nayfeh
AH
(
2003
),
Nonlinear responses of suspended cables to primary resonance excitations
,
J. Sound Vib.
266
,
325
354
.
94.
Luongo
A
,
Rega
G
, and
Vestroni
F
(
1982
),
Monofrequent oscillations of a nonlinear model of suspended cable
,
J. Sound Vib.
82
,
247
259
.
95.
Al-Noury
SI
, and
Ali
SA
(
1985
),
Large-amplitude vibrations of parabolic cables
,
J. Sound Vib.
101
,
451
462
.
96.
Rao
GV
, and
Iyengar
R
(
1991
),
Internal resonance and nonlinear response of a cable under periodic excitation
,
J. Sound Vib.
149
,
25
41
.
97.
Nielsen
SRK
, and
Kirkegaard
PH
(
2002
),
Super and combinatorial harmonic response of flexible elastic cables with small sag
,
J. Sound Vib.
251
,
79
102
.
98.
Berlioz A, and Lamarque CH (2004), A non-linear model for the dynamics of an inclined cable, J. Sound Vib. (in press).
99.
Xu
YL
, and
Yu
Z
(
1999
),
Non-linear vibration of cable-damper systems. Part II: Application and verification
,
J. Sound Vib.
225
,
465
481
.
100.
Zhao
YY
,
Wang
LH
,
Chen
DL
, and
Jiang
LZ
(
2002
),
Non-linear dynamic analysis of the two-dimensional simplified model of an elastic cable
,
J. Sound Vib.
255
,
43
59
.
101.
Lee
CL
, and
Perkins
NC
(
1995
),
Three-dimensional oscillations of suspended cables involving simultaneous internal resonance
,
Nonlinear Dyn.
8
,
45
63
.
102.
Ibrahim
RA
, and
Chang
WK
(
1999
),
Stochastic excitation of suspended cables involving three simultaneous internal resonances using Monte Carlo simulation
,
Comput. Methods Appl. Mech. Eng.
168
,
285
304
.
103.
Gattulli
V
, and
Vestroni
F
(
2000
),
Nonlinear strategies for longitudinal control in the stabilization of an oscillating suspended cable
,
Dyn. Control
10
,
359
374
.
104.
Berlioz A, and Lamarque CH (2005), Nonlinear vibrations of an inclined cable, J. Vibr. Acoust. (accepted).
105.
Nayfeh AH (1981), Introduction to Perturbation Techniques, Wiley, New York.
106.
Sanders JA, and Verhulst F (1985), Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, New York.
107.
Rand RH, and Armbruster D (1987), Perturbation Methods, Bifurcation Theory, and Computer Algebra, Springer-Verlag, New York.
108.
Finlayson BA (1972), The Method of Weighted Residuals and Variational Principles, Academic Press, New York.
109.
Nayfeh
AH
,
Nayfeh
JF
, and
Mook
DT
(
1992
),
On methods for continuous systems with quadratic and cubic nonlinearities
,
Nonlinear Dyn.
3
,
145
162
.
110.
Pakdemirli
M
, and
Boyaci
H
(
1995
),
Comparison of direct-perturbation methods with discretization-perturbation methods for non-linear vibrations
,
J. Sound Vib.
186
,
837
845
.
111.
Lacarbonara
W
(
1999
),
Direct treatment and discretizations of nonlinear spatially continuous systems
,
J. Sound Vib.
221
,
849
866
.
112.
Rega G, Lacarbonara W, and Nayfeh AH (2000), Reduction methods for nonlinear vibrations of spatially continuous systems with initial curvature, IUTAM Symp Recent Developments in Nonlinear Oscillations of Mechanical Systems, E Kreuzer and N van Dao (eds), Solid Mechanics and Its Applications 77, Kluwer, Dordrecht, 235–246.
113.
Rega
G
, and
Benedettini
F
(
1989
),
Planar non-linear oscillations of elastic cables under subharmonic resonance conditions
,
J. Sound Vib.
132
,
367
381
.
114.
Benedettini
F
, and
Rega
G
(
1989
),
Planar non-linear oscillations of elastic cables under superharmonic resonance conditions
,
J. Sound Vib.
132
,
353
366
.
115.
Nayfeh AH (1985), Perturbation methods in nonlinear dynamics, Nonlinear Dynamics Aspects of Particle Accelerators, JM Jowett, M Month, and S Turner (eds), Springer-Verlag, New York.
116.
Rahman
Z
, and
Burton
TD
(
1986
),
Large amplitude primary and superharmonic resonances in the Duffing oscillator
,
J. Sound Vib.
110
,
363
380
.
117.
Rahman
Z
, and
Burton
TD
(
1989
),
On higher order methods of multiple scales in non-linear oscillations periodic steady state response
,
J. Sound Vib.
133
,
369
379
.
118.
Hassan
A
(
1994a
),
Use of transformations with the higher-order method of multiple scales to determine the steady state periodic response of harmonically excited nonlinear oscillators, Part I: Transformation of derivative
,
J. Sound Vib.
178
,
1
19
.
119.
Hassan
A
(
1994b
),
Use of transformations with the higher-order method of multiple scales to determine the steady state periodic response of harmonically excited nonlinear oscillators, Part II: Transformation of detuning
,
J. Sound Vib.
178
,
21
40
.
120.
Luongo
A
, and
Paolone
A
(
1999
),
On the reconstitution problem in the multiple time-scale method
,
Nonlinear Dyn.
19
,
135
158
.
121.
Luongo
A
,
Rega
G
, and
Vestroni
F
(
1986
),
On nonlinear dynamics of planar shear indeformable beams
,
ASME J. Appl. Mech.
53
,
619
624
.
122.
Nayfeh AH (2004), Resolving controversies in the application of the method of multiple scales and the generalized method of averaging, Nonlinear Dyn. (submitted).
123.
Luongo
A
,
Di Egidio
A
, and
Paolone
A
(
2002
),
On the proper form of the amplitude modulation equations for resonant systems
,
Nonlinear Dyn.
27
,
237
254
.
124.
Nayfeh AH, and Chin CM (1999), Perturbation Methods with Mathematica™, Dynamic Press Inc, Blacksburg, VA.
125.
Nayfeh
AH
, and
Balachandran
B
(
1989
),
Modal interactions in dynamical and structural systems
,
Appl. Mech. Rev.
42
,
S175–S201
S175–S201
.
126.
Nayfeh AH (2000), Nonlinear Interactions: Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science, New York.
127.
Lacarbonara
W
,
Rega
G
, and
Nayfeh
AH
(
2003
),
Resonant nonlinear normal modes of shallow one-dimensional structural systems, Part I: Analytical treatment
,
Int. J. Non-Linear Mech.
38
,
873
887
.
128.
Lacarbonara
W
, and
Rega
G
(
2003
),
Resonant nonlinear normal modes of shallow one-dimensional structural systems, Part II: Activation/orthogonality conditions
,
Int. J. Non-Linear Mech.
38
,
851
872
.
129.
Rossi I (1997), Nonlinear oscillations of an elastic suspended cable in multiple internal resonance conditions, PhD Thesis, Univ of Rome, Italy (in Italian).
130.
Benedettini F, and Rega G (1994), Analysis of finite oscillations of elastic cables under internal/external resonance conditions, Nonlinear and Stochastic Dynamics ASME, AMD-192, 39–46.
131.
Feng
ZC
, and
Leal
LG
(
1994
),
Symmetries of the amplitude equations of an inextensional beam with internal resonance
,
ASME J. Appl. Mech.
62
,
235
238
.
132.
Luongo
A
,
Paolone
A
, and
Di Egidio
A
(
2003
),
Qualitative analysis of classes of motion of multiresonant systems, I: An algebraic method
,
Int. J. Non-Linear Mech.
(submitted).
133.
Luongo
A
,
Paolone
A
, and
Di Egidio
A
(
2003
),
Qualitative analysis of classes of motion of multiresonant systems, I: A geometrical method
,
Int. J. Non-Linear Mech.
(submitted).
134.
Pakdemirli
M
,
Nayfeh
SA
, and
Nayfeh
AH
(
1995
),
Analysis of one-to-one autoparametric resonances in cables—Discretization vs direct treatment
,
Nonlinear Dyn.
8
,
65
83
.
135.
Yu
P
, and
Pan
K
(
2003
),
Direct perturbation analysis on cables with concentrated loads
,
Comm. Nonlin. Sci. Num. Sim.
8
,
97
112
.
136.
Di Egidio
A
,
Luongo
A
, and
Vestroni
F
(
1996
),
Nonstationary nonplanar free motions of an orbiting string with multiple internal resonances
,
Meccanica
31
,
363
381
.
137.
Perkins
NC
, and
Mote
Jr
CD
(
1988
),
Theoretical and experimental stability of two translating cable equilibria
,
J. Sound Vib.
128
,
397
410
.
138.
Pilipchuk
VN
, and
Ibrahim
RA
(
1997
),
Strong nonlinear modal interaction in shallow suspended cables with oscillating ends
,
Chaos, Solitons Fractals
8
,
637
657
.
139.
Pilipchuk
VN
, and
Ibrahim
RA
(
1999
),
Nonlinear modal interactions in shallow suspended cables
,
J. Sound Vib.
227
,
1
28
.
140.
Rega G (1995), Bifurcation and chaos in the Helmholtz-Duffing oscillator, Bifurcation and Chaos, J Awrejcewicz (ed), Springer Verlag, Berlin, 191–215.
141.
Thompson JMT, and Stewart HB (1986), Nonlinear Dynamics and Chaos, Wiley, Chichester, England.
142.
Moon FC (1992), Chaotic and Fractal Dynamics, Wiley, New York.
143.
Nayfeh AH, and Balachandran B (1995), Applied Nonlinear Dynamics Wiley, New York.
144.
Szemplinska-Stupnicka
W
,
Plaut
RH
, and
Hsieh
JC
(
1989
),
Period doubling and chaos in unsymmetric structures under parametric excitation
,
ASME J. Appl. Mech.
56
,
947
952
.
145.
Rega G (1991), From regular nonlinear oscillations to chaotic motions in structural dynamics, Nonlinear Problems in Engineering, C Carmignani and G Maino (eds), ENEA Workshops on Nonlinear Dynamics 4, World Scientific, Singapore, 195–209.
146.
Parker TS, and Chua LO (1989), Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, New York.
147.
Guckenheimer J, and Holmes P (1983), Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag, New York.
148.
Wiggins S (1990), Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York.
149.
Benedettini
F
, and
Rega
G
(
1990
),
Numerical simulations of chaotic dynamics in a model of elastic cable
,
Nonlinear Dyn.
1
,
23
38
.
150.
Rega
G
,
Benedettini
F
, and
Salvatori
A
(
1991
),
Periodic and chaotic motions of an unsymmetric oscillator in nonlinear structural dynamics
,
Chaos, Solitons Fractals
1
,
39
54
.
151.
Tongue
BH
(
1987
),
Characteristics of numerical simulations of chaotic systems
,
ASME J. Appl. Mech.
54
,
695
699
.
152.
Wolf
A
,
Swift
J
,
Swinney
HL
, and
Vastano
JA
(
1985
),
Determining Lyapunov exponents from a time series
,
Physica D
16
,
285
317
.
153.
Stoop
R
, and
Meier
PF
(
1988
),
Evaluation of Lyapunov exponents and scaling functions from time series
,
J. Opt. Soc. Am.
5
,
1037
1045
.
154.
Grassberger
P
, and
Procaccia
I
(
1983
),
Characterization of strange attractors
,
Phys. Rev. Lett.
50
,
346
349
.
155.
Moon
FC
, and
Li
GX
(
1985
),
The fractal dimension of the two-well potential strange attractor
,
Physica D
17
,
99
108
.
156.
Benedettini
F
,
Rega
G
, and
Salvatori
A
(
1992
),
Prediction of bifurcation and chaos for an asymmetric elastic oscillator
,
Chaos, Solitons Fractals
2
,
303
321
.
157.
Rega
G
,
Salvatori
A
, and
Benedettini
F
(
1995
),
Numerical and geometrical analysis of bifurcation and chaos for an asymmetric elastic nonlinear oscillator
,
Nonlinear Dyn.
7
,
249
272
.
158.
Rega
G
, and
Salvatori
A
(
1996
),
Bifurcation structure at 1/3-subharmonic resonance in an asymmetric nonlinear elastic oscillator
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
6
,
1529
1546
.
159.
Kreuzer E (1987), On the numerical study of bifurcation problems, Bifurcations: Analysis, Algorithm, Applications, T Ku¨pper, R Seydel, and H Troger (eds), Birkha¨user, Basel, 161–171.
160.
Pezeshki
C
, and
Dowell
EH
(
1989
),
Generation and analysis of Lyapunov exponents for the buckled beam
,
Int. J. Non-Linear Mech.
24
,
79
97
.
161.
Pinto da Costa
A
,
Martins
JAC
,
Branco
F
, and
Lilien
JL
(
1996
),
Oscillations of bridge stay cables induced by periodic motions of deck and/or towers
,
J. Eng. Mech. Div.
122
,
613
622
.
162.
van Dooren
R
(
1988
),
On the transition from regular to chaotic behavior in the Duffing oscillator
,
J. Sound Vib.
121
,
327
339
.
163.
Leung
AYT
, and
Fung
TC
(
1989
),
Construction of chaotic regions
,
J. Sound Vib.
131
,
445
455
.
164.
Cardona
A
,
Lerusse
A
, and
Ge´radin
M
(
1998
),
Fast Fourier nonlinear vibration analysis
,
Comput. Mechanics
22
,
128
142
.
165.
Yu
Z
, and
Xu
YL
(
1999
),
Non-linear vibration of cable-damper systems. Part I: Formulation
,
J. Sound Vib.
225
,
447
463
.
166.
Hayashi C (1964), Nonlinear Oscillations in Physical Systems, McGraw-Hill, New York.
167.
Szemplinska-Stupnicka W (1990), The Behaviour of Nonlinear Vibrating Systems, Vols I and II, Kluwer, Dordrecht.
168.
Szemplinska-Stupnicka
W
, and
Bajkowski
J
(
1986
),
The 1/2-subharmonic resonance and its transition to chaotic motion in a nonlinear oscillator
,
Int. J. Non-Linear Mech.
21
,
401
419
.
169.
Foale
S
, and
Thompson
JMT
(
1991
),
Geometrical concepts and computational techniques of nonlinear dynamics
,
Comput. Methods Appl. Mech. Eng.
89
,
381
394
.
170.
Seydel R (1994), Practical Bifurcation and Stability Analysis, Springer-Verlag, New York.
171.
Doedel EJ, Champneys AR, Fairgrieve TR, Kuznetsov YuA, Sandstede B, and Wang XJ (1997), AUTO97: Continuation and bifurcation software for ordinary differential equations (available by anonymous ftp from ftp.cs.concordia.ca/pub/doedel/auto).
172.
Hsu
CS
(
1992
),
Global analysis by cell mapping
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
2
,
727
771
.
173.
Ueda
Y
(
1991
),
Survey of regular and chaotic phenomena in the forced Duffing oscillator
,
Chaos, Solitons Fractals
1
,
199
231
.
174.
Abraham RH, and Shaw CD (1992), Dynamics: The Geometry of Behavior, Addison-Wesley, Redwood City.
175.
Grebogi
C
,
Ott
E
, and
Yorke
JA
(
1983
),
Crises, sudden changes in chaotic attractors, and transient chaos
,
Physica D
7
,
181
200
.
176.
Grebogi
C
,
Ott
E
, and
Yorke
JA
(
1987
),
Basin boundary metamorphoses: Changes in accessible boundary orbits
,
Physica D
24
,
243
262
.
177.
Salvatori A, and Rega G (1996), Computational characterization of attractor-basin structure in the nonlinear dynamics of multidegree-of-freedom structural models, Structural Dynamics, G Augusti, C Borri, and P Spinelli (eds), Balkema, Rotterdam, 341–348.
178.
Lai YC, Grebogi C, and Yorke JA (1992), Sudden change in the size of chaotic attractors: How does it occur? Applied Chaos, JH Kim and J Stringer (eds), Wiley, New York, 441–455.
179.
Johnson
JM
, and
Bajaj
AK
(
1989
),
Amplitude modulated and chaotic dynamics in resonant motion of strings
,
J. Sound Vib.
128
,
87
107
.
180.
Kreuzer
E
, and
Lagemann
B
(
1996
),
Cell mapping for multi-degree-of-freedom systems parallel computing in nonlinear dynamics
,
Chaos, Solitons Fractals
7
,
1683
1691
.
181.
Zaretzky
CL
, and
Crespo da Silva
MRM
(
1994
),
Experimental investigation of non-linear modal coupling in the response of cantilever beams
,
J. Sound Vib.
174
,
145
167
.
182.
Nayfeh
TA
,
Nayfeh
AH
, and
Mook
DT
(
1994
),
A theoretical and experimental investigation of a three-degree-of-freedom structure
,
Nonlinear Dyn.
6
,
353
374
.
183.
Cusumano
JP
, and
Sharkady
MT
(
1995
),
An experimental study of bifurcation, chaos and dimensionality in a system forced through a bifurcation parameter
,
Nonlinear Dyn.
8
,
467
489
.
184.
Molteno
TCA
, and
Tufillaro
NB
(
1990
),
Torus doubling and chaotic string vibrations: Experimental results
,
J. Sound Vib.
137
,
327
330
.
185.
O’Reilly
O
, and
Holmes
PJ
(
1992
),
Non-linear, non-planar and non-periodic vibrations of a string
,
J. Sound Vib.
153
,
413
435
.
186.
Nayfeh
SA
,
Nayfeh
AH
, and
Mook
DT
(
1995
),
Nonlinear response of a taut string to longitudinal and transverse end excitation
,
J. Vib. Control
1
,
307
334
.
187.
Yamaguchi H, Miyata T, and Ito M (1978), A behavior on nonlinear dynamic response of cable systems, Proc 24th Symp Structural Engineering, 55–61.
188.
Lee CL, and Perkins NC (1993), Experimental investigation of isolated and simultaneous internal resonances in suspended cables, Nonlinear Vibrations ASME, DE-54, 21–31.
189.
Fujino
Y
,
Warnitchai
P
, and
Pacheco
BM
(
1993
),
Active stiffness control of cable vibration
,
ASME J. Appl. Mech.
60
,
948
953
.
190.
Fujino
Y
, and
Susumpow
T
(
1994
),
An experimental study on active control of in-plane cable vibration by axial support motion
,
Earthquake Eng. Struct. Dyn.
23
,
1283
1297
.
191.
Benedettini
F
, and
Moon
FC
(
1995
),
Experimental dynamics of a hanging cable carrying two concentrated masses
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
5
,
145
157
.
192.
Rega
G
,
Alaggio
R
, and
Benedettini
F
(
1997
),
Experimental investigation of the nonlinear response of a hanging cable, Part I: Local analysis
,
Nonlinear Dyn.
14
,
89
117
.
193.
Benedettini
F
, and
Rega
G
(
1997
),
Experimental investigation of the nonlinear response of a hanging cable, Part II: Global analysis
,
Nonlinear Dyn.
14
,
119
138
.
194.
Alaggio
R
, and
Rega
G
(
2000
),
Characterizing bifurcations and classes of motion in the transition to chaos through 3D-tori of a continuous experimental system in solid mechanics
,
Physica D
137
,
70
93
.
195.
Rega
G
, and
Alaggio
R
(
2001
),
Spatio-temporal dimensionality in the overall complex dynamics of an experimental cable/mass system
,
Int. J. Solids Struct.
38
,
2049
2068
.
196.
Campbell JE, Baker JR, Gagel JC, and Smith SW (2004), Response of a sagging, inclined cable to base excitation: Laboratory experiments and nonlinear transient simulations, Tenth Conf. on Nonlinear Vibrations, Stability, and Dynamics of Structures (CDRom of Abstracts), Blacksburg, VA.
197.
Cheng
SP
, and
Perkins
NC
(
1994
),
Theoretical and experimental analysis of the forced response of sagged cable/mass suspensions
,
ASME J. Appl. Mech.
61
,
944
948
.
198.
Russell
JC
, and
Lardner
TJ
(
1998
),
Experimental determination of frequencies and tension for elastic cables
,
J. Eng. Mech. Div.
124
,
1067
1072
.
199.
Gattulli V, and Benedettini F (1999), Nonlinear feedback control for the stabilization of cable oscillations: Analytical and experimental models, Proc XIII ASCE Engng Mech Div Conf, CD Rom, Baltimore.
200.
Yamaguchi
H
, and
Fujino
Y
(
1987
),
Modal damping of flexural oscillation in suspended cables
,
Struct. Eng./Earthquake Eng.
4
,
413s–421s
413s–421s
.
201.
Barbieri
N
,
de Souza
Junior
OH
, and
Barbieri
R
(
2004
),
Dynamical analysis of transmission line cables. Part 2—damping estimation
,
Mech. Systems Sign. Process.
18
,
671
681
.
202.
Packard
NH
,
Crutchfield
JP
,
Farmer
JD
, and
Shaw
RS
(
1980
),
Geometry from a time series
,
Phys. Rev. Lett.
45
,
712
716
.
203.
Takens F (1981), Detecting strange attractors in turbulence, Dynamical Systems and Turbulence, DA Rand and LS Young (eds), Springer Lecture Notes in Mathematics 898, New York, 266–281.
204.
Mane´ R (1981), On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical Systems and Turbulence, DA Rand and LS Young (eds), Springer Lecture Notes in Mathematics 898, New York, 230–242.
205.
Sauer
T
,
Yorke
JA
, and
Casdagli
M
(
1991
),
Embedology
,
J. Stat. Phys.
65
,
579
616
.
206.
Abarbanel
HDI
,
Brown
R
,
Sidorowich
JJ
, and
Tsimring
LS
(
1993
),
The analysis of observed chaotic data in physical systems
,
Rev. Mod. Phys.
65
,
1331
1391
.
207.
Kostelich
EJ
, and
Schreiber
T
(
1993
),
Noise reduction in chaotic time-series data: A survey of common methods
,
Phys. Rev. E
48
,
1752
1763
.
208.
Abarbanel HDI (1995), Tools for analyzing observed chaotic data, Stability, Vibration and Control of Structures, A Guran and DJ Inman (eds), World Scientific, Singapore.
209.
Fraser
AM
, and
Swinney
HL
(
1986
),
Independent coordinates for strange attractors from mutual information
,
Phys. Rev. A
33
,
1134
1140
.
210.
Fraser
AM
(
1989
),
Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria
,
Physica D
34
,
391
404
.
211.
Broomhead
DS
, and
King
GP
(
1986
),
Extracting qualitative dynamics from experimental data
,
Physica D
20
,
217
236
.
212.
Benedettini F (1996), An experimental time series analysis approach in the classification of non periodic motions in nonlinear structural dynamics, Structural Dynamics, G Augusti, C Borri, and P Spinelli (eds), 1, 415–421, Balkema, Rotterdam.
213.
Holzfuss
J
, and
Lauterborn
W
(
1989
),
Lyapunov exponents from a time series of acoustic chaos
,
Phys. Rev. A
39
,
2146
2152
.
214.
Rosenstein
MT
,
Collins
JJ
, and
De Luca
CJ
(
1993
),
A practical method for calculating largest Lyapunov exponents from small data sets
,
Physica D
65
,
117
134
.
215.
Kantz, and Schreider (1997), Nonlinear Time Series Analysis, Nonlinear Science Series 7, Cambridge Univ Press, Cambridge, UK.
216.
Ott
E
,
Grebogi
C
, and
Yorke
JA
(
1990
),
Controlling chaos
,
Phys. Rev. Lett.
64
,
1196
1199
.
217.
Ott E (1993), Chaos in Dynamical Systems, Cambridge Univ Press, Cambridge.
218.
Holmes P, Lumley JL, and Berkooz G (1996), Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics, Cambridge Univ Press, New York.
219.
Cusumano
JP
,
Sharkady
MT
, and
Kimble
BW
(
1994
),
Experimental measurements of dimensionality and spatial coherence in the dynamics of a flexible-beam impact oscillator
,
Proc. Phys. Soc., London, Sect. A
347
,
421
434
.
220.
Georgiou
IT
,
Schwartz
I
,
Emaci
E
, and
Vakakis
A
(
1999
),
Interaction between slow and fast oscillations in an infinite degree-of-freedom linear system coupled to a nonlinear subsystem: Theory and experiments
,
ASME J. Appl. Mech.
66
,
448
459
.
221.
Benedettini F, and Rega G (1999), Nonregular regimes of monodimensional mechanical systems with initial curvature: Experiments and time series analysis, New Applications of Nonlinear and Chaotic Dynamics in Mechanics, FC Moon (ed), Solid Mechanics and Its Applications 63, Kluwer, Dordrecht, 139–148.
222.
Kappagantu
RV
, and
Feeny
BF
(
2000a
),
Part I: Dynamical characterization of a frictionally excited beam
,
Nonlinear Dyn.
22
,
317
333
.
223.
Kerschen G, Golinval JC, Vakakis AF, and Bergman LA (2005), The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview, Nonlinear Dyn. (accepted).
224.
Kappagantu
RV
, and
Feeny
BF
(
2000b
),
Part II: Proper orthogonal modal modeling of a frictionally excited beam
,
Nonlinear Dyn.
23
,
1
11
.
225.
Alaggio R, and Rega G (2001), Exploiting results of experimental nonlinear dynamics for reduced-order modeling of a suspended cable, ASME Des Engng Techn Conf, 18th Bienn Conf Mechanical Vibration and Noise, DETC01/VIB-21554, CD-Rom.
226.
Georgiou IT (2005), Advanced proper orthogonal decompostion tools: Using reduced order models to identify normal modes of oscillation and slow invariant manifolds in the dynamics of planar nonlinear rods, Nonlinear Dyn. (accepted).
You do not currently have access to this content.