A comprehensive review and assessment of the electromagnetic forming process is presented. Even though electromagnetic forming is a technology known for a few decades, renewed interest in it for industrial applications is currently taking place. Emphasis is mainly placed on the physical phenomena that govern the process as well as its main technological aspects, such as magnetic forming and joining, magnetic pulse welding, and dynamic magnetic compaction of powders. Moreover, some other important subjects concerning electromagnetic forming such as process equipment and workpiece formability are briefly presented in this paper. Applications of the process, mainly regarding manufacturing of advanced materials, are presented and discussed. This review article cites 149 references.

1.
Johnson
W
, and
Mamalis
AG
(1979), Ingenious alternatives to the press in metal forming, Welding and Metal Fabricator (July/Aug), 375–383.
2.
Lange K (1985), Handbook of Metal Forming, McGraw-Hill.
3.
Daehn
GS
,
Altynova
M
,
Balanethiram
VS
,
Fenton
G
,
Padmanabhan
M
,
Vohnout
VJ
,
Tamhane
A
, and
Winnard
E
(1995), High velocity metal forming—An old technology addresses current problems, JOM July, 42–45.
4.
Plum MM, and Maxwell Laboratories Inc (1996), Electromagnetic Forming, Metals Handbook 9th Edition, 14, ASM, Metals Park, Ohio.
5.
Destefani
JD
(
1997
),
Profiting from inertia
,
Manuf. Eng.
119
(
5
),
70
76
.
6.
Ezra AA (1973), Principles and Practices of Explosive Metalworking, 1, Indust Newspapers Ltd.
7.
Al-Hassani
STS
,
Duncan
JL
, and
Johnson
W
(
1970
),
The magnetohydraulic forming of tube: Experiment and theory
,
J. Mech. Eng. Sci.
12
,
371
392
.
8.
Al-Hassani STS and Johnson W (1971), A magnetohydraulically activated system for high strain-rate testing and forming of thin small diameter tubes, Adv in Machine Tool Des and Res, SA Tobias, and F Koenigsberger (eds), Pergamon Press, Oxford and New York, 855–872.
9.
Duncan JL, Johnson W, and Miller J (1975), Reducing of thin-walled tube by electrohydraulic and other processes, Conf on Elec Methods of Machining, Forming and Coating, 217–228.
10.
Furth
HP
, and
Wanieck
R
(
1956
),
Production and use of high magnetic fields I
,
Rev. Sci. Instrum.
27
,
195
203
.
11.
Furth
HP
,
Levine
M
, and
Wanieck
R
(
1957
),
Production and use of high magnetic fields II
,
Rev. Sci. Instrum.
28
,
949
958
.
12.
Birdsall
DH
, and
Furth
HP
(
1959
),
Pulsed 200-kilogauss magnet for accelerator experiments
,
Rev. Sci. Instrum.
30
,
600
601
.
13.
Furth
HP
(
1960
),
High magnetic field research
,
Science
132
,
387
393
.
14.
Birdsall
DH
,
Ford
FC
,
Furth
HP
, and
Riley
RE
(
1961
),
Magnetic forming
,
Am Mach/Metalworking Manuf
105
,
117
121
.
15.
Meagher
TF
(
1964
),
The conversion of shock energy into shock pulses
,
ISA Trans.
3
,
313
321
.
16.
Kraus J, and Fleisch D (1999), Electromagnetics with Applications 5th Edition, McGraw-Hill.
17.
Baines
K
,
Duncan
JL
, and
Johnson
W
(
1965
),
Electromagnetic metal forming
,
Proc. Inst. Mech. Eng.
180
,
348
362
.
18.
Stadelmaier
HH
(
2000
),
Magnetic properties of materials
,
Mater. Sci. Eng., A
287
,
138
145
.
19.
Beerwald C, Brosius A, Homberg W, Kleiner M, and Wellendorf A (1999), New aspects of electromagnetic forming, 6th ICTP Proc on Adv Tech of Plasticity, III, M Geiger (ed), Springer, 2471–2476.
20.
Young
FJ
(
1977
),
Induction heating for case hardening applications
,
IEEE Trans. Magn.
13
(
6
),
1776
1785
.
21.
Batygin YV, and Daehn GS (1999), The pulse magnetic fields for progressive technologies, Monograph, Kharkov-Columbus, available at: http://www.er6.eng.ohio-state.edu/∼DAEHN/hyperplasticity.html.
22.
Batygin
YV
, and
Sapelkin
SA
(
1989
),
The electric field between parallel strip conductors separated by deferent kinds of dielectrics
,
Elec
(
2
),
51
54
(Russian).
23.
Batygin
YV
(
1989
),
Mechanical forces in solid dielectrics for imposed rapidly changing magnetic fields
,
Elec
(
8
),
84
86
(in Russian).
24.
Livshitz Y, and Gafri O (1999), Technology and equipment for industrial use of pulse magnetic fields, Digest of Tech Papers-IEEE Int Pulsed Power Conf 1, 475–478.
25.
Altynova MM, Electromagnetic Metal Forming Handbook, Mat Sci and Eng Dept, Ohio State Univ, Transl of the Russian book: SMI’SOM by IV Belyy, SM Fertik, and LT Khimenko, VS available at: http://www.er6.eng.ohio-state.edu/∼DAEHN/hyperplasticity.html.
26.
Ouellette RP, Ellerbusch F, and Cheremisinoff PN (1978), Electrotechnology 2: Applications in Manufacturing, Ann Arbor Sci.
27.
Padmanabhan M (1997), Wrinkling and springback in electromagnetic sheet metal forming electromagnetic ring compression, MS Thesis, Ohio State Univ, available at http://www.er6.eng.ohio-state.edu/∼DAEHN/hyperplasticity.html.
28.
Go¨bl N (1978), Unified calculating method of equivalent circuits of electromagnetic forming tools, PhD Thesis, Tech Univ of Budapest, Fac of Elec Eng, Budapest, Hungary.
29.
Panshikar HM (2000), Computer modeling of electromagnetic forming and impact welding, MS Thesis, Ohio State Univ, available at: http://www.er6.eng.ohio-state.edu/∼DAEHN/hyperplasticity.html.
30.
Young
FJ
(
1973
),
Pulse shielding by nonferrous and ferromagnetic materials
,
Proc of the IEEE
61
(
4
),
404
413
.
31.
Kratz R, and Wyber P (2002), Principles of Pulsed Magnet Design, Springer.
32.
Wilson
MN
, and
Srivastava
KD
(
1965
),
Design of efficient flux concentrators for pulsed high magnetic fields
,
Rev. Sci. Instrum.
36
(
8
),
1096
1100
.
33.
Ramboz
JD
(
1996
),
Machinable Rogowski coil, design and calibration
,
IEEE Trans. Instrum. Meas.
45
(
2
),
445
448
.
34.
Szalay A, and Go¨bl N (1999), Metalltech Ltd, Budapest, Private communication.
35.
Zieve PB, and Electroimpact Inc. (1987), Low voltage electromagnetic riveter, available at: http://www.electroimpact.com.
36.
Al-Hassani STS, Duncan JL, and Johnson W (1967), Analysis of the electro-magnetic metal forming process, Int Conf on Manuf Tech, Univ of Michigan, 853–882.
37.
Hillier
MJ
, and
Lal
GK
(
1968
),
The electrodynamics of electromagnetic forming
,
Int. J. Mech. Sci.
10
,
491
500
.
38.
Al-Hassani
STS
,
Duncan
JL
, and
Johnson
W
(
1974
),
On the parameters of magnetic forming process
,
J. Mech. Eng. Sci.
16
(
1
),
1
9
.
39.
Jablonski
J
, and
Winkler
R
(
1978
),
Analysis of the electromagnetic forming process
,
Int. J. Mech. Sci.
20
,
315
325
.
40.
Bednarski T (1985), Magnetic reducing of thin-walled tubes, Proc 3rd Seminar on Metal Forming, Gyo¨r, Hungary, 19–33.
41.
Chalindar B, and Pinoli JC (1986), Simulation and numerical study of the electromagnetic forming process, Modeling and calculation of electromagnetism and their applications, Bul de la direction des etudes et rechs. B: Resaux Electriques (1), A Bossavit, J Planchard, and JC Verite (eds), 33–41 (in French).
42.
Takatsu
N
,
Kato
M
,
Sato
K
, and
Tobe
T
(
1988
),
High speed forming of metal sheets by electromagnetic force
,
JSME Int. J.
31
(
1
),
142
148
.
43.
Van Nieuwenhove R (2000), Development of ceramic - metal transitions for research in nuclear corrosion, Tech Report, Studiecentrum voor Kernenergie—Centre d’ Etude de l’ Energie nucleaire, Reactor Materials Research, Boeretang 200, B-2400 Mol Belgium.
44.
Grover FW (1946), Inductance Calculations, D Van Nostrand Company Inc, New York.
45.
Terman FE (1943), Radio Engineer’s Handbook, McGraw-Hill.
46.
Langford—Smith F (1960), Radio Designer’s Handbook 4th Edition, Iliffe & Sons Ltd.
47.
Wheeler
HA
(
1982
),
Inductance formulas for circular and square coils
,
Proc of the IEEE
70
(
12
),
1449
1450
.
48.
Moon FC (1984), Magneto-Solid Mechanics, John Willey and Sons Inc.
49.
Woodson HH, and Melcher JR (1968), Electromechanical Dynamics Part I & II, John Wiley & Sons.
50.
Von Dietz
H
,
Lippmann
H-J
, and
Schenk
H
(
1967
),
Theorie des Magneform—Verfahrens: Erreichbarer Druck
,
ETZ-A, Elektrotech. Z.
88
(
9
),
217
222
.
51.
Von Dietz
H
,
Lippmann
H-J
, and
Schenk
H
(
1967
),
Theorie des Magneform—Verfahrens: Abgestufter Feldkonzetrator
,
ETZ-A, Elektrotech. Z.
88
(
19
),
475
780
.
52.
Serbanescu
M
(
1976
),
Calculation of the magnetic field intensity for slotted field concentrators
,
Rev. Roum. Sci. Tech., Ser. Mec. Appl.
21
(
3
),
365
376
.
53.
Suzuki
H
,
Murata
M
, and
Negishi
H
(
1987
),
The effect of a field shaper in electromagnetic tube bulging
,
J. Mech. Work. Technol.
15
,
229
240
.
54.
Al Hassani
STS
(
1974
),
The plastic buckling of thin walled tubes subject to magnetomotive forces
,
J. Mech. Eng. Sci.
16
(
2
),
59
70
.
55.
Min
D-K
, and
Kim
D-W
(
1993
),
A finite element analysis of electromagnetic tube compression process
,
J. Mater. Process. Technol.
38
,
29
40
.
56.
Suzuki H, Yokouchi Y, Murata M, and Negishi H (1984), Finite element analysis of tube deformation under impulsive internal pressure, 1st ICTP Proc on Adv Tech of Plasticity I, 367–372.
57.
Vohnout VJ (1998), A hybrid quasi-static/dynamic process for forming large sheet metal parts from aluminum alloys, PhD Thesis, Ohio State Univ, available at: http://www.er6.eng.ohio-state.edu/∼DAEHN/hyperplasticity.html.
58.
Shangyu
H
,
Zhihua
C
,
Zhongren
W
,
Lifeng
W
, and
Mei
Y
(
1998
),
A finite element analysis of electromagnetic sheet metal-expansion process
,
Trans. Nonferrous Met. Soc. China
8
(
3
),
490
495
.
59.
Yudaev
VB
,
Favorin
VM
, and
Kurlaev
NV
(
1990
),
Optimization of load parameters in pulse stamping of sheet-metals parts
,
J of Machinery Manuf and Reliability
1
(
1
),
90
96
.
60.
Jansen
H
(
1968
),
Some measurements of the expansion of a metallic cylinder with electromagnetic pulses
,
IEEE Trans. Ind. Gen. Appl.
4
(
4
),
428
440
.
61.
Fluerasu
C
(
1970
),
Electromagnetic Forming of a Tubular Conductor
,
Rev. Roum. Sci. Tech., Ser. Mec. Appl.
15
(
3
),
457
488
.
62.
Gourdin
WH
(
1989
),
Analysis and Assessment of electromagnetic ring expansion as a high strain-rate test
,
J. Appl. Phys.
65
(
2
),
411
422
.
63.
Gourdin
WH
,
Weiland
SL
, and
Boling
RM
(
1989
),
Development of an electromagnetically launched expanding ring as a high strain-rate technique
,
Rev. Sci. Instrum.
60
(
3
),
427
432
.
64.
Al-Hassani
STS
, and
Johnson
W
(
1970
),
The magnetomotive loading of cantilevers, beams and frames
,
Int. J. Mech. Sci.
12
,
711
722
.
65.
Frithiof
IN
(
1965
),
A unit for testing materials at high strain rates
,
Exp. Mech.
5
(
1
),
29
32
.
66.
Walling
HC
, and
Forrestal
MJ
(
1973
),
Elastic-plastic expansion of 6061-T6 aluminum rings
,
AIAA J.
11
(
8
),
1196
1197
.
67.
Wesenberg
DL
, and
Sagartz
MJ
(Dec.
1977
),
Dynamic fracture of 6061-T6 aluminum cylinders
,
ASME J. Appl. Mech.
44
(
4
),
643
646
.
68.
Grady
DE
, and
Benson
DA
(
1983
),
Fragmentation of metal rings by electromagnetic loading
,
Exp. Mech.
23
(
4
),
393
400
.
69.
Tagulea
A
, and
Fluerasu
C
(
1969
),
The complex surface conductivity and permeability in the study of AC in thin wall conductors
,
Rev. Roum. Sci. Tech., Ser. Mec. Appl.
14
(
3
),
403
419
.
70.
Fluerasu
C
(
1969
),
An approximation method for determining the quasi-stationary electromagnetic field of thin wall conductors
,
Rev. Roum. Sci. Tech., Ser. Mec. Appl.
14
(
3
),
371
386
.
71.
Fluerasu
C
(
1969
),
The use of transient parameters in the study of electromagnetic forming
,
Rev. Roum. Sci. Tech., Ser. Mec. Appl.
14
(
4
),
565
585
.
72.
Lee Sung
Ho
, and
Lee Dong
Nyung
(
1994
),
Finite element analysis of electromagnetic forming for tube expansion
,
ASME J. Eng. Mater. Technol.
116
(
2
),
250
254
.
73.
Kaltenbacher
M
,
Landes
H
, and
Lerch
R
(
1997
),
A strong coupling model for the simulation of the magnetomechanical systems using a Predictor/Multicorrector Algorithm
,
Appl. Comput. Electromagn. Soc. J.
12
(
2
),
102
106
.
74.
Bendjima B, and Feliachi M (1996), Finite element analysis of transient phenomena in electromagnetic forming system, IEE Conf Publ, 113–116.
75.
Bendjima
B
,
Spairi
K
, and
Feliachi
M
(
1997
),
A Coupling model for analyzing dynamical behaviors of an electromagnetic forming system
,
IEEE Trans. Magn.
33
(
21
),
1638
1641
.
76.
Azzouz
F
,
Bendjima
B
,
Feliachi
M
, and
Latreche
ME
(
1999
),
Application of macro-element and finite element coupling for the behavior analysis of magnetoforming systems
,
IEEE Trans. Magn.
35
(
3
),
1845
1848
.
77.
Meriched
A
,
Feliachi
M
, and
Mohellebi
H
(
2000
),
Electromagnetic forming of thin metal sheets
,
IEEE Trans. Magn.
36
(
4
),
1808
1811
.
78.
Fenton
GK
, and
Daehn
GS
(
1998
),
Modeling of electromagnetically formed sheet metal
,
J. Mater. Process. Technol.
75
,
6
16
.
79.
Oliveira
DA
,
Worswick
MJ
, and
Finn
M
(
2001
),
Simulation of electromagnetic forming of aluminum alloy sheet
,
SAE Trans.
110
,
687
695
.
80.
Chunfeng
L
,
Zhiheng
Z
,
Jianhui
L
,
Yongzhi
W
, and
Yuying
Y
(
2002
),
Numerical simulation of the magnetic pressure in tube electromagnetic bulging
,
J. Mater. Process. Technol.
123
,
225
228
.
81.
Hin L, Jintao H, Kebing C, Zhongren W and Renyuan F (1999), Research and deformation simulation on electric-magnetic forming process of metal plate, 6th ICTP Proc on Adv Tech of Plasticity III, M Geiger (ed), Springer, 2483–2488.
82.
Zheng
Z-J
, and
Banerjee
J
(2001),
A theoretical and computational study of electromagnetic (magnetic pulse) high velocity manufacturing process
,
J. Mech. Behav. Mater.
12
(
5
),
335
342
.
83.
Davies R, and Austin ER (1970), Developments in High Speed Metal Forming, The Machinery Publication.
84.
Sung Ho
Lee
, and
Dong Nyung
Lee
(
1996
),
Estimation of the magnetic pressure in tube expansion by electromagnetic forming
,
J. Mater. Process. Technol.
57
,
311
315
.
85.
Zhang
H
,
Murata
M
, and
Suzuki
H
(
1995
),
Effects of various working conditions on tube bulging by electromagnetic forming
,
J. Mater. Process. Technol.
48
,
113
121
.
86.
Dieter GE (1988), Mechanical Metallurgy SI Metric Edition, McGraw-Hill.
87.
Balanethiram
VS
,
Hu
X
,
Altynova
M
, and
Daehn
GS
(
1994
),
Hyperplasticity: Enhanced formability at high rates
,
J. Mater. Process. Technol.
45
(
1–4
),
595
600
.
88.
Al-Hassani
STS
, and
Danian
Chen
(
2000
),
A simplified approach to material instability under high strain-rate stretching
,
Adv in Eng Plasticity
177–180
,
393
400
.
89.
Steinberg
DJ
,
Coichran
SG
, and
Guinan
MW
(
1980
),
A constitutive model for metals applicable at high-strain rate
,
J. Appl. Phys.
51
(
3
),
1498
1504
.
90.
Johnson GR, and Cook WH (1983), A constitutive model and data for metals subjected to large strains, high strain-rates and high temperatures, Proc 7th Int Nat Symp on Ballistics, 541–547.
91.
Johnson
GR
, and
Cook
WH
(
1985
),
Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures
,
Eng. Fract. Mech.
21
(
1
),
31
48
.
92.
Chen
D
,
Al-Hassan
STS
,
Yin
Z
, and
Gan
S
(
2000
),
Rate-depended constitutive law and non local model for concrete subjected to impact loading
,
Adv in Eng Plasticity
177–180
,
300
306
.
93.
Taminura
S
,
Mimura
K
, and
Zhu
WH
(
2000
),
Practical constitutive models covering wide ranges of strain rates, strains and temperature
,
Adv in Eng Plasticity
177–180
,
189
200
.
94.
Vincent
KS ChooK
,
Reinhall
PG
, and
Ghassaei
S
(
1989
),
Effect of high rate deformation induced precipitation hardening on the failure of aluminum rivets
,
J. Mater. Sci.
24
,
599
608
.
95.
Hu
X
,
Wagoner
RH
,
Daehn
GS
, and
Ghosh
S
(
1994
),
The effect of inertia on tensile ductility
,
Metall. Mater. Trans. A
25A
,
2723
2735
.
96.
Hu
X
, and
Daehn
GS
(
1996
),
Effect of velocity on flow localization in tension
,
Acta Mater.
44
(
3
),
1021
1033
.
97.
Altynova
M
,
Hu
X
, and
Daehn
GS
(
1996
),
Increased ductility in high velocity electromagnetic ring expansion
,
Metall. Mater. Trans. A
27A
,
1837
1844
.
98.
Tamhane
AA
,
Altynova
MM
, and
Daehn
GS
(
1996
),
Effect of sample size on ductility in electromagnetic ring expansion
,
Scr. Mater.
34
(
8
),
1345
1350
.
99.
Daehn GS (1997), High velocity sheet metal forming: state of the art and prognosis for advanced commercialization, Private Report, Mat Sci and Eng Dept, Ohio State Univ available at: http://www.er6.eng.ohio-state.edu/∼DAEHN/hyperplasticity.html.
100.
Daehn GS, Vohnout VJ, and DuBois L (1999), Improved formability with electromagnetic forming: fundamentals and a practical example, Mat Sci and Eng Dept, Ohio State Univ, available at: http://www.er6.eng.ohio-state.edu/∼DAEHN/hyperplasticity.html.
101.
Zhang
SB
, and
Nejishi
H
(
2000
),
Inside beading of a hexagonal tube by the electromagnetic forming
,
Acta Metall. Sin.
13
(
1
),
328
334
.
102.
Murakoshi
Y
,
Takahashi
M
,
Sano
T
,
Hanada
K
, and
Negishi
H
(
1998
),
Inside bead forming of aluminum tube by electro-magnetic forming
,
J. Mater. Process. Technol.
80–81
,
695
699
.
103.
Hashimoto
Y
,
Hata
H
,
Sakai
M
, and
Negishi
H
(
1999
),
Local deformation and buckling of a cylindrical Al tube under magnetic impulsive pressure
,
J. Mater. Process. Technol.
85
,
209
212
.
104.
Mehnert
S
, BMW Group (
2000
),
FEM simulation of magnetic forming processes: Opportunity for light weight suspensions
,
SAE Trans.
109
,
691
694
.
105.
Hwang
WS
,
Lee
JS
,
Kim
NH
, and
Sohn
HS
(
1992
),
Electromagnetic joining of aluminum tubes on polyurethane cores
,
J. Mater. Process. Technol.
34
,
341
348
.
106.
Hwang
WS
,
Lee
JS
,
Kim
NH
, and
Sohn
HS
(
1993
),
Joining of copper tube to polyurethane tube by electromagnetic pulse forming
,
J. Mater. Process. Technol.
37
,
83
93
.
107.
Sano
T
,
Takahashi
M
,
Murakoshi
Y
,
Terasaki
M
, and
Matsuno
K
(
1987
),
Electromagnetic joining of metal tubes to ceramic rods
,
J. Jpn. Soc. Technol. Plast.
28
(
322
),
1192
1198
(English Translation).
108.
Sano T, Takahashi M, Murakoshi Y, and Matsuno K (1984), Impulsive forming or tube ends by electromagnetic force, 1th ICTP Proc Adv Tech of Plasticity I, 373–378.
109.
Murata
M
, and
Suzuki
H
(
1990
),
Profile control in tube flaring by electromagnetic forming
,
J. Mater. Process. Technol.
22
,
75
90
.
110.
Powers
HG
(
1967
),
Bonding of Aluminum by the capacitor discharge magnetic forming process
,
Weld. J. (Miami, FL, U. S.)
46
(
6
),
507
510
.
111.
Brown
WF
,
Banbas
J
, and
Olson
NT
(
1978
),
Pulsed magnetic welding of breeder reactor fuel pin end closures
,
Weld. J. (Miami, FL, U. S.)
57
(
6
),
22
26
.
112.
Masumoto
I
,
Tamaki
K
, and
Kojima
M
(
1985
),
Electromagnetic welding of aluminum tube to aluminum or dissimilar metal cores
,
Trans. Jpn. Weld. Soc.
16
(
2
),
110
116
.
113.
Tamaki
K
, and
Kojima
M
(
1988
),
Factors affecting the result of electromagnetic welding of aluminum tube
,
Trans. Jpn. Weld. Soc.
19
(
1
),
53
59
.
114.
Hokari
H
,
Sato
T
,
Kawauchi
K
, and
Muto
A
(
1998
),
Magnetic impulse welding of aluminum tube and copper tube with various core materials
,
Weld Int
12
(
8
),
619
626
.
115.
Shribman V, Livshitz Y, and Gafri O (2001), Magnetic pulse welding & joining: A new tool for the automotive industry, SAE Int and Messe Du¨sseldorf ATTCE Proc Vol 3: Manufacturing, 131–146.
116.
Kistersky L (1996), Welding process turns out tubular joints fast, Am. Mach 140(4), 41–42.
117.
Kohn G, Stern A, and Munitz A (2001), Advanced welding technologies for magnesium alloys, SAE Int and Messe Du¨sseldorf, ATTCE Proc, Vol 3: Manufacturing, 201–205.
118.
Pezzutti
M
(
2000
),
Innovative-welding technologies for the automotive industry
,
Weld. J. (Miami, FL, U. S.)
79
(
6
),
43
46
.
119.
Dana’s Spicer driveshaft and structural groups expand magnetic-pulse welding technology, available at: www.dana.com.
120.
Metals Handbook, 9th Edition, 7: Powder Metallurgy, ASM.
121.
Clyens
S
, and
Johnson
W
(
1977
),
The dynamic compaction of powdered materials
,
Mater. Sci. Eng.
30
,
121
139
.
122.
Gourdin
WH
(
1986
),
Dynamic consolidation of metal powders
,
Prog. Mater. Sci.
30
,
39
80
.
123.
Chelluri
B
(
1994
),
Dynamic magnetic consolidation (DMC) for powder consolidation of advanced materials
,
Mater. Manuf. Processes
9
(
6
),
1127
1142
.
124.
Raichenko
AI
,
Levina
DA
,
Kononenko
VV
, and
Muravskii
NA
(
1976
),
An analysis of magnetic densification of powder by the “compression” and “expansion” technique
,
Sov. Powder Metall. Met. Ceram
162
,
488
491
.
125.
Levina
DA
,
Raichenko
AI
,
Kononenko
VV
, and
Muravskii
NA
(
1974
),
Effect of temperature upon the magnetic impulse pressing of powders
,
Sov. Powder Metall. Met. Ceram
143
,
894
897
.
126.
Kokonenko
VV
,
Levina
DA
, and
Raichenko
AI
(
1974
),
Kinetics of magnetic pulse pressing of iron powder
,
Sov. Powder Metall. Met. Ceram
145
,
25
27
.
127.
Kokonenko
VV
,
Levina
DA
, and
Raichenko
AI
(
1974
),
Electromagnetic compression of a conducting tube filled with powder
,
Sov. Powder Metall. Met. Ceram
141
,
709
711
.
128.
Chelluri
B
(
1999
),
Powder consolidation using Dynamic Magnetic Pulse (DMC) process
,
Ceram. Eng. Sci. Proc.
20
(
4
),
191
198
.
129.
Chelluri
B
,
Knoth
Ed
,
Bauer
D
, and
Barber
J
(
2000
),
Magnetic compaction process nears market
,
Metal Powder Report
55
(
2
),
22
25
.
130.
Mirinov
VA
, and
Maksimov
Yu M
(
1973
),
Magnetic-Pulse pressing of ceramics
,
Machines and Tooling
44
(
9
),
54
55
.
131.
Popov
VA
,
Aksenov
AA
,
Ivanov
VV
, and
Lesuer
DR
et al.
(
2002
),
MMC production method using dynamic consolidation of mechanically alloyed aluminum and silicon carbide powders
,
Mater. Sci. Forum
396–402
,
289
294
.
132.
Chelluri
B
, and
Barber
B
(
1999
),
Full-density, net-shape powder consolidation using dynamic magnetic pulse pressures
,
JOM
51
(
7
),
36
37
.
133.
Chelluri
B
,
Barber
J
,
Bauer
D
,
Gonzalez
EJ
, and
Thadani
NN
(
1997
),
Nano grain size component fabrication using dynamic magnetic compaction (DMC) process
,
Adv. in Powder Metall. and Particulate Mat.
1
,
3
-
65
.
134.
Corbett
J
,
McKeown
PA
,
Peggs
GN
, and
Whatmore
R
(
2000
),
Nanotechnology: International developments and emerging products
,
Annals of the CIRP
49
(
2
),
523
545
.
135.
Mamalis
AG
,
Szalay
A
,
Go¨bl
N
,
Vajda
I
, and
Raveau
B
(
1998
),
Near net-shape manufacturing of metal sheathed superconductors by high energy rate forming techniques
,
Mater. Sci. Eng., B
53
,
119
124
.
136.
Go¨bl N and Szalay A (1997), Working process for superconductors by means of HERF technique, Proc EURODYMAT 97 Conf, Toledo, Spain.
137.
Mamalis
AG
,
Vottea
I
, and
Manolakos
DE
(
2001
),
On modeling of the compaction mechanism of shock compacted powders
,
J. Mater. Process. Technol.
108
,
165
178
.
138.
Mamalis AG, Pantazopoulos G, Szalay A, and Manolakos DE (2000), Processing of High-Tc Superconductors at High Strain Rates, Technomic Publishing Co, Lancaster PA
139.
Mamalis
AG
(
2000
),
Technological aspects of high-Tc superconductors
,
J. of Mat. Proc. Tech
99
,
1
31
.
140.
Mamalis
AG
(
2000
),
Manufacturing of bulk high Tc superconductors
,
J. of Inorganic Mat.
2
,
623
633
.
141.
Mamalis AG (2001), New trends and developments in advanced manufacturing, Proc Int Scientific J “Interpartren 2001,” Ukraine.
142.
Barbarovich
YK
(
1969
),
Use of the energy of a strong-pulsed magnetic field for the powder compaction
,
Sov. Powder Metall. Met. Ceram
82
,
798
803
.
143.
Nakayama
N
,
Mayuzumi
M
,
Hanada
K
,
Sano
T
,
Tominaga
R
, and
Takeishi
H
(
2000
),
Thin-film forming of cluster diamond-dispersed aluminum composite by dynamic compaction
,
Adv. in Eng. Plasticity, Trans Tech Publ
177–179
,
787
792
.
144.
Nakayama N, Hanada K, Sano T, Horikoshi S, and Takeishi H (1999), Thin film forming of pure aluminum powders by dynamic compaction, 6th ICTP Proc on Adv Tech of Plasticity III, Trans Tech Publ, 1321–1326.
145.
Clyens S [1979], Dynamic compaction of metal powders, PhD Thesis, UMIST, UK.
146.
Williams DJ [1981], Compaction of metal powders using high voltage discharges, PhD Thesis, UMIST, UK.
147.
Alp
T
,
Can
M
, and
Al-Hassani
STS
(
1993
),
The electroimpact compaction of powders: Mechanics, Structure and Properties
,
Mater. Manuf. Processes
8
(
3
),
285
298
.
148.
Williams
DJ
, and
Johnson
W
(
1982
),
Neck formation and growth in high voltage discharge forming of metal powders
,
Powder Metall.
25
(
2
),
85
89
.
149.
Qiu
J
,
Dominici
JT
,
Lifland
MI
, and
Okazaki
K
(
1997
),
Composite titanium dental implant fabricated by electro-discharge compaction
,
Biomaterials
18
(
2
),
153
160
.
You do not currently have access to this content.