This review article gives a historical overview of some topics related to the classical 2D biharmonic problem. This problem arises in many physical studies concerning bending of clamped thin elastic isotropic plates, equilibrium of an elastic body under conditions of plane strain or plane stress, or creeping flow of a viscous incompressible fluid. The object of this paper is both to elucidate some interesting points related to the history of the problem and to give an overview of some analytical approaches to its solution. This review article contains 758 references.

1.
Lame´ G (1859), Lec¸ons sur les coordonne´es curvilignes et leurs diverses applications, Mallet-Bachelier, Paris.
2.
Jeffery
GB
(
1920
),
Plane stress and plane strain in bipolar co-ordinates
,
Philos. Trans. R. Soc. London, Ser. A
221
,
265
293
.
3.
Clebsch A (1883), The´orie de l’e´lasticite´ des corps solids, Dunod, Paris.
1.
Boobnoff [Bubnov
]
IG
(
1902
),
On the stresses in a ship’s bottom plating due to water pressure
,
Trans. Inst. Naval Arch.
44
,
15
46
,
2.
(
1902
), On the stresses in a ship’s bottom plating due to water pressure,
44
,
47
52
(discussion).
3.
(Also in
Engineering
73
,
384
385
, 390–392.)
1.
Biezeno CB (1925), Graphical and numerical methods for solving stress problems, Proc of 1st Int Congress for Applied Mechanics, CB Biezeno and JM Burgers (eds), Waltman, Delft, 3–17.
2.
Love
AEH
(
1928
),
Biharmonic analysis, especially in a rectangle, and its application to the theory of elasticity
,
J. London Math. Soc.
3
,
144
156
.
3.
Dixon
AC
(
1934
),
The problem of the rectangular plate
,
J. London Math. Soc.
9
,
61
74
.
1.
Yates
JA
(
1891
),
The internal stresses in steel plating due to water pressure
,
Trans. Inst. Naval Arch.
32
,
190
203
, 203–210 (discussion).
2.
(Also in
Engineering
51
,
629
630
1.
Montgomerie
J
(
1917
),
Stress determination in a flat plate
,
Trans. Inst. Naval Arch.
59
,
33
42
, 42–48 (discussion).
2.
(Also in
Engineering
104
,
35
38
, 75–77.)
1.
Montgomerie
J
(
1919
),
Further experiments on stress determination in flat steel plates
,
Trans. Inst. Naval Arch.
61
,
281
289
, 289–297 (discussion).
2.
(Also in
Engineering
107
,
528
529
, 786–790.)
1.
Inglis
CE
(
1925
),
Stresses in rectangular plates clamped at their edges and loaded with a uniformly distributed pressure
,
Trans. Inst. Naval Arch.
67
,
147
165
.
2.
(Also in
Engineering
119
,
444
445
.)
1.
Lamble
JH
and
Shing
L
(
1947
),
A survey of published work on the deflection of and stress in flat plates subject to hydrostatic loading
,
Trans. Inst. Naval Arch.
89
,
128
142
, 143–147 (discussion).
2.
Lamble
JH
and
Choudhary
JP
(
1953
),
Support reactions, stresses, and deflections for plates subjected to uniform transverse loading
,
Trans. Inst. Naval Arch.
95
,
329
343
, 343–349 (discussion).
3.
Love AEH (1892), A Treatise on the Mathematical Theory of Elasticity, Vol 1, Cambridge Univ Press, Cambridge.
4.
Love AEH (1893), A Treatise on the Mathematical Theory of Elasticity, Vol 2, Cambridge Univ Press, Cambridge.
5.
Love AEH (1906), A Treatise on the Mathematical Theory of Elasticity, 2nd Edition, Cambridge Univ Press, Cambridge, Also: 3rd Edition (1920).
6.
Love AEH (1907), Lehrbuch der Elastizita¨t, Teubner, Berlin.
7.
Love AEH (1927), A Treatise on the Mathematical Theory of Elasticity, 4th Edition, Cambridge Univ Press, Cambridge (Reprinted: Dover, New York, 1944).
8.
Lorenz H (1913), Lehrbuch der Technischen Physik. Band 4. Technische Elastizita¨tslehre, Oldenbourg, Mu¨nchen.
9.
Westergaard HM (1952), Theory of Elasticity and Plasticity, Harvard Univ Press, Cambridge MA.
10.
Todhunter I and Pearson K (1886), A History of the Theory of Elasticity and of the Strength of Materials from Galilei to Lord Kelvin. Vol I. Galilei to Saint-Venant, 1639–1850, Cambridge Univ Press, Cambridge (Reprinted: Dover, New York, 1960).
11.
Todhunter I and Pearson K (1893), A History of the Theory of Elasticity and of the Strength of Materials from Galilei to Lord Kelvin. Vol II. Saint-Venant to Kelvin, Cambridge Univ Press, Cambridge (Reprinted: Dover, New York, 1960).
1.
Timoshenko SP (1953), History of Strength of Materials, With a Brief Account of the History of Theory of Elasticity and Theory of Structures, McGraw-Hill, New York (Reprinted: Dover, New York, 1960). (Reviews by:
DC
Drucker
,
Appl. Mech. Rev.
1953
6
,
539
540
;
2.
J
Ormondroyd
,
ASME J. Appl. Mech.
1954
21
,
99
100
;
3.
RV
Southwell
,
Nature (London)
1954
173
,
462
462
;
4.
PL
Taed
,
J. Roy. Aeronaut. Soc.
1953
57
,
826
826
;
5.
HG
Hopkins
,
Q. Appl. Math.
1955
12
,
440
441
;
6.
R
Hill
,
J. Mech. Phys. Solids
1954
2
,
138
138
;
7.
JSG
Thomas
,
J. Inst. Met.
1953
21
,
399
400
;
8.
H
Ford
,
J. Iron. Steel Inst., London
1954
176
,
127
128
;
9.
RJ
Forbes
,
Arch. Int. Hist. Sci.
1953
6
,
533
534
;
10.
G
Albenga
,
Scientia
1954
89
,
140
141
;
11.
H
Neuber
,
Zentralblatt Math. Grenz
1955
52
,
246
247
;
12.
F
Schleicher
,
Bauingenieur
1953
28
,
413
414
;
13.
C
Tellegan
,
Ingenieur
1953
65
(
40
),
78
78
;
14.
KW Johansen, Bygningsstatiske Meddelelser 1953, 24(2), 75–76; C Truesdell, Math. Revs. 1953 14, 1050).
1.
Barber JR (1992), Elasticity, Kluwer Academic Publ, Dordrecht.
2.
Biezeno CB and Grammel R (1939), Technische Dynamik, Julius Springer-Verlag, Berlin.
3.
Ciarlet PG (1997), Mathematical Elasticity, Vol II, Theory of Plates, Elsevier, Amsterdam.
4.
Coker EG and Filon LNG (1931), A Treatise on Photo-Elasticity, Cambridge Univ Press, Cambridge.
5.
Fo¨ppl A and Fo¨ppl L (1920), Drang und Zwang, Oldenbourg, Mu¨nchen.
6.
Frocht MM (1948), Photoelasticity, John Wiley and Sons, New York.
7.
Girkmann K (1963), Fla¨chentragwerke. Einfu¨hrung in die Elastostatik der Scheiben, Platten, Schalen und Faltwerke, 6th Edition, Julius Springer-Verlag, Wien.
8.
Gould PL (1994), Introduction to Linear Elasticity, 2nd Edition, Julius Springer-Verlag, New York.
9.
Green AE and Zerna W (1954), Theoretical Elasticity, Oxford Univ Press, London.
10.
Hahn HG (1985), Elastizita¨tstheorie. Grundlagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und ra¨umliche Probleme, Teubner, Stuttgart.
11.
Happel J and Brenner H (1965), Low Reynolds Number Hydrodynamics, Prentice Hall, Englewood Cliffs, NJ
12.
Lur’e AI (1970), Theory of Elasticity (in Russian), Nauka, Moscow.
13.
Milne-Thomson LM (1960), Plane Elastic Systems, Julius Springer-Verlag, Berlin.
14.
Muskhelishvili NI (1933), Some Basic Problems of the Mathematical Theory of Elasticity (in Russian), Izd Akad Nauk SSSR, Moscow-Leningrad. Also: 2nd Edition (1938).
15.
Muskhelishvili NI (1949), Some Basic Problems of the Mathematical Theory of Elasticity, 3rd Edition, (in Russian) Izd Akad Nauk SSSR, Moscow-Leningrad. Also: 4th Edition (1954), 5th Edition (1966).
16.
Muskhelishvili NI (1953), Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen.
17.
Richards R, Jr (2001), Principles of Solid Mechanics, CRC Press, Boca Raton.
18.
Sokolnikoff IS (1956), Mathematical Theory of Elasticity, 2nd Edition, McGraw-Hill, New York.
19.
Southwell RV (1936), An Introduction to the Theory of Elasticity for Engineers and Physicists, Oxford Univ Press, Oxford.
20.
Timoshenko S (1934), Theory of Elasticity, McGraw-Hill, New York.
1.
Timoshenko SP (1940), Theory of Plates and Shells, McGraw-Hill, New York.
2.
(English review by
A
Na´dai
in
ASME J Appl Mech
9
,
53
54
.)
1.
Timoshenko SP and Goodier JN (1951), Theory of Elasticity, 2nd Edition, McGraw-Hill, New York.
2.
Timoshenko SP and Goodier JN (1970), Theory of Elasticity, 3rd Edition, McGraw-Hill, New York.
3.
Timoshenko SP and Woinowsky-Krieger S (1959), Theory of Plates and Shells, 2nd Edition, McGraw-Hill, New York.
4.
Villaggio P (1997), Mathematical Models for Elastic Structures, Cambridge Univ Press, Cambridge.
5.
Wang CT (1952), Applied Elasticity, McGraw-Hill, New York.
6.
Agarev VA (1963), Method of Initial Functions for Two-dimensional Boundary Value Problems of the Theory of Elasticity (in Russian), Izd Akad Nauk UkrSSR, Kiev.
7.
Babusˇka I, Rektorys K, and Vycˇichlo F (1960), Mathematische Elastizita¨tstheorie der ebenen Probleme, Akademie-Verlag, Berlin.
8.
Belluzzi O (1956), Scienza della construzioni, Vol III, Elementi di teoria dell’elasticita` con applicazioni, Zanichelli, Bologna.
9.
Boresi AP and Chong KP (1974), Elasticity in Engineering Mechanics, Elsevier, New York.
10.
Bricas M (1936), La the´orie d’e´lasticite´ bidimensionelle, Pyrsos, Athene.
11.
Burgatti P (1931), Teoria matematica della elasticita`, Zanicelli, Bologna.
12.
Butty E (1939), Resolution estatica de sistemas planos, 2nd edition, Centro Estudiantes de Ingenieria de Buenos Aires, Buenos Aires.
13.
Butty E (1946), Tratado de elasticidad teorico-tecnica (elastotecnia), Centro Estudiantes de Ingenieria de Buenos Aires, Buenos Aires.
14.
Filonenko-Borodich MM (1932), Foundation of the Theory of Elasticity (in Russian), GTTI, Moscow.
15.
Filonenko-Borodich MM (1947), Theory of Elasticity, 3rd Edition (in Russian), OGIZ-GITTL, Moscow-Leningrad.
16.
Filonenko-Borodich MM (1959), Theory of Elasticity, 4th Edition (in Russian), Fizmatgiz, Moscow.
17.
Filonenko-Borodich MM (1965), Theory of Elasticity, Dover, New York.
18.
Galerkin BG (1933), Elastic Thin Plates (in Russian), Gostrojizdat, Moscow.
19.
Godfrey DER (1959), Theoretical Elasticity and Plasticity for Engineers, Thames and Hudson, London.
1.
Grinchenko VT (1978), Equilibrium and Steady Vibrations of Elastic Bodies of Finite Dimensions (in Russian), Naukova Dumka, Kiev.
2.
(English review in
Math. Revs.
58
,
2944.)
2944.)
1.
l’Hermite R (1953), Re´sistance des mate´riaux, the´orique et experimentale, Tome I, The´orie de l’e´lasticite´ et des structures e´lastiques, Dunod, Paris.
2.
Hlitcˇijev J (1950), Poglavlja iz theorije elasticˇnosti sa primenama, 2nd Edition, Nauchna Knijga, Beograd.
3.
Huber MT (1954), Teoria spre¸zysto´sci, PWN, Warszawa.
4.
Kolosov GV (1935), Application of Complex Diagrams and Theory of Functions of Complex Variable to the Theory of Elasticity (in Russian), ONTI, Leningrad-Moscow.
5.
Leibenzon LS (1943), Variational Methods of Solution of Problems in Theory of Elasticity (in Russian), GTTI, Moscow. (Reprinted in: Leibenzon LS (1951), Collected Papers, AI Nekrasov (ed), Izd Akad Nauk SSSR, Moscow, 1, 177–463).
1.
Leibenzon LS (1947), Course in the Theory of Elasticity, 2nd Edition (in Russian), OGIZ-GITTL, Moscow-Leningrad.
2.
(English review in Appl Mech Rev 1, No. 1315).
1.
Lecornu L (1938), The´orie mathe´matique de l’e´lasticite´, Gauthier-Villars, Paris.
2.
Little RW (1973), Elasticity, Prentice Hall, Englewood Cliffs, NJ.
3.
Mansfield EH (1964), The Bending and Stretching of Plates, Macmillan, New York.
4.
Marcolongo R (1904), Teoria matematica dello equilibrio dei corpi elastici, Hoepli, Milan.
5.
Morozov NF (1978), Selected Two-dimensional Problems of the Theory of Elasticity (in Russian), Izd LGU, Leningrad.
6.
Na´dai A (1925), Der elastischen Platten, Julius Springer-Verlag, Berlin.
7.
Novozhilov VV (1958), Theory of Elasticity (in Russian), Sudpromgiz, Leningrad.
8.
Novozhilov VV (1961), Theory of Elasticity, Pergamon Press, Oxford.
9.
Pank V (1975), Theory of Elastic Plates, Noordhoff, Leiden.
10.
Papkovich, PF (1939), Theory of Elasticity (in Russian), Oborongiz, Leningrad-Moscow.
11.
Savin GN (1951), Stress Concentration around Openings (in Russian), GTTI, Moscow-Leningrad.
12.
Sawin [Savin] GN (1956), Spannungserho¨hung am Rande von Lo¨chern, VEB-Verlag Technik, Berlin.
13.
Savin GN (1962), Stress Concentration around Openings, Pergamon Press, London.
14.
Savin GN (1968), Stress Distribution around Openings (in Russian), Naukova Dumka, Kiev.
15.
Segal’ AI (1961), Applied Theory of Elasticity, 2nd Edition (in Russian), Sudpromgiz, Leningrad.
16.
Solomon L (1968), E´lasticite´ line´aire, Masson, Paris.
17.
Stiglat K and Wippel H (1973), Platten, 2nd Edition, Ernst, Berlin.
18.
Szilard R (1974), Theory and Analysis of Plates. Classical and Numerical Methods, Prentice Hall, Englewood Cliffs NJ.
19.
Teodorescu PP (1961), Probleme plane in teoria elasticitaˇt¸ii, 1, Editura Acad Rep Pop Romaˇnia, Bucures¸ti.
20.
Teodorescu PP (1966), Probleme plane in teoria elasticitaˇt¸ii, 2, Editura Acad Rep Soc Romaˇnia, Bucures¸ti.
21.
Timoshenko SP (1914), A Course in Theory of Elasticity, Part I, General Theory. Bending and Torsion of Rods. Plane Problem. Bodies of Revolution (in Russian), Kollins, St Petersburg.
22.
Timoshenko SP (1916), A Course in Theory of Elasticity, Part II: Rods and Plates (in Russian), Kollins, Petrograd.
23.
Timoshenko SP (1972), A Course in Theory of Elasticity, 2nd Edition (in Russian), Naukova Dumka, Kiev.
24.
Ufliand YaS (1967), Integral Transforms in Problems of the Theory of Elasticity (in Russian), Nauka, Leningrad.
25.
Tedone O and Timpe A (1907), Spezielle Ausfu¨hrungen zur Statik elastischer Ko¨rper, Encyklopa¨die der Mathematischen Wissenschaften, F Klein and C Mu¨ller (eds), Teubner, Leipzig, IV/4, 125–214.
26.
Fo¨ppl
L
(
1921
),
Neuere Fortschritte der technishen Elastizita¨tstheorie
,
Z Angew Math Mech
1
,
466
481
.
27.
Westergaard HM and Slater WA (1921), Moments and stresses in slabs, Proc Amer Concrete Inst 17, 415–538.
28.
Geckeler JW (1928), Elastostatik, Handbuch der Physik, R Grammel (ed), Julius Springer-Verlag, Berlin, VI, 141–297.
29.
Trefftz E (1928), Mathematische Elastizita¨stheorie, Handbuch der Physik, R Grammel (ed), Julius Springer-Verlag, Berlin, VI, 47–140.
30.
Prokof’ev I (1929), Deformation, Technical Encyklopaedia (in Russian), LK Martens (ed), Sovetskaya Encyklopediya, Moscow, 6, 578–589.
31.
Timoshenko SP (1929), Festigkeitsprobleme im Maschinenbau, Handbuch der physikalischen und technischen Mechanik, R Hort (ed), Johann Barth, Leipzig, 4, 146–198.
32.
Galerkin BG (1932), Plates, Technical Encyclopaedia (in Russian), LK Martens (ed), OGIZ RSFSR, Moscow, 16, 546–554.
33.
Muskhelishvili NI (1936), Elasticity theory, Large Soviet Encyklopaedia (in Russian), OYu Shmidt (ed), OGIZ, Moscow, 56, 147–158.
34.
Dzhanelidze
GYu
(
1948
),
Review of works on the theory of bending of thick and thin plates published in the USSR (in Russian
),
Prikl. Mat. Mekh.
12
,
109
128
.
35.
Rabotnov YuN (1950), Plates and shells, Mechanics in the USSR in 30 years (in Russian), VZ Vlasov, VV Golubev and ND Moiseev (eds), GITTL, Moscow-Leningrad, 226–239.
36.
Sherman DI (1950), Main plane and contact (mixed) problems of the static theory of elasticity, Mechanics in the USSR in 30 years (in Russian), VZ Vlasov, VV Golubev, and ND Moiseev (eds), GITTL, Moscow-Leningrad, 193–225.
37.
Sherman DI (1962), Methods of the integral equations in plain and space problems of the static theory of elasticity (in Russian), Proc of 1st All-Union Congress of Theoretical and Applied Mekhanics, LI Sedov (ed), Nauka, Moscow, 405–467.
38.
Neme´nyi PF (1951), Recent developments in inverse and semi-inverse methods in the mechanics of continua, Advances in Applied Mechanics, R von Mises and Th von Ka´rma´n (eds), Academic Press, New York 2, 123–151.
39.
Schmidt K (1953), Allgemeine Elastizita¨tstheorie, Naturforschung und Medizin in Deutschland 1939–1946, A Wlather (ed), Chemie, Weinheim, 4/II, 7–12.
40.
Goodier JN (1958), The mathematical theory of elasticity, Surveys in Applied Mathematics, Vol 1, Elasticity and Plasticity, JN Goodier and PG Hodge (eds), John Wiley and Sons, New York, 3–47.
41.
Sneddon IN and Berry DS (1958), The classical theory of elasticity, Handbuch der Physik, S Flu¨gge (ed), Julius Springer-Verlag, Berlin, VI, 1–126.
42.
Koiter
W T
(
1960
),
Complexe behandeling van het tweedimensionale elasticiteitsprobleem
,
Ingenieur
72
,
O11–O13
O11–O13
, O26–O29.
43.
Korenev BG (1960), The theory of plates, Structural Mechanics in the U.S.S.R 1917–1957, IM Rabinovich and G Hermann (eds), Pergamon Press, New York, 191–222.
44.
Vekua IN and Muskhelishvili NI (1962), Methods of the theory of analytic functions in the theory of elasticity (in Russian), Proc of 1st All-Union Congress Theor Appl Mekh, LI Sedov (ed), Nauka, Moscow, 310–338.
45.
Sliter GE, Nikolai RJ, and Boresi AP (1963), Elastic plates: Annotated bibliography 1930–1962, Univ of Illinois Bulletin, Engineering Experiment Station Reprint Series, No 10.
46.
Teodorescu
PP
(
1964
),
One hundred years of investigations in the plane problem of the theory of elasticity
,
Appl Mech Rev
17
,
175
186
.
47.
Gurtin M (1972), The linear theory of elasticity, Handbuch der Physik, S Flu¨gge (ed), Julius Springer-Verlag, Berlin, VIa/2, 1–295.
48.
Kalandiya AI, Lur’e AI, Mandzhavidze GF, Prokopov VK, and Uflyand YaS (1972), Linear theory of elasticity, Mechanics in the USSR in 50 Years (in Russian), LI Sedov Y (ed), Nauka, Moscow, 3, 5–70.
49.
Horgan CO and Knowles JK (1983), Recent developments concerning Saint-Venant’s principle, Advances in Applied Mechanics, JW Hutchinson and ThY Wu (eds) Academic Press, New York, 23, 179–269.
50.
Horgan
CO
(
1989
),
Recent developments concerning Saint-Venant’s principle: An update
,
Appl. Mech. Rev.
42
,
295
303
.
51.
Horgan
CO
(
1996
),
Recent developments concerning Saint-Venant’s principle: A second update
,
Appl. Mech. Rev.
49
,
101
111
.
52.
Pao
Y-H
(
1998
),
Applied mechanics in science and engineering
,
Appl. Mech. Rev.
51
,
141
153
.
53.
Mathieu
(
1869
),
Me´moire sur l’e´quation aux diffe´rences partielles du quatrie`me ordre ΔΔu=0, et sur l’e´quilibre d’e´lasticite´ d’un corps solide
,
J. Math. Pures Appl. (ser 2)
14
,
378
421
.
54.
Sommerfeld A (1900), Randwertaufgaben in der Theorie der partiellen Differentialgleichungen, Encyklopa¨die der Mathematischen Wissenschaften, H Burkhardt, W Wirtinger and R Fricke (eds), Teubner, Leipzig II/1, 505–571.
55.
Sommerfeld A (1964), Mechanics of Deformable Bodies, Academic Press, New York.
56.
Kirchhoff G (1876), Vorlesungen u¨ber mathematische Physik, Band 1, Mechanik, Teubner, Leipzig.
57.
Fo¨ppl A (1907), Vorlesungen u¨ber Technische Mechanik, Band 5, Die wichtigsten Lehren der ho¨heren Elastizita¨tslehre, Teubner, Leipzig.
58.
Ka´rma´n Th von (1910), Festigkeitsprobleme in Maschinenbau, Encyklopa¨die der Mathematischen Wissenschaften, F Klein and C Mu¨ller (eds), Teubner, Leipzig, IV/4, 314–386.
59.
Lame´ G (1852), Lec¸ons sur la the´orie mathe´matique de l’e´lasticite´ des corps solids, Bachelier, Paris.
60.
de Saint-Venant
B
(
1856
),
Me´moire sur la torsion des prismes, avec des conside´rations sur leur flexion, ainsi que sur l’e´quilibre inte´rier des solides e´lastiques en ge´ne´ral, et des formules pratiques pour le calcul de leur re´sistance a` divers efforts s’exerc¸ant simultane´ment
,
Me´m. Savants Etr.
14
,
233
560
.
61.
Rankine WJM (1858), A Manual of Applied Mechanics, Griffin, London.
62.
Filon
LNG
(
1903
),
On an approximate solution for the bending of a beam of rectangular cross-section under any system of load, with special references to points of concentrated or discontinuous loading
,
Philos. Trans. R. Soc. London, Ser. A
201
,
63
155
.
63.
Filon
LNG
(
1937
),
On the relation between corresponding problems in plane stress and in generalized plane stress
,
Q. J. Math.
1
,
289
299
.
64.
Langlois L (1964), Slow Viscous Flow, Macmillan, New York.
1.
Stokes
GG
(
1902
),
On the effect of the internal friction of fluids on the motion of pendulums
,
Trans. Cambridge Philos. Soc.
9
,
8
106
.
2.
(Reprinted in Stokes GG (1922), Mathematical and Physical Papers, J Larmor (ed), Cambridge Univ Press, Cambridge, 3, 1–141.)
1.
Rayleigh
Lord
, (
1893
),
On the flow of viscous liquids, especially in two dimensions
,
Philos. Mag. (ser. 5)
36
,
354
372
.
2.
(Reprinted in Strutt JW, Baron Rayleigh (1903), Scientific Papers, Cambridge Univ Press, Cambridge, 5, 78–93.)
1.
Sommerfeld
A
(
1904
),
Zur hydrodynamischen Theorie der Schmiermittelreibung
,
Z. Math. Phys.
50
,
97
155
.
2.
Lamb H (1906), Hydrodynamics, 3rd Edition, Cambridge Univ Press, Cambridge.
3.
Klein
F
and
Wieghardt
K
(
1904
),
U¨ber Spannungsfla¨chen und reziproke Diagramme, mit bezonderer Beru¨cksichting der MAXWELLschen Arbeiten
,
Arch. Math. Phys., (ser. 3)
8
,
1
23
, 95–97.
4.
Trefftz
E
(1924),
Karl
Wieghard
,
Z. Angew. Math. Mech.
4
,
359
360
.
5.
Wieghardt K (1908), U¨ber ein neues Verfahren, verwickelte Spannungsverteilungen in elastischen Ko¨rpen auf experimentellem Wege zu finden. (Dissertation), Teubner, Berlin. (Also in Forschung Gebiete Ingenieurwesens B49, 15–30.)
6.
Wieghardt
K
(
1905
),
U¨ber ein Verfahren, verwickelte theoretische Spannungsverteilungen auf experimentellem Wege zu finden
,
Z. Ver. Deuts. Ing.
49
,
1568
1569
.
7.
Hencky
H
(
1922
),
Die numerische Bearbeitung von partiellen Differentialgleichungen in der Technik
,
Z. Angew. Math. Mech.
2
,
58
66
.
8.
Dean
WR
(
1932
),
Slow motion of fluids
,
Philos. Mag.
13
,
585
600
.
9.
Goodier
JN
(
1934
),
An analogy between the slow motion of a viscous fluid in two dimensions, and systems of plane stress
,
Philos. Mag.
(ser. 7)
17
,
554
576
.
10.
Goodier
JN
(
1934
),
Additional note on an analogy between the slow motion of a viscous fluid in two dimensions and systems of plane stress
,
Philos. Mag.
(ser. 7)
17
,
800
803
.
11.
Goodier
JN
(
1936
),
Slow viscous flow and elastic deformations
,
Philos. Mag.
(ser. 7)
22
,
678
681
.
12.
Cranz
H
(
1939
),
Die experimentelle Bestimmung der Airyschen Spannungsfunction mit Hilfe der Plattengleichnisses
,
Ing.-Arch.
10
,
159
166
.
13.
Hete´nyi
M
(
1941
),
On the similarities between stress and flow patterns
,
J. Appl. Phys.
12
,
592
595
.
14.
Southwell
RV
(
1950
),
On the analogues relating flexure and extension of flat plates
,
Q. J. Mech. Appl. Math.
3
,
257
270
.
15.
Ryan
JJ
(
1952
),
The plate analogy as a means of stress analysis
,
Proc. Soc. Exp. Stress Anal.
10
(
1
),
7
28
.
16.
Hill
R
(
1955
),
On related pairs of plane elastic states
,
J. Mech. Phys. Solids
4
,
1
9
.
17.
Southwell
RV
(
1958
),
Use of an analogue to resolve Stokes’s paradox
,
Nature (London)
181
,
1257
1258
.
18.
Richards
TH
(
1960
),
Analogy between the slow motion of a viscous fluid and the extension and flexure of plates: a geometric demonstration by means of moire´ fringes
,
British J. Appl. Phys.
11
,
244
253
.
19.
Chladni EFF (1817), Neue Beitra¨ge zur Akustik, Breitkopf and Ha¨rtel, Leipzig.
20.
Lagrange
JL
(
1828
),
Note communique´e aux Commissaires pour le prix de la surface e´lastique (de´cembre 1811
),
Ann. Chimie Physique
, (ser 2)
39
,
149, 207
149, 207
.
21.
Germain S (1821), Recherches sur la the´orie des surfaces e´lastiques, Hurard-Courcier, Paris.
1.
Germain
S
(
1828
),
Examen des principes qui peuvent conduire a` la connaissance des lois de l’e´quilibre et du mouvement des solides e´lastiques
,
Ann. Chimie Physique
, (ser 2)
38
,
123
131
.
2.
38
,
150
150
.
1.
Truesdell
C
(
1991
),
Sophie Germain fame earned by stubborn error
,
Boll. Storia Sci. Mat.
11
(
2
),
3
24
.
2.
Bucciarelli LL and Dworsky N (1980), Sophie Germain: An Essay in the History of the Theory of Elasticity, Reidel, Dordrecht.
3.
Kramer EE (1972), Germain, Sophie, Dictionary Scientific Biography, CC Gillispie (ed), Scribner, New York, V, 375–376.
4.
Szabo´
G
(
1972
),
Die Geschichte der Plattentheorie
,
Bautechnik
49
,
1
8
.
5.
Dalme´dico
AD
(
1987
),
Me´chanique et the´orie des surfaces:les travaux de Sophie Germain
,
Hist. Math.
14
,
347
365
.
6.
Dalme´dico
AD
(
1991
),
Sophie Germain
,
Sci. Am.
265
(
6
),
76
81
.
7.
Szabo´ G (1977), Geschichte der mechanischen Prinzipien und ihrer wichtingsten Anwendungen, Birkha¨user, Basel.
8.
Airy
GB
(
1863
),
On the strains in the interior of beams
,
Philos. Trans. R. Soc. London, Ser. A
153
,
49
79
.
9.
Airy
GB
(
1862
),
On the strains in the interior of beams
,
Proc. R. Soc. London
12
,
304
306
.
10.
Airy
GB
(
1862
),
On the strains in the interior of beams
,
Rep. British Assoc. Adv. Sci.
32
,
82
86
.
11.
Maxwell JC (1862), Report on a paper by George Biddel Airy on stress in beams, The Scientific Letters and Papers of James Clerk Maxwell (1995), PM Harman (ed), Cambridge Univ Press, Cambridge, 2, 62–69.
12.
Maxwell JC (1862), Letter to George Gabriel Stokes, 29 December 1862, The Scientific Letters and Papers of James Clerk Maxwell (1995), PM Harman (ed), Cambridge Univ Press, Cambridge, 2, 70–71.
13.
Maxwell JC (1863), Letter to George Gabriel Stokes, 9 June 1863, The Scientific Letters and Papers of James Clerk Maxwell (1995), PM Harman (ed), Cambridge Univ Press, Cambridge, 2, 412–415.
1.
Maxwell
JC
(
1868
),
On reciprocal diagrams in space, and their relation to Airy’s function of stress
,
Proc. London Math. Soc.
2
,
102
105
.
2.
(Reprinted in Maxwell JC (1890), The Scientific Papers, WD Niven (ed), Cambridge Univ Press, Cambridge, 2, 58–60.)
1.
Maxwell
JC
(
1870
),
On reciprocal figures, frames, and diagrams of forces
,
Proc. R. Soc. Edinburgh
7
,
53
56
.
2.
(Reprinted in The Scientific Letters and Papers of James Clerk Maxwell (1995), PM Harman (ed), Cambridge Univ Press, Cambridge, 2, 519–521.)
1.
Maxwell
JC
(
1870
),
On reciprocal figures, frames, and diagrams of forces
,
Trans. Roy. Soc. Edinburgh
26
,
1
40
.
2.
(Reprinted in Maxwell JC (1890), The Scientific Papers, WD Niven (ed), Cambridge Univ Press, Cambridge, 2, 161–207.)
1.
Le´vy
M
(
1898
),
Sur la le´gitimite´ de la re´gle dite du trape`ze dans l’e´tude de la resistance des barrages en mac¸onnerie
,
C.R. Acad. Sci. Paris
126
,
1235
1240
.
2.
Michell
JH
(
1899
),
On the direct determination of stress in an elastic solid, with application to the theory of plates
,
Proc. London Math. Soc.
31
,
100
121
.
3.
Ibbetson WJ (1887), An Elementary Treatise on the Mathematical Theory of Perfectly Elastic Solids, with a Short Account of Viscous Fluids, Macmillan, London.
4.
Michell
JH
(
1901
),
Elementary distributions of plane stress
,
Proc. London Math. Soc.
32
,
35
61
.
5.
Michell
JN
(
1902
),
The inversion of plane stress
,
Proc. London Math. Soc.
34
,
134
142
.
6.
Venske
O
(
1891
),
Zur Integration der Gleichung ΔΔu=0 fu¨r ebene Bereiche
,
Nachr. K. Ges. Wiss. Go¨ttingen
1
,
27
34
.
7.
Timpe A (1904), Probleme der spannungsverteilung in ebenen Systemen, einfach, gelo¨st mit Hilfe der AIRYschen Funktion (Dissertation), Teubner, Leipzig.
8.
Sommerfeld
A
(
1906
),
U¨ber die Knicksicherheit der Stege von Walzwerkprofilen
,
Z. Math. Phys.
54
,
113
153
.
9.
Sommerfeld
A
(
1906
),
Nachtrag und Berichtigung zu der Abhandlung: U¨ber die Knicksicherheit der Stege von Walzwerkprofilen
,
Z. Math. Phys.
54
,
318
324
.
10.
Gru¨ning M (1912), Allgemeine Theorie des Fachwerks und der vollwandigen Systeme, Encyklopa¨die der Mathematischen Wissenschaften, F Klein and C Mu¨ller (eds), Teubner, Leipzig, IV/4, 421–537.
11.
Almansi
E
(
1896
),
Sull’integrazione dell’equazione differenziale Δ2Δ2=0,
Atti. Reale. Accad. Sci. Torino
31
,
881
888
.
12.
Almansi
E
(
1898
),
Sull’integrazione dell’equazione differenziale Δ2n=0,
Ann. Mat. Pura. Appl.
, (ser 3)
2
,
1
51
.
13.
Boggio
T
(
1900
),
Integrazione dell’equazione Δ2Δ2=0 in una corona circolare e in uno strato sferico
,
Atti. Reale. Ist. Veneto
59
,
497
508
.
14.
Boggio
T
(
1901
),
Integrazione dell’equazione Δ2Δ2=0 in un’area ellittica
,
Atti. Reale. Ist. Veneto
60
,
591
609
.
15.
Boggio
T
(
1905
),
Sulle funzioni di Green d’ordine m,
Rend. Circ. Mat. Palermo
20
,
97
135
.
1.
Boggio
T
(
1957
),
Sopra un teorema di Almansi relativo al problemo biarmonico
,
Boll. Un. Mat. Ital.
, (ser. 3)
12
,
369
376
.
2.
(English review in
Math Revs
19
,
1046.)
1046.)
1.
Levi-Cevita
T
(
1898
),
Sulla integrazione dell’equazione Δ2Δ2u=0,
Atti. Reale. Accad. Sci. Torino
33
,
932
956
.
2.
Levi-Cevita T (1898), Sopra una transformazione in se`stessa della equazione Δ2Δ2u=0, Ferrari, Venezia.
3.
Lauricella
G
(
1896
),
Integrazione dell’equazione Δ22u)=0 in un campo di forma circolare
,
Atti. Reale. Accad. Sci. Torino
31
,
1010
1018
.
4.
Volterra
V
(
1896
),
Osservazioni sulla Nota precedente del Prof. Lauricella e sopra una Nota di analogo argomento dell’Ing. Almansi
,
Atti. Reale. Accad. Sci. Torino
31
,
1018
1021
.
5.
Rothe E (1925), Die Gleichung ΔΔu=0 und anschliessende Probleme, Die Differential -und Integralgleichungen der Mechanik und Physik, P Frank and R von Mises (eds), Vieweg, Braunschweig, 1, 845–860.
6.
Miranda C (1955), Equazioni alle derivate parziali di tipo ellitico, Julius Springer-Verlag, Berlin.
7.
Miranda C (1970), Partial Differential Equations of Elliptic Type, 2nd edition, Julius Springer-Verlag, Berlin.
8.
Sologub VS (1975), Development of the Theory of Elliptical Equations in XVIII and XIX Centuries (in Russian), Naukova Dumka, Kiev.
9.
Mathieu
E
(
1880
),
Sur l’e´quilibre d’e´lasticite´ d’un prisme rectangle
,
C.R. Acad. Sci. Paris
90
,
1272
1274
.
10.
Mathieu
(
1881
),
Me´moire sur l’e´quilibre d’e´lasticite´ d’un prisme rectangle
,
J. Ec. Polytech. (Paris)
30
,
173
196
.
11.
Mathieu E (1890), The´orie de l’e´lasticite´ des corps solides, Gauthier-Villars, Paris.
12.
Goursat
(
1898
),
Sur l’e´quation ΔΔu=0,
Bull. Soc. Math. France
26
,
236
237
.
13.
Mesnager
A
(
1901
),
Sur l’application de la the´orie de l’e´lasticite en calcul des pieses rectangulaires flechies
,
C.R. Acad. Sci. Paris
132
,
1475
1478
.
14.
Mesnager
A
(
1901
),
Contribution a l’e´tude de la de´formation e´lastique des solides
,
Ann. Ponts. Chausse´es
, (ser. 8)
18
,
129
190
.
15.
Abramov NM (1908), Airy function and its application for solution of problems in the theory of elasticity in works of Klein and Wieghardt, and Timpe, (dissertation), Venike, St Petersburg, (in Russian).
1.
Kolosov G (1910), One application of the theory of functions of complex variables to a plane problem of the theory of elasticity, (dissertation), Matissen, Yur’ev in Russian).
2.
(German review in
Jbuch. Fortschr. Math.
41
,
889
890
.)
1.
Gersevanov
N
(
1910
),
A general method of study of the elastic equilibrium of a plane isotropic solid and a thin plate bounded by two curved lines (in Russian
),
Sbornik St-Petersburg Inst Inzh Putei Soobshch
76
(
4
),
1
48
.
2.
Krutkov YuA (1949), Tensor of Stress Functions and General Solutions in Statical Theory of Elasticity (in Russian), Izd Akad Nauk SSSR, Moscow.
3.
Golovin
Kh
(
1881
),
One problem in statics of an elastic body (in Russian
),
Izvestiya St. Peterburg Prakt. Tekhnol. Inst.
3
,
373
410
.
4.
Boussinesq J (1885), Application des potentiels a` l’e´tude de l’e´quilibre et du mouvement des solides e´lastiques, principalement au calcul des de´formations et des pressions que produisent, dans ces solides, des effort quelconques exerce´s sur une petite partie de leur surface ou de leur interieur, Gautiers-Villars, Paris.
5.
Volterra V (1914), Drei Vorlesungen u¨ber neure Forschritte der mathematischen Physik Teubner, Leipzig.
6.
Rademacher H and Rothe E (1925), Einige besondere Probleme partieller Differentialgleichungen, Die Differential—und Integralgleichungen der Mechanik und Physik, P Frank and R von Mises (eds), Vieweg, Braunschweig 1, 631–645.
7.
Nicolesco M (1936), Les fonctions polyharmoniques, Hermann, Paris.
8.
Zweiling K (1952), Biharmonische Polynome, Julius Springer-Verlag, Berlin.
9.
Worch G (1956), Elastische Scheiben, Beton-Kalender, Ernst, Berlin, 2, 31–120.
1.
Walter
PA
(
1931
), Comments on the paper “
On the friction of a lubricant between a journal and its bearing,” by NE Joukovkii and SA Chaplygin
,
Trudy. Central Aero-Gidrodinam Inst.
95
,
138
153
.
2.
Reprinted in Joukovskii NE (1937), Collected papers (in Russian), AP Kotelnikov (ed) ONTI NKTP, Moscow-Leningrad, IV, 299–317.
1.
Papkovich
PF
(
1937
),
A derivation the main formulae of the plain problem of the theory of elasticity from the general integral of the Lame´ equations (in Russian
),
Prikl. Mat. Mekh.
1
,
147
154
.
2.
Clebsch A (1862), Theorie der Elasticita¨t der fester Ko¨rper, Teubner, Leipzig.
3.
Timpe
A
(
1905
),
Probleme der Spannungsverteilung in ebenen Systemen, einfach gelo¨st mit Hilfe der AIRYschen Funktion
,
Z. Math. Phys.
52
,
348
383
.
4.
Mann
EH
(
1949
),
An elastic theory of dislocations
,
Proc. R. Soc. London, Ser. A
199
,
376
394
.
5.
Sadeh
WZ
(
1967
),
A note on the general solution of the two-dimensional linear elasticity problem in polar coordinates
,
AIAA J
5
,
354
354
.
6.
Bert
CW
(
1968
), Comments on “
A note on the general solution of the two-dimensional linear elasticity problem in polar coordinates
,”
AIAA J
6
,
568
568
.
7.
Hyman
BI
(
1968
), Comments on “
A note on the general solution of the two-dimensional linear elasticity problem in polar coordinates
,”
AIAA J
6
,
568
569
.
8.
Wan
FYM
(
1968
), Comments on “
A note on the general solution of the two-dimensional linear elasticity problem in polar coordinates
,”
AIAA J
6
,
569
569
.
9.
Sonntag
R
(
1930
),
U¨ber ein Problem der aufgeschmitten Kreisringplatte
,
Ing-Arch
1
,
333
349
.
10.
Floquet
G
(
1891
),
Notice sur E´ Mathieu, sa vie et ses travaux
,
Bull. Soc. Sci. Nancy
(ser. 2)
11
,
1
34
.
11.
Duhem
P
(
1892
),
E´mile Mathieu, his life and works
,
Bull. New York Math. Soc.
1
,
156
168
.
12.
Grattan-Guinnes I (1974), Mathieu, E´mile-Le´onard, Dictionary Scientific Biography, CC Gillispie (ed), Scribner, New York, IX, 174–175.
1.
Koialovich BM (1902), On one partial differential equation of the fourth order (in Russian) (Doctoral dissertation), Izd St Petersburg Univ, St Petersburg,
2.
(German review in
Jbuch Fortschr Math
33
,
367
368
.)
1.
Koialovich BM (1901), On one generalization of Green’s formula (in Russian), Dnevnik XI Congr. Russ. Natl. Sci. Phys. 616–617.
2.
Koialovich BM (1901), On a question on the uniqueness of some solutions of linear differential equations (in Russian), Dnevnik XI Congr. Russ. Natl. Sci. Phys. 617.
3.
Bobylev
D
,
Korkin
A
,
Markov
A
, and
Ptashickii
I
(
1903
), Report on the doctoral dissertation BM Koialovich “
On one partial differential equation of the fourth order (in Russian)
,”
Zhurnal Soveta Imp. St. Petersburg Univ.
59
,
38
40
.
4.
Sen
B
(
1933
),
On the uniqueness of solution of problems of elasticity connected with bending of thin plates under normal pressures
,
Philos. Mag.
(ser. 7)
16
,
975
979
.
1.
Bremekamp H (1942), Sur l’existence et la construction des solutions de certaines e´quations aux de´rive´es partielles du quatrie`me ordre, Nederl. Akad. Wetensch. Proc. 45, 675–680
2.
(Also in
Indagationes Math.
4
,
252
257
.)
1.
Bremekamp H (1946), Over het bestaan der oplossing van Δuk=0, die met haar k−1 eerste normale afgeleiden gegeven waarden aanneemt in de punten van een gegeven gesloten kromme, I, II, III, Nederl. Akad. Wetensch. Proc. 49, 185–193, 302–311.
2.
(Also in
Indagationes Math.
8
,
82
90
, 171–187.)
1.
Bremekamp H (1946), Over de oplossingen der vergelijkig ΔΔu=0, die aan zekere randvoorwaarden voldoen, Nederl. Akad. Wetensch. Proc. 49, 319–330.
2.
(Also in
Indagationes Math.
8
,
188
199
.)
1.
Dean
WR
(
1953
),
The Green’s function of an elastic plate
,
Proc. Cambridge Philos. Soc.
49
,
319
326
.
2.
Dean
WR
(
1954
),
Note on the Green’s function of an elastic plate
,
Proc. Cambridge Philos. Soc.
50
,
623
627
.
3.
Dean
WR
, and
Harris
GZ
(
1954
),
The Green’s function of an elastic plate
,
Mathematika
1
,
18
23
.
4.
Schultz-Grunow
F
(
1953
),
GREENsche Funktionen fu¨r elastische Platten
,
Z. Angew. Math. Mech.
33
,
227
237
.
1.
Lorentz
HA
(
1896
),
Eene algemeene stelling omtrent de beweging eener vloeistof met wrijving en eenige daaruit afgeleide gevolgen
,
Zit Konin Akad Wetensch Amsterdam
5
,
168
175
.
2.
(German translation: Ein allgemeiner Satz, die Bewegung einer reibenden Flu¨ssigkeit betreffend, nebst einigen Anwendungen desselben, Lorentz HA (1907), Abhandlungen u¨ber theoretische Physik, 23–42, Teubner, Leipzig;
3.
English translation: A general theorem concerning the motion of a viscous fluid and a few consequences derived from it, Lorentz HA (1937), Collected Papers P Zeeman and AD Focker (eds), Nijhoff, the Hague, IV, 7–14;
4.
English translation: A general theorem on the motion of a fluid with friction and a few results derived from it,
J. Eng. Math.
30
,
19
24
.)
1.
Hancock
GJ
(
1953
),
The self-propulsion of microscopic organisms through liquids
,
Proc. R. Soc. London, Ser. A
217
,
96
121
.
2.
Kuiken
HK
(
1996
),
HA Lorentz: Sketches of his work on slow viscous flow and some other areas in fluid mechanics and the background against which it arose
,
J. Eng. Math.
30
,
1
18
.
3.
Muschelisˇvili [Muskhelishvili] N (1919), Sur l’inte´gration de l’e´quation biharmonique, Izvestiya Ros. Akad. Nauk. (ser. 7) 663–686.
4.
Kolosov
G
(
1915
),
On conjugate differential equations in partial derivatives and their applications to resolving some problems of the mathematical physics (in Russian
),
Izvestiya. Petrograd. Elektrotech. Inst.
12
,
55
67
.
5.
Chaplygin SA (1900), Deformation in two dimensions, Chaplygin SA (1950), Collected Works (in Russian), LS Leibenzon (ed), GITTL, Moscow-Leningrad, III, 306–316.
6.
Kolossoff [Kolosov
]
G
(
1908
),
Sur les proble`mes d’e´lasticite´ a` deux dimensions
,
C.R. Acad. Sci. Paris
146
,
522
525
.
7.
Kolossoff [Kolosov
]
G
(
1909
),
Sur les proble`mes d’e´lasticite´ a` deux dimensions
,
C.R. Acad. Sci. Paris
148
,
1242
1244
, 1706.
8.
Muskhelishvili
NI
(
1938
),
Gurii Vasil’evich Kolosov, Obituary (in Russian
),
Usp. Mat. Nauk.
4
,
279
281
.
9.
Ryago G (1955), On life and scientific activity of four prominent mathematicians of Tartu University (in Russian), Uchenye Zapiski Tartu Univ No 37, 74–103.
10.
Depman
IYa
(
1963
),
The St Petersburg Mathematical Society (in Russian
),
Istor.-Mat. Issled.
13
,
11
106
.
11.
Grigorian AT (1973), Kolosov, Gury Vasilevich, Dictionary Scientific Biography, CC Gillispie (ed), Scribner, New York, X, 453–454.
12.
Grigolyuk EI (1987), Mathematical methods in the theory of elasticity, History of Mechanics in Russia (in Russian), AN Bogolyubov (ed), Naukova Dumka, Kiev, 348–353.
13.
Ermolaeva
NS
(
1989
),
Doctoral thesis by GV Kolosov and its estimation by VA Steklov (in Russian
),
Istor.-Mat. Issled.
31
,
52
75
.
14.
Kolossoff [Kolosov] G (1909), Sur le proble`me plan dans la the´orie d’e´lasticite´, Atti IV Congresso Internationale Matematici, G Castelunovo (ed), Academia Lincei, Rome, 3, 187–190.
1.
Kolosov G (1910), On application of the theory of functions of complex variable to the integration of hyperharmonical equation Δ2Δ2u=0 under prescribed conditions at the contour, Dnevnik XII Congr. Russ. Natl. Sci. Phys. No. 4, 123, (in Russian).
2.
(German review in
Jbuch Fortschr. Math.
38
,
401.)
401.)
1.
Kolosov G (1910), Plane problem of the mathematical theory of elasticity (in Russian), Dnevnik XII Congr. Russ. Natl. Sci. Phys. No. 10, 427–428.
2.
(German review in
Jbuch Fortschr. Math.
41
,
429.)
429.)
1.
Fok
VA
(
1926
),
Sur la re´duction du proble`me plan d’e´lasticite´ a` une e´quation inte´grale de Fredholm
,
C.R. Acad. Sci. Paris
182
,
264
266
.
2.
Fok
VA
(
1927
),
Transformation of plane problem of the theory of elasticity to the Fredholm integral equation (in Russian
),
Zhurnal Ros. Fiz.-Khim. Obshch.
58
(
1
),
11
20
.
3.
Kolosov
G
(
1913
),
On stress distribution in plates weakend by notches under tension, in connection with some properties of the plane problem of the mathematical theory of elasticity (in Russian
),
Mat. Sb.
29
,
12
25
.
4.
Kolossoff [Kolosov
]
G
(
1914
),
U¨ber einige Eigenschaften des ebenen Problem der Elastizita¨tstheorie
,
Z. Math. Phys.
62
,
384
409
.
5.
Kolosov
G
(
1931
),
Sur une application des formules de M Schwarz, de M Villat et de M Dini au proble`me d’e´lasticite´
,
C.R. Acad. Sci. Paris
193
,
389
391
.
1.
Kolosov
G
and
Muskhelov [Muskhelishvili
]
N
(
1915
),
On equilibrium of elastic circular discs under surface loads acting in their plane (in Russian
),
Izvestiya. Petrograd. Elektrotech. Inst.
12
,
39
55
2.
(German review in
Jbuch. Fortschr. Math.
48
,
1434
1435
.)
1.
Muskhelov [Muskhelishvili
]
N
(
1916
),
On thermal stresses in the plane problem of the theory of elasticity (in Russian
),
Izvestiya. Petrograd. Elektrotech. Inst.
13
,
23
37
.
2.
Muschelisˇvili [Muskhelishvili] N (1922), Application des inte´grales analogues a` celles de Cauchy a` quelques proble`mes de la Physique Mathe´matique (Doctoral dissertation), Izd Tiflis Univ, Tiflis.
3.
Muschelisˇvili [Muskhelishvili
]
NI
(
1931
),
Nouvelle me´thode de re´duction de proble`me biharmonique fondamental a` une e´quation de Fredholm
,
C.R. Acad. Sci. Paris
192
,
77
79
.
4.
Muschelisˇvili [Muskhelishvili
]
NI
(
1931
),
The´ore`mes d’existence relatifs au proble`me biharmonique et aux proble`mes d’e´lasticite´ a` deux dimensions
,
C.R. Acad. Sci. Paris
192
,
221
223
.
5.
Muschelisˇvili [Muskhelishvili
]
NI
(
1932
),
Recherches sur les proble`mes aux limites relatifs a`l’e´quation biharmonique et aux e´quations de l’e´lasticite´ a` deux dimensions
,
Math. Ann.
107
,
282
312
.
6.
Muschelisˇvili [Muskhelishvili
]
NI
(
1934
),
A new general method of solution of the fundamental boundary problems of the plane theory of elasticity (in Russian, with French summary
),
Dokl. Akad. Nauk. SSSR
3
(
1
),
7
11
.
7.
Muschelisˇvili [Muskhelishvili
]
NI
(
1934
),
A study of the new integral equations of the plane theory of elasticity (in Russian, with French summary
),
Dokl. Akad. Nauk. SSSR
3
(
1
),
73
77
.
8.
England AH (1971), Complex Variables Methods in Elasticity, John Wiley and Sons, London.
9.
Stevenson
AC
(
1943
),
Some boundary problems of two-dimensional elasticity
,
Philos. Mag.
(ser. 7)
34
,
766
793
.
10.
Stevenson
AC
(
1945
),
Complex potential in two-dimensional elasticity
,
Proc. R. Soc. London, Ser. A
184
,
129
179
, 218–229.
11.
Poritsky
H
(
1946
),
Application of analytic functions to two-dimensional biharmonic analysis
,
Trans. Amer. Math. Soc.
59
,
248
279
.
12.
Malkin
I
(
1964
),
Two dimensional elasticity and Muskhelishvili’s contribution to it
,
Scripta Math.
27
,
49
53
.
13.
Mikhailov GK and Radok IRM (1993), On NI Muskhelishvili’s place in the world of science and mathematics, Continuum Mechanics and Related Problems of Analysis (Proc of Int Symp dedicated to the Centenary of Academician N Muskhelishvili, M Balavaradze, I Kiguradze, V Kokilashvili (eds), Metsniereba, Tbilisi, 67–74.
14.
Fridman AA (1910), Letters to VA Steklov, Fridman AA (1966), Selected Works (in Russian), Nauka, Moscow, 332–333.
1.
Gersevanov
NM
(
1933
),
General method of the theory of elasticity and its applications for determination of stresses in soils under prescribed loading on its surface
,
Osnov. Fund.
1
,
12
39
.
2.
(Reprinted in Gersevanov NM (1948), Collected Papers (in Russian), Stroivoenmorizdat, Moscow, 1, 214–235.)
1.
Gersevanov
NM
(
1927
),
On application of the theory of elasticity to foundations design
,
Trudy Moskov. Inst. Inzh. Transp.
6
,
19
28
.
2.
(Reprinted in Gersevanov NM (1948), Collected Papers (in Russian), Stroivoenmorizdat, Moscow, 1, 205–213.)
1.
Gersevanov
NM
(
1930
),
Study of distribution of stresses in fundaments on the basis of theory of elasticity
,
Trudy Moskov. Inst. Inzh. Transp.
15
,
241
250
.
2.
(Reprinted in Gersevanov NM (1948), Collected Papers (in Russian), Stroivoenmorizdat, Moscow, 1, 261–268.)
1.
Puzyrevskii NP (1923), Foundations Design (in Russian), Stroiizdat, Moscow.
2.
Sobrero L (1934), Theorie der ebenen Elastizita¨t unter Benutzung eines System hyperkomplexer Zahlen, Teubner, Leipzig.
3.
Schmidt
K
(
1951
),
Behandlung ebener Elastizita¨tsprobleme mit Hilfe hyperkomplexen Singularita¨ten
,
Ing.-Arch.
19
,
324
341
.
4.
Stahl
K
(
1954
),
U¨ber die Lo¨sung ebener Elastizita¨tsaufgaben in komplexer und hyperkomplexen Darstellung
,
Ing.-Arch.
22
,
1
20
.
1.
Krylov
AN
(
1948
), A report on the Professor Papkovich’s treatese “
Structural Mechanics of a Ship
,”
Morskoi Sbornik
10
,
55
64
.
2.
(Reprinted in Krylov AN (1956), Recollections and Essays (in Russian), IS Isakov (ed), Izd Akad Nauk SSSR, Moscow, 475–487.)
1.
Picard
(
1894
),
l’E´quilibre de plaques encastre´es
,
Interme´diare Math.
1
,
27
27
.
2.
Flamant A (1886), Re´sistance des mate´riaux, Baudry, Paris.
3.
Painleve´
P
(
1907
),
Rapport sur le Me´moire de M J Hadamard
,
C.R. Acad. Sci. Paris
145
,
984
986
.
4.
Picard
(
1907
), Report sur le Me´moire de M Lauricella et le Me´moire n°3, portant pour e´pigraphe: “
Rien n’est beau que le vrai, le viai seul est aimable
,”
C.R. Acad. Sci. Paris
145
,
986
988
.
5.
Poincare´
H
(
1907
), Rapport sur le Me´moire de M Boggio et le Me´moire n°7, portant pour e´pigraph “
Barre´ de Saint-Venant
,”
C.R. Acad. Sci. Paris
145
,
988
991
.
1.
Hadamard
J
(
1907
),
Me´moire sur le proble`me d’analyse relatif a` l’e´quilibre des plaques e´lastiques encastre´es
,
Me´m. Savants E´trang.
(ser. 2)
33
(
4
),
1
128
.
2.
(Reprinted in Hadamard J (1968), Oeuvres, CNRS, Paris, 2, 515–641.)
1.
Korn
A
(
1908
),
Sur l’e´quilibre des plaques e´lastiques encastre´es
,
Ann. Sci. Ecole Norm. Sup.
(ser. 3)
25
,
529
583
.
2.
Lauricella
G
(
1906
),
Sull’integrazione delle equazione dell’equilibrio dei corpi elastici isotropi
,
Rend. Reale. Accad. Lincei.
15
,
426
432
.
3.
Lauricella
G
(
1907
),
Sulla integrazione dell’equazione Δ22V)=0,
Rend. Reale. Accad. Lincei.
16
,
373
383
.
4.
Lauricella
G
(
1909
),
Sur l’inte´gration de l’e´quation relative a` l’e´quilibre des plaques e´lastiques encastre´es
,
Acta. Math.
32
,
201
256
.
5.
Zaremba S (1908), Sur l’inte´gration de l’e´quation biharmonique, Bull. Acad. Sci. Cracovie. 1–29.
6.
Zaremba
S
(
1909
),
Proble`me biharmonique restreint
,
Ann. Sci. Ecole Norm. Sup.
26
,
337
404
.
7.
Maz’ya V and Shaposhnikova T (1998), Jacques Hadamard, a Universal Mathematician, Am Math Soc, Providence.
1.
Hadamard J (1908), Sur certain cas inte´ressants du proble`me biharmonique, Atti IV Congresso Internationale Matematici, G Castelnuovo (ed), Acad Lincei, Rome, 2, 12–14.
2.
(Reprinted in Hadamard J (1968), Oeuvres, CNRS, Paris, 3, 1297–1299.)
1.
Englis˘
M
and
Peetre
J
(
1995
),
Green’s function for the annulus
,
Ann. Math.
171
,
313
377
.
2.
Garabedyan
PR
(
1951
),
A partial differential equation arising in conformal mapping
,
Pacific J Math
1
,
485
524
.
3.
Shapiro
HS
and
Tegmark
M
(
1994
),
An elementary proof that the biharmonic Green function of an eccentric ellipse changes sign
,
SIAM Rev.
36
,
99
101
.
4.
Szego¨ G (1950), On membranes and plates, Proc. Nat. Acad. Sci. USA, 36, 210–216.
5.
Loewner
C
(
1953
),
On generation of solution of biharmonic equations in the plane by conformal mapping
,
Pacific J. Math.
3
,
417
436
.
6.
Duffin
RJ
(
1949
),
On a question of Hadamard concerning superharmonic functions
,
J. Math. Phys.
27
,
253
258
.
7.
Hedenmalm
PJH
(
1994
),
A computation of Green functions for the weighted biharmonic operators Δ|z|−2αΔ with α>−1,
Duke Math. J.
75
,
51
78
.
8.
Sherman
DI
(
1940
),
On the solution of a plane static problem of the theory of elasticity under prescribed forces
(in Russian),
Dokl. Akad. Nauk. SSSR
28
,
25
28
.
9.
Schro¨der
K
(
1943
),
Zur Theorie der Randwertaufgaben der Differentialgleichung ΔΔU=0,
Math. Z.
48
,
553
675
.
10.
Schro¨der
K
(
1943
),
U¨ber die Ableitungen biharmonischer Funktionen am Rande
,
Math. Z.
49
,
110
147
.
11.
Schro¨der
K
(
1949
),
Das problem der eingespannten rechteckigen elastische Platte. I, Die biharmonische Randwertaufgabe fu¨r das Rechteck
,
Math. Ann.
121
,
247
326
.
1.
Haar A (1907), Die Randwertaufgabe der Differential-gleichung ΔΔU=0, Nachr. K. Ges. Wiss. Go¨ttingen, Math.-Phys. Kl 280–287.
2.
(Reprinted in Haar A (1959), Gesammelte Arbeiten, B Szokefalvi-Nagy (ed) Akade´miai Kiado´, Budapest, 215–222.)
1.
Fueter
R
(
1909
),
Dr. Walter Ritz
,
Schweiz. Naturforsch. Ges.
92
,
96
104
.
2.
Krylov A and Lazarev P (1928), A note on the scientific papers by NM Kryloff (in Russian), Izvestiya. Ros. Akad. Nauk. (ser. 7), 610–612.
3.
Forman P (1975), Ritz, Walter, Dictionary Scientific Biography, CC Gillispie (ed), Scribner, New York, XI, 475–481.
4.
Poisson
SD
(
1829
),
Me´moire sur l’e´quilibre et le mouvement des corps e´lastiques
,
Me´m. Acad. Roy. Sci. Inst. France
8
,
357
570
.
5.
Woinowsky-Krieger
S
(
1953
),
U¨ber die Biegung von Platten durch Einzellasten mit recteckiger Aufstandsfla¨che
,
Ing.-Arch.
21
,
331
338
.
6.
Fo¨ppl
A
(
1912
),
Die Biegung einer kreisfo¨rmigen Platte
,
S-B. Math.-Phys. Kl. K. Akad. Wiss. Mu¨nchen
42
,
155
190
.
7.
Melan
E
(
1920
),
Die Berechnung einer exzentrisch durch eine Einzellast belasteten kreisplatte
,
Eisenbau
17
,
190
194
.
8.
Flu¨gge W (1928), Die strenge Berechnung von Kreisplatten unter Einzellasten, (dissertation), Julius Springer-Verlag, Berlin.
9.
Mu¨ller
W
(
1943
),
Die Durchbiegung einer Kreisplatte unter exzentrisch angeordneten Lasten
,
Ing.-Arch.
13
,
355
376
.
1.
Timoshenko
SP
(
1907
),
An influence of circular openings on the stress distribution in plates (in Russian, with French summary
),
Izvestiya Kiev Politekh. Inst.
7
(
3
),
95
113
.
2.
(Reprinted in Timoshenko SP (1975), Strength and Vibrations of Structural Elements (in Russian), EI Grigolyuk (ed), Nauka, Moscow, 106–123).
1.
Timoshenko
SP
(
1909
),
On the distribution of the stresses in a circular ring compressed by two forces acting along a diameter (in Russian) with French summary
),
Izvestiya Kiev Politekh. Inst.
9
(
1
),
21
37
.
2.
(Reprinted in Timoshenko SP (1975), Strength and Vibrations of Structural Elements (in Russian), EI Grigolyuk (ed), Nauka, Moscow, 124–138.)
1.
Timoshenko
SP
(
1922
),
On the distribution of stresses in a circular ring compressed by two forces acting along diameter
,
Philos. Mag. (ser. 6)
44
,
1014
1019
,
2.
(Reprinted in Timoshenko SP (1953), The Collected Papers (in Russian), McGraw-Hill, New York, 334–337.)
1.
Wieghardt
K
(
1915
),
U¨ber einige wirklich durchfu¨rbare Ansa¨tze zur Berechnung von Spannungszusta¨nden des elastischen Kreisringes
,
S-B. Akad. Wiss. Wien. Mat.-Nat. Kl.
124
,
1119
1129
.
2.
Filon LNG (1924), The stresses in a circular ring, Instn. Civil Engrs. Selected Papers, No. 12.
3.
Ko¨hl
E
(
1929
),
Berechnung von kreisrunden Scheiben unter der Wirkung von Einzelkra¨ften in ihre Ebene
,
Ing.-Arch.
1
,
211
222
.
1.
Hertz
HR
(
1883
),
U¨ber die Verteilung der Druckkra¨fte in einem elastischen Kreiszylinder
,
Z. Math. Phys.
28
,
125
128
.
2.
(Reprinted in Hertz H (1895), Gessammelte Werke, PH Lenard (ed), Barth, Leipzig, 1, 283–287.)
1.
Bryan
GH
(
1894
),
On the theory of thin plating, and its applicability to calculations of the strength of bulkhead plating and similar structures
,
Trans. Inst. Naval Arch.
35
,
113
125
.
1.
Leibenzon
LS
(
1916
),
On the theory of plates lying on the point supports
,
Trudy Otd Fiz Nauk Imper Obshch Lyubit Estest Antrop Etnog
18
(
1
),
1
48
.
2.
(Reprinted in Leibenzon LS (1951), The Collected Papers (in Russian), AI Nekrasov (ed), Izd Akad Nauk SSSR, Moscow, 1, 100–148.)
1.
Bremekamp
H
(
1948
),
Construction of the solution of ΔΔu=0, satisfying given boundary conditions, in the case that the boundary is an ellipse
,
Nieuw Arch. Wiskunde
22
,
300
305
.
2.
Nash
WA
(
1950
),
Bending of an elliptic plate by edge loading
,
ASME J. Appl. Mech.
17
,
448
453
.
3.
Perry
CL
(
1951
), “
Bending of an elliptic plate by edge loading”-A discussion
,
ASME J. Appl. Mech.
18
,
227
228
.
4.
Tedone
O
(
1906
),
Sui problemi di equilibrio elastico a qui dimensioni-Ellisse
,
Atti. Reale. Accad. Sci. Torino
41
,
86
101
.
5.
Muskhelishvili
NI
(
1933c
),
A solution of the plane problem of elasticity for a complete ellipse (in Russian
),
Prikl. Mat. Mekh.
1
,
5
16
.
6.
Sherman
DI
(
1941
),
On stresses in an elliptic plate (in Russian
),
Dokl. Akad. Nauk. SSSR
31
,
309
310
.
7.
Belzeckii
S
(
1907
),
One problem of the theory of elasticity which can be easily solved in elliptic coordinates (in Russian
),
Izvestiya. Sobr. Inzh. Putei. Soobshch.
27
,
169
172
.
8.
Timpe
A
(
1923
),
Die AIRYssche Funktion fu¨r den Ellipsenring
,
Math. Z.
17
,
189
205
.
9.
Sheremet’ev
MP
(
1953
),
An elastic equilibrium of an elliptic ring (in Russian
),
Prikl. Mat. Mekh.
17
,
107
113
.
10.
Gru¨bler
M
(
1897
),
Der Spannungszustand in Schleifsteinen und Schmirgelscheiben
,
Z. Ver. Deuts. Ing.
41
,
860
864
.
11.
Stodola A (1924), Dampf-und Gas-Turbinen, 6th Edition, Julius Springer-Verlag, Berlin.
12.
Stodola A (1945), Steam and Gas Turbines, Smith, New York.
13.
Neuber H (1937), Kerbspannungslehre, Julius Springer-Verlag, Berlin.
14.
Biezeno CB (1948), Survey of papers on elasticity published in Holland 1940–1946, Advances in Appled Mechanics, R von Mises and Th von Ka´rma´n (eds) Academic Press, New York, 1, 105–170.
1.
Timoshenko
S
(
1954
),
Stress concentration in the history of strength of materials
,
Proc Soc Exp Stress Anal
12
(
1
),
1
12
.
2.
(Reprinted in Timoshenko SP (1975), Strength and Vibrations of Structural Elements (in Russian), EI Grigolyuk (ed), Nauka, Moscow, 660–677.)
1.
Sternberg
E
(
1958
),
Three-dimensional stress concentrations in the theory of elasticity
,
Appl. Mech. Rev.
11
,
1
4
.
2.
Neuber
H
and
Hahn
HG
(
1966
),
Stress concentration in scientific research and engineering
,
Appl. Mech. Rev.
19
,
187
199
.
3.
Freytag
F
(
1901
),
Gustav Kirsch
,
Z. Ver. Deuts. Ing.
45
,
217
218
.
4.
Suyehiro
K
(
1914
),
The distribution of stress in a tension strip having a circular hole filed with a plug
,
Engineering
98
,
231
232
.
5.
Fo¨ppl
L
(
1921
),
Einfluss von Lo¨chern und Nuten auf die Beanspruchung von Wellen
,
Z. Ver. Deuts. Ing.
65
,
497
498
.
6.
Kirsch
G
(
1898
),
Die Theorie der Elastizita¨t und die Bedu¨rfnisse der Festigkeitslehre
,
Z. Ver. Deuts. Ing.
42
,
797
807
.
7.
Howland
RCJ
(
1930
),
On the stresses in the neighborhood of a circular hole in a strip under tension
,
Philos. Trans. R. Soc. London, Ser. A
229
,
49
86
.
8.
Morley JM (1916), Strength of Materials, 4th Edition, Longmans, Green and Co, London.
9.
Fo¨ppl A (1897), Vorlesungen u¨ber technische Mechanik, Band 3: Festigkeitslehre, Teubner, Leipzig.
10.
Velikhov P (1907), Influence of openings on the stress distribution in a strip under tension, Izvestiya Moskov. Inzh. Uchil. Part II(1) 11–91.
1.
Timoshenko
SP
(
1921
),
Proracˇunavanje tankikh plocˇa, oslabljenih otvorima
,
Tehn. List Udruzˇ. Jugoslov Inzˇ. Arhit. Zagreb.
3
(
4
),
37
40
.
2.
(Reprinted in Timoshenko SP (1975), Statical and Dynamical Problems of the Theory of Elasticity (in Russian), EI Grigolyuk (ed), Naukova Dumka, Kiev, 48–52.)
1.
Timoshenko
SP
(
1924
),
On stresses in a plate with a circular hole
,
J. Franklin Inst.
197
,
505
516
.
2.
(Reprinted in Timoshenko SP (1953), The Collected Papers, McGraw-Hill, New York, 385–392.)
1.
Timoshenko SP (1927), Stress concentration produced by fillets and holes, Verhand des zweiten International Kongress fu¨r technische Mechanik, Fu¨ssli, Zu¨rich, 419–426.
2.
(Reprinted in Timoshenko SP (1953), The Collected Papers, McGraw-Hill, New York, 436–447.)
1.
Suyehiro
K
(
1911
),
The distribution of stress in plates having discontinuities, and some problems connected with it
,
Engineering
92
,
280
282
.
2.
Leon A (1906), Spannungen und Forma¨nderungen einer um einen ihrer Durchmesser gleichma¨ßig sich drehenden Kreisscheibe, Fromme, Wien.
3.
Leon
A
(
1908
),
U¨ber die Sto¨rungen der Spannungsverteilung, die in elastischen Ko¨rpern durch Bohrungen und Bla¨schen entstehen
,
O¨sterrich. Wochenschro¨ffent. Baudienst
14
,
163
168
.
4.
Leon
A
(
1909
),
U¨ber die Sto¨rungen der Spannungsverteilung in Verbundko¨rpern
,
O¨sterreich. Wochenschro¨ffent Baudienst.
15
,
19
24
, 32–38.
5.
Leon
A
(
1918
),
Ueber technische Anpassungen in der Natur
,
Z. Ver. Deuts. Ing.
62
,
341
346
, 368–371, 391–396.
6.
Leon
A
and
Willheim
F
(
1912
),
U¨ber die Zersto¨rung in tunnelartig gelochten Gesteinen
,
O¨sterreich. Wochenschro¨ffent Baudienst.
18
,
281
285
.
7.
Leon
A
and
Zidlicky
R
(
1915
),
Die Ausnutzung des Materiales in gelochten Ko¨rper
,
Z. Ver. Deuts. Ing.
59
,
11
16
.
8.
Preuss
E
(
1912
),
Versuhe u¨ber die Spannungsverteilung in gelochten Zugsta¨ben
,
Z. Ver. Deuts. Ing.
56
,
1780
1783
.
1.
Coker
EG
(
1911
),
The determination, by Photo-Elastic methods, of the distribution of stress in plates of variable section, with some applications to ship’s plating
,
Trans. Inst. Naval Arch.
53
,
265
281
.
2.
(Also in Engineering 91, 514–516, 531–533, 566–568.)
1.
Coker
EG
(
1912
),
The effects of holes and semi-circular notches on distribution of stress in tension members
,
Proc. Phys. Soc., London, Sect. A
25
,
95
105
.
2.
Coker
EG
(
1913
),
The distribution of stress due to a rivet in a plate
,
Engineering
95
,
413
414
.
1.
Coker
EG
(
1914
),
Stress distribution in materials
,
Rep. British Assoc. Adv. Sci.
84
,
490
499
.
2.
(Also in Engineering 98, 261–263.)
1.
Coker
EG
(
1921
),
Tension tests of materials
,
Engineering
111
,
1
4
.
2.
Coker EG (1925), Some engineering problems of stress distribution, Proc of 1st Int Congress for Applied Mechanics, CB Biezeno and JM Burgers (eds), Waltman, Delft, 18–38.
1.
Coker
EG
(
1928
),
Stresses in the hulls of stranded vessels
,
Trans. Inst. Naval Arch.
70
,
144
151
.
2.
(Also in Engineering 125, 427–428.)
1.
Coker
EG
and
Scoble
WA
(
1913
),
The distribution of stress due to a rivet in a plate
,
Trans. Inst. Naval Arch.
55
,
207
218
.
2.
(Also in Engineering 95, 414–415.)
1.
Coker
EG
,
Chakko
KC
, and
Satake
Y
(
1919
),
Photoelastic and strain measurements of the effects of circular holes on the distribution of stress in tension members
,
Proc. Inst. Eng. Shipbuilding Scotland
63
,
34
94
.
1.
Coker
EG
, and
Kimball
AL
(
1920
),
The effects of holes, cracks and other discontinuities in ship’s platings
,
Trans. Inst. Naval Arch.
62
,
117
123
.
2.
(Also in
Engineering
109
,
840
842
.)
1.
Coker
EG
and
Heymans
P
(
1921
),
Stress concentrations due to notches and like discontinuities
,
Rep. British Assoc. Adv. Sci.
91
,
291
299
.
2.
Coker
EG
and
Coleman
GP
(
1930
),
Stress distributions in notched beams and their applications
,
Trans. Inst. Naval Arch.
72
,
141
153
.
3.
Timoshenko SP (1963), Reminiscences (in Russian), Izd St Petersburg Politechn, Paris.
4.
Timoshenko SP (1968), As I Remember, Van Nostrand, Princeton.
5.
Timoshenko SP (1953), The Collected Papers, McGraw-Hill, New York.
6.
Young D (1953), Stephen P Timoshenko: Biographical sketch, The Collected Papers of Stephan P Timoshenko, McGraw-Hill, New York, IX-XXIII.
7.
Young
D
(
1972
),
Stephen P Timoshenko, 1878–1972
,
Appl. Mech. Rev.
25
,
759
763
.
8.
Grigolyuk EI (1975), Stephen P Timoshenko and his wis works on mechanics of solids and structural mechanics. Timoshenko SP (1975), Statical and Dynamical Problems of the Theory of Elasticity (in Russian), EI Grigolyuk (ed), Naukova Dumka, Kiev, 515–558.
9.
Pisarenko GS (1991), Stepan Prokof’evich Timoshenko (in Russian) Nauka, Moscow.
10.
Timoshenko
SP
and
Dietz
WG
(
1925
),
Stress concentration produced by holes and fillets
,
Trans. ASME
47
,
199
220
.
11.
Swain
GF
(
1925
), “
Stress concentration produced by holes and fillets”—Discussion
,
Trans. ASME
47
,
231
234
.
12.
Swain GF (1924), Structural Engineering: Strength of Materials, McGraw-Hill, New York.
13.
Timoshenko
SP
(
1925
), “
Stress concentration produced by holes and fillets”—Author’s closure
,
Trans. ASME
47
,
234
237
.
14.
Swain GF (1928), Festigkeitslehre, Julius Springer-Verlag, Berlin.
15.
Sinclair
GB
, and
Meda
G
(
2001
),
On some anomalies in Lame´’s solutions for elastic solids with holes
,
ASME J. Appl. Mech.
68
,
132
134
.
16.
Muschelisˇvili [Muskhelishvili
]
N
(
1927
),
Sur la solution du proble`me biharmonique pour l’aire exte´riuere a` une ellipse
,
Math. Z.
26
,
700
705
.
17.
Muschelisˇvili [Muskhelishvili
]
N
(
1933
),
Praktische Lo¨sung der fundamentalen Rand wertaufgaben der Elastizita¨tstheorie in der Ebene fu¨r einige Berandungsformen
,
Z. Angew. Math. Mech.
13
,
264
282
.
18.
Fo¨ppl
L
(
1931
),
Konforme Abbildung ebener Spannungszusta¨nde
,
Z Angew. Math. Mech.
11
,
81
92
.
19.
Baker
JF
(
1953
),
Charles Edward Inglis
,
Obit Notices Fellows Roy. Soc. London
8
,
445
457
.
1.
Inglis
CE
(
1913
),
Stresses in a plate due to the presence of cracks and sharp corners
,
Trans. Inst. Naval Arch.
55
,
219
230
, 231–241 (discussion).
2.
(Also in
Engineering
95
,
415.)
415.)
1.
Po¨schl
Th
(
1921
),
U¨ber eine partikula¨re Lo¨sung des biharmonischen Problemen fu¨r den Aussenraum der Ellipse
,
Math. Z.
11
,
89
96
.
2.
Durelli
AJ
and
Murray
WM
(
1943
),
Stress distribution around an elliptical discontinuity in any two-dimensional, uniform and axial, system of combined stress
,
Proc. Soc. Exp. Stress Anal.
1
,
19
45
.
3.
Gutman
SG
(
1939
),
Tunnel design: a halfplane with a circular hole under a uniform pressure (in Russian
),
Izvestiya NII Gidrotekhniki
25
,
148
168
.
4.
Mindlin
RD
(
1940
),
Stress distribution around a hole tunnel
,
Trans. Am. Soc. Civ. Eng.
105
,
1117
1153
.
5.
Mindlin
RD
(
1948
),
Stress distribution around a hole near the edge of a plate under tension
,
Proc. Soc. Exp. Stress Anal.
5
(
2
),
56
68
.
6.
Krettner J (1941), Beitrag zum Problem der ebenen langsamen Stro¨mung und des ebenen Spannungszustandes (dissertation), Oldenbourg, Mu¨nchen.
7.
Mu¨ller
W
(
1942
),
Ebene Spannungs-und Stro¨mungsfelder mit zwei kreiszylindrischen Grenzen
,
Ing.-Arch.
13
,
37
58
.
8.
Mu¨ller
W
(
1942
),
Beitrag zur Theorie der langsamen Drehung zweier exzentrischer Kreiszylinder in der za¨hen Flu¨ssigkeit
,
Z. Angew. Math. Mech.
22
,
177
189
.
9.
Howland
RCJ
, and
Knight
RC
(
1932
),
Slow rotation of a circular cylinder in a viscous fluid bounded by parallel walls
,
Proc. Cambridge Philos. Soc.
29
,
277
287
.
1.
Petrov
N
(
1883
),
Friction in machines and an influence of lubrication on it
,
Inzh. Zh.
27
71
140
,
2.
27
,
227
279
,
3.
27
,
377
436
.
4.
(Reprinted in Hydrodynamic Theory of Lubrication, LS Leibenzon (ed), GTTI, Moscow-Leningrad (1934), 11–245).
5.
(Reprinted in Petrov NP (1948), Hydrodynamical Theory of Lubrication (in Russian), LS Leibenzon (ed), Izd Akad Nauk SSSR, Moscow, 7–228.)
1.
Reynolds
O
(
1886
),
On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments
,
Philos. Trans. R. Soc. London, Ser. A
177
,
157
234
.
2.
(Reprinted in Reynolds O (1901), Papers on Mechanical and Physical Subjects, Cambridge Univ Press, Cambridge, 2, 228–310.)
1.
Joukovskii
NE
(
1886
),
On the hydrodynamical theory of friction between well lubricated solid bodies (in Russian
),
Zhurnal Ros Fiz-Khim Obshch
18
,
209
215
.
2.
(Reprinted in Trudy Central. Aero-Gidrodinam. Inst. (1931), No 95, 87–92, 98–99 (English summary);
3.
Reprinted in Joukovskii NE (1937), Complete Oeuvres, AP Kotelnikov (ed), ONTI NKTP, Moscow-Leningrad, IV, 234–241, 249–250 (English summary).)
1.
Dowson
D
(
1987
),
Osborne Reynolds Centenary (1886–1986
),
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
201
(
C2
),
75
96
.
1.
Petroff [Petrov
]
N
(
1883
),
Frottement dans les machines
,
Zapiski. Imper. Acad. Nauk.
(ser. VIII)
10
(
4
),
1
84
.
2.
(Reprinted in Petrov NP (1948), Hydrodynamical Theory of Lubrication, LS Leibenzon (ed), Izd Akad Nauk SSSR, Moscow, 361–479, (Russian translation).)
1.
Hills
CP
and
Moffatt
HK
(
2000
),
Rotatory honing: a variant of the Taylor paint-scraper problem
,
J. Fluid. Mech.
418
,
119
135
.
2.
Michell
AGM
(
1905
),
Die Schmierung ebener Fla¨chen
,
Z. Math. Phys.
52
,
107
120
.
1.
Joukovskii
NE
, and
Chaplygin
SA
(
1906
),
On the friction of the lubricant between a journal and its bearing (in Russian
),
Trudy Otd. Fiz. Nauk Imper. Obshch. Lyubit. Estest. Antrop. Etnog.
13
(
1
),
24
33
.
2.
(Reprinted in
Trudy Central Aero-Gidrodinam Inst
(
1931
)
95
,
123
138
, 154–155 (English summary);
3.
Reprinted in Hydrodynamic Theory of Lubrication, LS Leibenzon (ed), GTTI, Moscow-Leningrad (1934), 499–522;
4.
Reprinted in Chaplygin SA (1933), Complete Oeuvres, AN Krylov (ed), Izd Akad Nauk SSSR, Leningrad, II, 91–106;
5.
Reprinted in Joukovskii NE (1937), Complete Oeuvres, AP Kotelnikov (ed), ONTI NKTP, Moscow-Leningrad, IV, 279–298, 318–319 (English summary);
6.
Reprinted in Joukovskii NE (1948), Selected Papers, LS Leibenzon (ed), Izd Akad Nauk SSSR, Moscow-Leningrad, I, 282–296;
7.
Reprinted in Petrov NP (1948), Hydrodynamic Theory of Lubrication, LS Leibenzon (ed), Izd Akad Nauk SSSR, Moscow-Leningrad, 483–505;
8.
Reprinted in Joukovskii NE (1949), Collected Papers, LS Leibenzon (ed), GITTL, Moscow-Leningrad, III, 133–151;
9.
Reprinted in Chaplygin SA (1950), Collected Works, LS Leibenzon (ed), GITTL, Moscow-Leningrad, III, 7–26;
10.
Reprinted in Chaplygin SA (1954), Selected Works on Mechanics and Mathematics, MV Keldysh (ed), GTTI, Moscow, 477–489;
11.
Reprinted in Chaplygin SA (1976), Selected Works, SA Khristianovich (ed), Nauka, Moscow, 289–304;
12.
German review in
Jbuch. Fortschr. Math.
35
,
766
768
.)
1.
Semenova NM, Koptelova NM, and Syuganova IV (1968), NE Joukovskii - A Bibliography of Scientific Works (in Russian), Izd TsCAGI, Moscow.
2.
Mercalov N (1936), Hydrodynamical theory of lubrication, Technical Encyklopaedia (in Russian), LK Martens (ed), OGIZ RSFSR, Moscow, 24, 819–855.
3.
Krylov AN (1936), Some reminiscences about NE Joukovskii, Krylov AN (1956), Recollections and Essays (in Russian), IS Isakov (ed), Izd Akad Nauk SSSR, Moscow 336–342.
1.
Joukovski
NE
(
1887
),
On the motion of a viscous fluid enclosed between two rotating excentrically disposed cylindrical surfaces (in Russian
),
Soob. Mat. Obshch. Khar’kov Univ.
7
,
34
42
.
2.
(Reprinted in
Trudy Central Aero-Gidrodinam Inst.
(
1931
)
95
,
100
109
, 122 (English summary);
3.
Reprinted in Joukovskii NE (1937), Complete Oeuvres, AP Kotelnikov (ed), ONTI NKTP, Moscow-Leningrad, IV, 250–261, 277–278 (English summary).)
1.
Chaplygin SA (1900), Extension of a plate with two equal circular holes, Chaplygin SA (1950), Collected Works (in Russian), LS Leibenzon (ed), GITTL, Moscow-Leningrad, III, 324–300.
2.
Wannier
GH
(
1950
),
A contribution to the hydrodynamics of lubrication
,
Q. Appl. Math.
8
,
1
32
.
3.
Ballal
BY
and
Rivlin
RS
(
1976
),
Flow of a Newtonian fluid between eccentric rotating cylinders: Inertial effects
,
Arch. Ration. Mech. Anal.
62
,
237
294
.
4.
Aref
H
and
Balachandar
S
(
1986
),
Chaotic advection in a Stokes flow
,
Phys. Fluids
29
,
3515
3521
.
5.
Chaiken
J
,
Chevray
R
,
Tabor
M
, and
Tan
QM
(
1986
),
Experimental study of Lagrangian turbulence in Stokes flow
,
Proc. R. Soc. London, Ser. A
408
,
165
174
.
1.
Chaplygin SA and Arzhannikov NS (1933), On deformation of a tube bounded by two eccentric cylinders under constant pressure, Trudy Central Aero-Gidrodinam Inst. No 123, 13–25.
2.
(Reprinted in Chaplygin SA (1933), Complete Oeuvres, AN Krylov (ed), Izd Akad Nauk SSSR, Leningrad, III, 323–337;
3.
Reprinted in Chaplygin SA (1950), Collected Works (in Russian), LS Leibenzon (ed), GITTL, Moscow-Leningrad, III, 151–168).
1.
Ufliand YaS (1950), Bipolar Coordinates in the Theory of Elasticity (in Russian), GTTI, Moscow.
2.
Le´vy
M
(
1898
),
Sur l’e´quilibre e´lastique d’un barrage en mac¸onnerie a section triangulaire
,
C.R. Acad. Sci. Paris
127
,
10
15
.
1.
Galerkin BG (1929), On the problem of stresses in dams and retaining walls with trapezoidal profile, Sbornik Leningr Inst. Inzh. Putei. Soobshch. No 99, 147–170.
2.
(Reprinted in Galerkin BG (1952), Collected Papers (in Russian), NI Muskhelishvili (ed), Izd Akad Nauk SSSR, Moscow, 1, 252–273.)
1.
Fillunger
P
(
1912
),
Dreiwichtige ebene Spannungszusta¨nde des keilformigen Ko¨rpers
,
Z. Math. Phys.
60
,
275
285
.
2.
Flamant
A
(
1892
),
Sur la re´partition des pressions dans un solide rectangulaire charge´ transversalemant
,
C.R. Acad. Sci. Paris
114
,
1465
1468
.
3.
Flamant
A
(
1893
),
De l’influence sur la flexion des poutres de la position superficielle de la charge´
,
Ann. Ponts Chausse´es
(ser. 7)
6
,
228
260
.
1.
Wieghardt
K
(
1907
),
U¨ber das Spalten und Zerreissen elastischen Ko¨rper
,
Z. Angew. Math. Phys.
55
,
60
103
.
2.
English translation: On splitting and cracking of elastic bodies
,
Fatigue Fract. Eng. Mater. Struct.
(
1995
)
18
,
1371
1405
.
1.
Carothers
SD
(
1913
),
Plane stress in a wedge, with applications to masonry dams
,
Proc. R. Soc. Edinburgh
33
,
292
306
.
2.
Fillunger
P
(
1910
),
Die Spannungsverteilung in keilformigen Ko¨rpern, auf welche eine Eizelkraft einwirkt, unter Beschra¨nkung auf das ebene Problem
,
Z. Math. Phys.
59
,
44
55
.
1.
Inglis
CE
(
1922
),
Some special cases of two-dimensional stress or strain
,
Trans. Inst. Naval Arch.
64
,
253
261
.
2.
(Also in
Engineering
113
,
483
484
.)
1.
Miura C (1928), Spannungskurven in rechteckigen und keilfo¨rmigen Tro¨gern, (dissertation), Julius Springer-Verlag, Berlin.
2.
Bay
H
(
1936
),
Die Berechnung der Schubspannungen in der Bogenscheibe
,
Ing.-Arch.
7
,
118
125
.
3.
Sternberg
E
and
Koiter
WT
(
1958
),
The wedge under a concentrated couple: a paradox in the two-dimensional theory of elasticity
,
ASME J. Appl. Mech.
25
,
575
581
.
4.
Barenblatt GI (1996), Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge Univ Press, Cambridge.
5.
Harrington
WJ
and
Ting
TW
(
1971
),
Stress boundary-value problems for infinite wedges
,
J. Elast.
1
,
65
81
.
6.
Neuber
H
(
1963
),
Lo¨sung des Carothers-Problems mittels Prinzipien der Kraftu¨bertragung (Keil mit Moment an der Spitze
),
Z. Angew. Math. Mech.
43
,
211
228
.
7.
Dempsey
JP
(
1981
),
The wedge subjected to tractions: a paradox resolved
,
J. Elast.
11
,
1
10
.
8.
Ting
TCT
(
1984
),
The wedge subjected to tractions: a paradox re-examined
,
J. Elast.
14
,
235
247
.
9.
Ting
TCT
(
1985
),
A paradox on the elastic wedge subjected to a concentrated couple and on the Jeffery-Hamel viscous flow problem
,
Z. Angew. Math. Mech.
65
,
188
190
.
10.
Dundurs
J
and
Markenscoff
X
(
1989
),
The Sternberg-Koiter conclusion and other anomalies of the concentrated couple
,
ASME J. Appl. Mech.
56
,
240
245
.
11.
Markenscoff
X
(
1994
),
Some remarks on the wedge paradox and Saint-Venant’s principle
,
ASME J. Appl. Mech.
61
,
519
523
.
12.
Ding
HJ
,
Peng
NL
, and
Li
Y
(
1998
),
The wedge subjected to tractions proportional to rn: a paradox resolved
,
Int. J. Solids Struct.
35
,
2695
2714
.
13.
Villaggio
P
(
1998
),
Some extensions of Carothers’s paradox in plane elasticity
,
Math. Mech. Solids
3
,
17
27
.
14.
Brahtz
JHA
(
1933
),
Stress distribution in wedges with arbitrary boundary forces
,
ASME J. Appl. Mech.
1
,
31
37
.
15.
Brahtz
JHA
(
1934
),
Stress distribution in wedges with arbitrary boundary forces
,
Physics (N.Y.)
4
,
77
84
.
16.
Brahtz
JHA
(
1935
),
The stress function and photoelasticity applied to dams
,
Proc. Am. Soc. Civ. Eng.
61
,
983
1020
.
17.
Shepherd
WM
(
1935
),
Stress systems in an infinite sector
,
Proc. R. Soc. London, Ser A
148
,
284
298
.
18.
Abramov VM (1937), Stress distribution in a two-dimensional wedge under arbitrary load, Trudy Konferencii po Opticheskomu Methodu Analysa Napryazhenii (in Russian), NM Belyaey (ed), ONTI NKTP, Leningrad-Moscow, 134–142.
19.
Figurnov
NM
(
1939
),
Study of the stress systems in an infinite quarter plane, loaded by a normal force applied at one of its side (in Russian
),
Prikl. Mat. Mekh.
3
,
133
154
.
20.
Silverman
IK
(
1935
), Discussion on “
The stress function and photo-elasticity applied to dams” by John HA Brahtz
,
Proc. Am. Soc. Civ. Eng.
61
,
1409
1412
.
21.
Silverman
IK
(
1955
),
Approximate stress function for triangular wedges
,
ASME J. Appl. Mech.
22
,
123
128
.
22.
Richards J, Jr (1964), Body-force stresses in wedge-shaped gravity structures, PhD Thesis, Princeton Univ.
23.
Lur’e AI and Brachkovskii BZ (1941), Solution of a plane problem of the theory of elasticity for a wedge (in Russian), Trudy Leningrad Politekhn Inst. No 3, 158–165.
1.
Sakharov
IE
(
1948
),
Deflection of a wedge-shaped built-in plate under the action of an arbitrary load (in Russian
),
Prikl. Mat. Mekh.
12
,
407
414
.
2.
(English review in Appl. Mech, Rev. 1, No 1610.)
1.
Tranter
CJ
(
1948
),
The use of the Mellin transform in finding the stress distribution in an infinite wedge
,
Q. J. Mech. Appl. Math.
1
,
125
130
.
2.
Sneddon IN (1951), Fourier Transforms, McGraw-Hill, New York.
3.
Tranter CJ (1971), Integral Transforms in Mathematical Physics, 4th Edition, Chapman and Hall, London.
4.
Coker
EG
,
Chakko
KC
, and
Ahmed
MS
(
1921
),
An account of some experiments on action of cutting tools
,
Proc. Inst. Mech. Eng.
I
,
365
433
, 434–467 (discussion).
1.
Coker
EG
, and
Chakko
KC
(
1922
),
An account of some experiments on action of cutting tools
,
Proc. Inst. Mech. Eng.
II
,
567
581
.
2.
(Also in
Engineering
103
,
564
569
.)
1.
Woinowsky-Krieger
S
(
1952
),
U¨ber die Anwendung der Mellin-Transformation zur Lo¨sung einer Aufgabe der Plattenbiegung
,
Ing.-Arch.
20
,
391
397
.
2.
Woinowsky-Krieger
S
(
1953
),
The bending of a wedge-shaped plate
,
ASME J. Appl. Mech.
20
,
77
81
.
3.
Taylor GI (1960), Similarity solutions of hydrodynamics problems, Aeronautics and Astronautics, NJ Hoff and WG Vincenti (eds), Pergamon Press, London, 21–28.
4.
Taylor GI (1962), On scraping viscous fluid from a plane surface, Miszellangen der Angewandten Mechanik (Festschrift Walter Tollmien), M Scha¨fer (ed), Akademie-Verlag, Berlin, 313–315.
5.
Batchelor GK (1967), An Introduction to Fluid Dynamics, Cambridge Univ Press, Cambridge.
6.
Moffatt
HK
(
1964
),
Viscous eddies near a sharp corner
,
Arch. Mech. Stosow.
2
,
365
372
.
7.
Jeffrey
DJ
and
Sherwood
JD
(
1980
),
Streamline patterns and eddies in low-Reynolds-number flow
,
J. Fluid Mech.
96
,
315
334
.
8.
Krasnopolskaya
TS
(
1995
),
Two-dimensional Stokes flow near a corner in a right angle wedge and Moffatt’s eddies
,
Mech. Res. Commun.
22
,
9
14
.
9.
Ritz
W
(
1908
),
U¨ber eine neue Methode zur Lo¨sung gewisser Variationsprobleme der mathematischen Physik
,
J Reine Angew. Math
135
,
1
61
.
1.
Rayleigh
Lord
(
1911
),
Hydrodynamical notes
,
Philos. Mag.
(ser. 6)
21
,
177
195
.
2.
(Reprinted in Strutt JW, Baron Rayleigh (1920), Scientific Papers, Cambridge Univ Press, Cambridge, 6, 6–21.)
1.
Na´dai
A
(
1940
), “
Clamped rectangular plates with a central concentrated load”—A discussion
,
ASME J. Appl. Mech.
7
,
42
43
.
2.
Woinowsky-Krieger
S
(
1956
),
U¨ber die Verwendung von Bipolarkoordinaten zur Lo¨sung einiger Probleme der Plattenbiegung
,
Ing.-Arch.
24
,
47
52
.
3.
Dean
WR
and
Montagnon
PE
(
1949
),
On the steady motion of viscous liquid in a corner
,
Proc. Cambridge Philos. Soc.
45
,
389
395
.
4.
Moffatt
HK
(
1964
),
Viscous and resistive eddies near a sharp corner
,
J. Fluid Mech.
18
,
1
18
.
5.
Taneda
S
(
1979
),
Visualization of separating Stokes flows
,
J. Phys. Soc. Jpn.
46
,
1935
1942
.
6.
Michael
DH
and
O’Neill
ME
(
1977
),
The separation of Stokes flows
,
J. Fluid Mech.
80
,
785
794
.
7.
Hasimoto
H
and
Sano
O
(
1980
),
Stokeslets and eddies in creeping flow
,
Annu. Rev. Fluid Mech.
12
,
335
363
.
1.
To¨lke F (1938), Talsperren und Staumauren, Handbibliothek fu¨r Bauingenieure, R von Otzen (ed), Julius Springer-Verlag, Berlin, III/9, 388–408.
2.
(German review in
Zentralblatt Mech.
8
,
63
65
.)
1.
Sobrero
L
(
1948
),
Sul comportamento dei sistemi elasici piani nell’intorno di spigoli rientranti
,
Rend. Sem. Fac. Sci. Univ. Cagliari
17
,
67
87
.
2.
(English review in
Math. Revs.
10
,
495.)
495.)
1.
Williams ML (1951) Surface stress singularities resulting from various boundary conditions in angular corners of plates under bending, Proc of 1st US Natl Congress of Applied Mechanics, ASME, New York, 325–329.
2.
Crawford
WJ
(
1912
),
The elastic strength of flat plates: an experimental research
,
Proc. R. Soc. Edinburgh
32
,
348
389
.
3.
Winslow AM (1935), A study of fundamental relations of the mathematical theory of elasticity, Proc of 4th Int Congress for Applied Mechanics, Cambridge Univ Press, New York, 275–276.
4.
Winslow
AM
(
1951
),
Differentiation of Fourier series in stress solutions for rectangular plates
,
Q. J. Mech. Appl. Math.
4
,
449
460
.
5.
Rankine
WJM
(
1856
),
On the general integrals of the equations of internal equilibrium of an elastic solid
,
Proc. R. Soc. London
7
,
196
202
.
6.
Rankine
WJM
(
1872
),
On the decomposition of forces externally applied to an elastic solid
,
Trans. Roy. Soc. Edinburgh
26
,
715
727
.
7.
Carus Wilson
CA
(
1891
),
The influence of surface-loading on the flexure of beams
,
Philos. Mag.
(ser. 5)
32
,
481
503
.
8.
Nielsen NJ (1920), Bestemmelse of Spaendinger i Plader ved Anvendelse af Differenslignninger, Jorgensen, Copenhagen.
9.
Marcus H (1924), Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten, Julius Springer-Verlag, Berlin. (Also: 2nd Edition (1932).)
10.
Bortsch
R
(
1929
),
Die Ermittlung der Spannungen in beliebig begrezten Scheiben
,
S-B. Akad. Wiss. Wien Mat.-Nat. Kl.
138
,
401
424
.
11.
Bay H (1931), U¨ber den Spannungszustand in hohen Tra¨gern und die Bewehrung von Eisenbetontragwa¨nden (dissertation), Wittwer, Stuttgart.
12.
Bay
H
(
1932
),
Der wandartige Tra¨ger auf unendlich vielen Stu¨zen
,
Ing.-Arch.
3
,
435
446
.
13.
Bay
H
(
1938
),
U¨ber einige Fragen der Spannungsverteilung in Dreieck -und Recteckscheiben
,
Bauingenieur
19
,
349
356
.
14.
Bay H (1960), Wandartiger Tra¨ger und Bogenscheibe, Wittwer, Stuttgart.
15.
Bay H (1969), Lernen und Reifen: vom Erlebnis moderner Bautechnik, Beton-Verlag, Du¨sseldorf.
16.
Varvak PM (1949), Development and Application of the Network Method to the Plate Design (in Russian), Izd Akad Nauk UkrSSR, Kiev.
17.
Conway
HD
,
Chow
L
, and
Morgan
GW
(
1951
),
Analysis of deep beams
,
ASME J. Appl. Mech.
18
,
163
172
.
18.
Beyer K (1956), Die Statik im Stahlbetonbau, Julius Springer-Verlag, Berlin.
19.
Richardson
LF
(
1910
),
The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam
,
Philos. Trans. R. Soc. London, Ser. A
210
,
307
357
.
20.
Pan
F
and
Acrivos
A
(
1967
),
Steady flows in rectangular cavities
,
J. Fluid Mech.
28
,
643
655
.
21.
Biezeno
CB
and
Koch
JJ
(
1923
),
Over een nieuwe methode ter berekening van vlakke platen, met toepassing op eenige voor de techniek belangrijke belastingsgevallen
,
Ingenieur
38
,
25
36
.
22.
Southwell
RV
(
1945
),
On relaxation methods: A mathematics for engineering science, (Bakerian lecture
),
Proc. R. Soc. London, Ser. A
184
,
253
288
.
23.
Southwell RV (1956), Relaxation Methods in Theoretical Physics, Clarendon Press, Oxford.
24.
Fox
L
and
Southwell
RV
(
1946
),
Relaxation methods applied to engineering problems. VII A. Biharmonic analysis as applied to the flexure and extension of flat elastic plates
,
Philos. Trans. R. Soc. London, Ser. A
239
,
419
460
.
25.
Fox
L
(
1947
),
Mixed boundary conditions in the relaxational treatment of biharmonical problems (plane strain or stress
),
Proc. R. Soc. London, Ser. A
189
,
535
543
.
26.
Leissa
AW
,
Clausen
WE
,
Hulbert
LE
, and
Hopper
AT
(
1969
),
A comparison of approximate methods for the solution of plate bending problems
,
AIAA J.
7
,
920
928
.
27.
Grashof F (1878), Theorie der Elasticita¨t und Festigkeit mit Bezug auf ihre Anwendungen in der Technik, 2nd Edition, Ga¨rtner, Berlin.
28.
Lanza G (1885), Applied Mechanics, John Wiley and Sons, New York.
29.
Bach C (1890), Elastizita¨t und Festigkeit: die fu¨r die Technik wichtigsten Sa¨tze und deren erfahrungsma¨ssige Grundlage, Julius Springer-Verlag, Berlin. (Also: 2nd Edition (1894), 3rd Edition (1898), 4th Edition (1902), 5th Edition (1907), 6th Edition (1913), 7th Edition (1917), 8th Edition (with R Baumann) (1920), 9th Edition (with R Baumann) (1924).)
30.
Kirsch B (1919), Vorlesungen u¨ber Technische Mechanik elastischer Ko¨rper, Deuticke, Wien.
31.
Pigeaud G (1920), Re´sistance des mate´riaux et e´lasticite´, Gauthier-Villars, Paris.
32.
Prescott J (1924), Applied Elasticity, Longmans, Green and Co, New York.
33.
Seely FB (1925), Resistance of Materials, John Wiley and Sons, New York.
34.
Salmon EH (1931), Mechanics and Structures, 1, Longmans, Green and Co, London.
35.
Case J (1932), The Strength of Materials: A Treatise on the Theory of Stress Calculation for Engineers, Arnold, London.
36.
Laws
BC
and
Allen
AO
(
1926
),
Lines of maximum principal stress in thin mild steel plates of rectangular shape fixed along the edges and uniformly loaded
,
Philos. Mag.
(ser. 7)
1
,
1039
1042
.
37.
Gerard
FA
(
1950
),
The design of flat plates
,
Struct. Eng.
28
,
165
172
.
38.
Read
TC
(
1886
),
On the strength of bulkheads
,
Trans. Inst. Naval Arch.
27
,
395
408
.
1.
Elgar
F
(
1893
),
Some considerations relating to the strength of bulkheads
,
Trans. Inst. Naval Arch.
34
,
38
49
, 50–59 (discussion).
2.
(Also in
Engineering
51
,
370
371
, 427–428.)
1.
Bach
C
(
1908
),
Versuche u¨ber die Forma¨nderung und die Widerstandsfa¨higkeit ebener Wandungen
,
Z. Ver. Deuts. Ing.
52
,
1781
1789
(1876–1881).
2.
Pietzker F (1911), Festigkeit der Schiffe, Reichs-Marine-Arm, Berlin (Also: 2nd Edition (1914).)
3.
Pietzker F (1913), The Strength of Ships (in Russian), Izd Morskogo Ministerstva, St Petersburg.
4.
Pietzker F (1959), The Strength of Ships, SNAME, New York.
5.
Belzeckii
S
(
1906
),
Several remarks on the elementary theory of bending of straight beams (in Russian
),
Izvestiya Sobr. Inzh. Putei Soobshch.
26
,
123
124
.
6.
Ribie`re CH (1889), Sur divers cas de la flexion des prismes rectangles (Doctorat the`se), Bordeaux.
7.
Jeffery
GB
(
1938
),
Louis Napoleon George Filon
,
J. Lond. Math. Soc.
13
,
310
318
.
8.
Belzeckii
S
(
1905
),
Flexure of a straight beam resting on two supports (in Russian
),
Izvestiya Sobr. Inzh. Putei Soobshch.
25
,
199
202
.
9.
Bleich
F
(
1923
),
Der gerade Stab mit Rechteckquerschnitt als ebenes Problem
,
Bauingenieur
4
,
255
259
, 304–307, 327–331).
10.
Meleshko
VV
(
1995
),
Equilibrium of elastic rectangle: Mathieu-Inglis-Pickett solution revisited
,
J. Elast.
40
,
207
238
.
11.
Ritz W (1908), U¨ber eine neue Methode zur Lo¨sung gewisser Randwertaufgaben, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 236–248.
12.
Rayleigh, Lord (1894), The Theory of Sound, 2nd Edition 1, Macmillan, London.
13.
Goldsbrough
GR
(
1929
),
Note on the method of Ritz for the solution of problems in elasticity
,
Philos. Mag.
(ser. 7)
7
,
332
337
.
14.
Kantorovich LV and Krylov VI (1936), Approximate Methods for Solving of Partial Differential Equations (in Russian), ONTI, Leningrad-Moscow.
15.
Kantorovich LV and Krylov VI (1949), Approximate Methods of Higher Analysis, 3rd Edition (in Russian), GITTL, Leningrad-Moscow.
16.
Kantorovich LV and Krylov VI (1958), Approximate Methods of Higher Analysis, Noordhoff, Groningen.
17.
Ritz W (1911), Oeuvres, Gauthier-Villars, Paris.
1.
Rayleigh
Lord
(
1911
),
On the calculation of Chaldni’s figures for a square plate
,
Philos. Mag.
(ser. 6)
22
,
225
229
.
2.
(Reprinted in Strutt JW, Baron Rayleigh (1920), Scientific Papers, Cambridge Univ Press, Cambridge, 6, 47–50.)
1.
Pistriakoff
D
(
1910
),
Bending of a thin plate (in Russian, with French summary
),
Izvestiya Kiev Politekh. Inst.
10
,
311
373
.
2.
Paschoud M (1914), Sur l’application de la methode de W Ritz a` l’e`tude de l’e´quilibre e´lastique d’une plaque carre´e mince (Doctorat the`se), Gauthier-Villars, Paris.
3.
Salvati M (1936), II calcolo della lastra piana rettangolare con carico uniformente, Accolti-Gil, Bari.
4.
Knott
CG
(
1912
),
Comparison of Mr Crawford’s measurements of the deflection of a clamped square plate with Ritz’s solution
,
Proc. R. Soc. Edinburgh
32
,
390
392
.
5.
Na´dai
A
(
1914
),
Die Forma¨nderungen und die Spannungen von rechtickigen elastischen Platten
,
Z. Ver. Deuts. Ing.
58
,
486
494
, 540–550.
6.
Mesnager
A
(
1916
),
Moments et fle`ches des plaques rectangulaires minces, portant une charge uniforme´ment re´partie
,
Ann. Ponts Chausse´es
(ser. 7)
33
,
313
438
.
7.
Mesnager
A
(
1916
),
Formule de la plaque mince encastre´e sur un contour rectangulaire plan
,
C.R. Acad. Sci. Paris
163
,
661
663
.
8.
Mesnager
A
(
1917
),
Formule en se´rie simple de la plaque uniforme´ment charge´e, encastre´e sur un contour rectangulaire plan
,
C.R. Acad. Sci. Paris
164
,
169
172
.
9.
Laws
BC
(
1937
),
Deflexion of thin rectangular plates clamped at the edges and uniformly loaded
,
Philos. Mag.
(ser. 7)
24
,
1072
1082
.
10.
Pickett
G
(
1939
),
Solution of rectangular clamped plate with lateral load by generalized energy method
,
ASME J. Appl. Mech.
6
,
168
170
.
11.
Wegner
U
(
1942
),
Ein neues Verfahren zur Berechnung der Spannung in Scheiben
,
Forsch. Geb. Ingenieurwes.
B13
,
144
149
.
12.
Weinstein A and Rock DH (1944), On the bending of a clamped plate, Quart. Appl. Math. 2, 262–266. (Reprinted in Alexander Weinstein Selecta (1978), JB Diaz (ed), Pitman, London, 202–206.)
13.
Weinstein
A
and
Jenkins
JA
(
1946
),
On a boundary value problem for a clamped plate
,
Trans. R. Soc. Can.
40
,
59
67
.
1.
Djuric´
M
(
1950
),
Solution du proble`me de la plaque rectangulaire a` l’aide des fonctions orthogonales des oscillations transversales d’une poutre
,
Publ. Inst. Math. Acad. Serbie Sci.
3
,
79
88
.
2.
(English review in
Math Revs
12
,
558.)
558.)
1.
Rafal’son EH (1952), Concerning the solution of the biharmonic equation (in Russian), Uchenye Zapiski Leningrad Gos. Univ. Ser. Mat. Nauk 164–191.
1.
Hajdin
M
(
1953
),
Contribution a` la solution du proble`me plan
,
Publ. Inst. Math. Acad. Serbie Sci.
5
,
53
62
.
2.
(English review in
Math. Revs.
16
,
974.)
974.)
1.
Weiss
RF
and
Florsheim
BH
(
1965
),
Flow in a cavity at low Reynolds number
,
Phys. Fluids
8
,
1631
1635
.
2.
Kryloff
N
(
1925
),
Sur diffe´rents proce´de´s d’inte´gration approche´e en physique mathe´matique
,
Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys.
17
,
153
186
.
3.
Ioffe A, Kriloff [Krylov] A, and Lazareff P (1928), A note on the scientific papers by Prof BG Galerkin (in Russian), Izvestuya Ros. Akad. Nauk 616–618.
4.
Luchka AYu and Luchka TF (1985), Origin and Development of the Direct Methods of the Mathematical Physics (in Russian), Naukova Dumka, Kiev.
5.
Kryloff
N
(
1927
),
Sur l’inte´gration approche´e des quelques e´quations aux de´rive´es partielles de la physique mathe´matique
,
C.R. Acad. Sci. Paris
184
,
587
589
.
6.
Trefftz E (1926), Ein Gegenstu¨ck zum RITZschen Verfahren, Verhandlungen des zweiten Internationalen Kongresses fu¨r technische Mechanik, Fu¨ssli, Zu¨rich, 131–137.
7.
Trefftz
E
(
1928
),
Konvergenz und Fehlerscha¨tzung beim RITZschen Verfahren
,
Math. Ann.
100
,
503
529
.
8.
Courant
R
(
1927
),
U¨ber direkte Methoden in der Variationsrechnung und u¨ber verwwandte Fragen
,
Math. Ann.
97
,
711
736
.
9.
Friedrichs
K
(
1928
),
Die Randwert-und Eigenwertprobleme aus der Theorie der elastischen Platten (Anwendung der direkten Methoden der Variationsrechnung
),
Math. Ann.
98
,
205
247
.
1.
Rafal’son
EH
(
1949
),
Concerning the solution of the biharmonic equation
,
Dokl. Akad. Nauk SSSR
64
,
799
802
.
2.
(English review in
Math. Revs.
10
,
707.)
707.)
1.
Stodola
A
(
1914
),
Ueber die Schwingungen von Dampfturbinen-Laufra¨den
,
Schweiz. Bauzeitung
63
,
251
255
, 277–275.
2.
Young
D
(
1950
),
Vibration of rectangular plates by the Ritz method
,
ASME J. Appl. Mech.
17
,
448
453
.
3.
Bateman H (1932), Partial Differential Equations of Mathematical Physics, Cambridge Univ Press, Cambridge.
4.
Courant
R
(
1943
),
Variational methods for the solutions of problems of equilibrium and vibrations
,
Bull. Am. Math. Soc.
49
,
1
23
.
5.
Leissa AW (1969), Vibration of Plates, NASA SP-160.
6.
Davydov AK (1935), A letter to PF Papkovich (in Russian), Reminiscences about PF Papkovich (1984), BI Slepov (ed), Nauka, Leningrad, 159–161.
1.
Timoshenko
SP
(
1910
),
Application of normal coordinates in analysing bending of beams and plates (in Russian, with French summary
),
Izvestiya Kiev Politekh. Inst.
10
(
1
),
1
49
.
2.
(German review in
Jbuch. Fortschr. Math.
41
,
903
905
;
3.
Reprinted in Timoshenko SP (1975), Strength and Vibrations of Structural Elements (in Russian), EI Grigolyuk (ed), Nauka, Moscow, 180–219.)
1.
Lorenz
H
(
1913
),
Angena¨herte Berechnung rechteckiger Platten
,
Z. Ver. Deuts. Ing.
57
,
623
625
.
2.
Hager K (1911), Berechnung ebener, rechteckiger Platten mittels trigonometrischer Reihen, Oldenbourg, Mu¨nchen.
1.
Galerkin
BG
(
1915
),
Rectangualr plates supported by edges
,
Izvestiya S Petersburg Politekh Inst
24
,
219
282
.
2.
(Reprinted in Galerkin BG (1953), Collected Papers (in Russian), NI Muskhelishvili (ed), Izd Akad Nauk SSSR, Moscow, 2, 3–42.)
1.
Timoshenko
SP
(
1924
),
The approximate solution of two-dimensional problems in elasticity
,
Philos. Mag.
(ser. 6)
47
,
1095
1104
.
2.
(Reprinted in Timoshenko SP (1953), The Collected Papers, McGraw-Hill, New York, 393–400.)
1.
Inglis
CE
(
1923
),
Stress distribution in a rectangular plate having two opposing edges sheared in oppoisite directions
,
Proc. R. Soc. London, Ser. A
103
,
598
610
.
2.
Goodier
JN
(
1932
),
Compression of rectangular blocks, and the bending of beams by non-linear distributions of bending forces
,
Trans. ASME, Appl. Mech.
54
,
554
576
.
3.
von Krzywoblocki
MZ
(
1948
),
A general approximation method in the theory of plates of small deflection
,
Q. Appl. Math.
6
,
31
52
.
4.
von Krzywoblocki
MZ
(
1951
),
On the so-called principle of least work method
,
O¨sterreich Ing.-Arch.
5
,
81
98
.
5.
Horvay
G
(
1953
),
The end problem of rectangular strips (discussion
),
ASME J. Appl. Mech.
20
,
576
582
.
1.
Ishlinskii AYu (1962), Mikhail Mitrofanovich Filonenko-Borodich, an obituary notice (in Russian), Stroit. Mekh. Raschet Soor. No 5 46–47.
2.
(Reprinted: Ishlinskii AYu (1962), Mechanics: Ideas, Problems, Applications, PYa Kochina (ed), Nauka, Moscow, 534–537.)
1.
Ogibalov PM, Kishkin BP, and Netrebko VP (1972), Life and activity of Mikhail Mitrofanovich Filonenko-Borodich (in Russian), Vestnik Moskov Univ. Ser. Mat. Mech. No 5 124–129.
2.
Filonenko-Borodich
MM
(
1946
),
On a certain system of functions and its application in the theory of elasticity (in Russian
),
Prikl. Mat. Mekh.
10
,
192
208
.
1.
Filonenko-Borodich MM (1947), The bending of a rectangular plate with two clamped opposite edges (in Russian), Vestnik Moskov Univ Ser Fiz-Mat Estest Nauk 29–36.
2.
(English review in Appl. Mech. Rev. 3, No 650.)
1.
Danilovskaya
VI
(
1968
),
An application of Castigliano variational method to the plane problem of thermoelasticity (in Russian
),
Prikl. Mekh.
4
(
12
),
33
40
.
2.
Horvay
G
(
1953
),
The end problem of rectangular strips
,
ASME J. Appl. Mech.
20
,
87
94
.
3.
Horvay
G
(
1957
),
Biharmonic eigenvalue problem of the semi-infinite strip
,
Q. Appl. Math.
15
,
65
81
.
4.
Horvay
G
(
1957
),
Saint-Venant’s principle: a biharmonic eigenvalue problem
,
ASME J. Appl. Mech.
24
,
381
386
.
5.
Horvay
G
(
1957
),
Some aspects of Saint-Venant’s principle
,
J. Mech. Phys. Solids
5
,
77
94
.
6.
Horvay G and Born JS (1955), The use of self-equilibrating functions in solution of beam problems, Proc of 2nd US Nat Congress of Applied Mechanics, PM Naghdi (ed) ASME, New York, 267–276.
1.
Galerkin
BG
(
1915
),
Rods and plates. Series in some questions of elastic equilibrium of rods and plates
,
Vestnik Inzh.
1
,
897
908
.
2.
(Reprinted in Galerkin BG (1952), Collected Papers, (in Russian), NI Muskhelishvili (ed), Izd Akad Nauk SSSR, Moscow, 1, 168–195.)
1.
Grigorian AT (1971), Galerkin, Boris Grigor’evich, Dictionary Scientific Biography, CC Gillispie (ed), Scribner, New York, VIII, 607–608.
2.
Sokolovskii VV (1951), On life and scientific activity of Academician BG Galerkin, Izvestiya Akad. Nauk SSSR Otd. Tech. Nauk 1159–1164, (in Russian).
3.
Hencky H (1913), U¨berden Spannungszustand in rechteckigen ebenen Platten bei gleichma¨ssig verteilter und bei konzentrierter Belastung (dissertation), Oldenbourg, Mu¨nchen (Reprinted Hencky H (1913), Der Spannungszustand in rechteckigen Platten, Oldenbourg, Mu¨nchen.)
4.
Bubnov IG (1914), Structural Mechanics of a Ship (in Russian), 2, Izd Morskoi Akademii, St Petersburg.
5.
Simicˇ
J
(
1908
),
Ein Beitrag zur Berechnung der rechteckigen Platten
,
Z. O¨sterreich Ing.-Architekt. Verein.
60
,
709
714
.
6.
Hencky H (1924), U¨ber ein einfaches Na¨herungsverfahren zur Bestimmung des Spannungszustandes in rechtekig begrenzten Scheiben, auf deren Umfang nur Normalspannungen wirken, Betra¨ge zur technischen Mechanik und technischen Physik. August Fo¨ppl zum 70en Geburstage, O Fo¨ppl, L Fo¨ppl, L Prandtl, and H Thoma (eds), Julius Springer-Verlag, Berlin, 62–73.
7.
Perel’man
YaI
(
1941
),
Galerkin’s method in calculus of variations and in the theory of elasticity (in Russian
),
Prikl. Mat. Mekh.
5
,
345
358
.
8.
Sokolovskii VV and Shapiro GS (1947), Galerkin’s methods in the theory of elasticity, Jubilee Collection dedicated to 30th Anniversary of the October Revolution (in Russian), SI Vavilov (ed) Izd Akad Nauk SSSR, Moscow-Leningrad, 2, 559–570.
9.
Grigolyuk EI (1975), On Bubnov’s method (on the 60th anniversary of its creation), Issledovaniya po Teorii Plastin Obolochek (in Russian), KZ Galimov (ed), Izd Kazan Univ Kazan, 11 3–40.
10.
Grigolyuk EI (1996), The Bubnov Method: Sources, Formulation, Development (in Russian), Izd Inst Mekh MGU, Moscow.
11.
Vorovich II (1975), The Bubnov-Galerkin method, its development and role in applied mathematics, Advances in Mechanics of Deformable Bodies. Dedicated to the 100th Birthday of BG Galerkin (in Russian), AYu Ishlinskii (ed), Nauka, Moscow, 121–133.
12.
Biezeno
CB
(
1924
),
Graphical and numerical stress determination in beams and plates
,
Ingenieur
39
,
712
713
.
13.
Biezeno
CB
(
1924
),
Over een vereenvoudiging en over een uitbreiding van de methode van Ritz
,
Christiaan Huygens
3
,
69
75
.
14.
Hencky
H
(
1927
),
Eine wichtige Vereinfachung der Methode von Ritz zur angenna¨herten Behandlung von Variationproblemen
,
Z. Angew. Math. Mech.
7
,
80
81
.
15.
Papkovich, PF (1935), A letter to AK Davydov, Reminiscences about PF Papkovich, (1984) (in Russian), BI Slepov (ed), Nauka, Leningrad, 161–162.
16.
Sommerfeld A (1949), Partial Differential Equations, Academic Press, New York.
17.
Papkovich, PF (1944), From reminiscences, Reminiscences about PF Papkovich (1984) (in Russian), BI Slepov (ed), Nauka, Leningrad, 206–224.
18.
Vol’mir AS (1953), An essay on the life and work of IG Bubnov, Bubnov IG (1953), Works on the Plate Theory (in Russian), AS Vol’mir (ed), GITTL, Moscow, 308–393.
19.
Dormidontov FK (1956), Ivan Grigor’evich Bubnov, a short essay on his life and activity, Bubnov IG (1956), Selected Works (in Russian), YuA Shimanskii (ed), Sudpromgiz, Leningrad, 408–433.
20.
Belkin MP (1973), Famous naval architect and prominent scientist Ivan Grigor’evich Bubnov, Problems of Structural Mechanics of a Ship. To 100th Birthday of IG Bubnov (1973) (in Russian), VV Novozhilov (ed) Sudostrenie, Leningrad, 3–27.
21.
Novozhilov VV (1973), Ivan Grigor’evich Bubnov and structural mechanics, Problems of Structural Mechanics of a Ship. To 100th Birthday of IG Bubnov, VV Novozhilov (ed) Sudostrenie, Leningrad, 28–33. (Reprinted in Novozhilov VV (1989), Topics in Continuum Mechanics (in Russian), Sudostrenie, Leningrad, 377–381.)
1.
Grigolyuk
EI
(
1997
),
Ivan Grigor’evich Bubnov. On the 125th anniversary of his birth, 6(18) January 1872–13 March 1919 (in Russian
),
Prikl. Mat. Mekh.
61
,
179
183
.
2.
(English translation:
J. Appl. Math. Mech.
61
,
173
176
.)
1.
Bubnov IG (1913), Referee’s report on the memoir by Professor Timoshenko “On the stability of elastic systems” crowned by the DI Zhuravskii prize, Sbornik St Petersburg Inst. Inzh. Putei Soobshch. 81(7), 33–36. (Reprinted in Bubnov IG (1956), Selected Works (in Russian), YuA Shimanskii (ed) Sudpromgiz, Leningrad, 136–139.)
2.
Mikhlin SG (1957), Variational Methods in Mathematical Physics (in Russian), GITTL, Moscow.
3.
Mikhlin SG (1964), Variational Methods in Mathematical Physics, Pergamon Press, Oxford.
4.
Karmanov VG (1975), Ritz and Galerkin methods, Large Soviet Encyklop, 3rd Edition (in Russian), AM Prokhorov (ed), Sovetskaya Encyklopediya, Moscow, 22, 397–399.
5.
Meleshko
VV
(
1998
),
Biharmonic problem in a rectangle
,
Appl. Sci. Res.
58
,
217
249
.
6.
Kantorovich LV (1933), One direct method of an approximate solution of the problem of a minimum of a double integral (in Russian), Izvestiya Akad. Nauk SSSR Otd. Mat. Est. Nauk (ser. 7) No 5, 710–717.
7.
Kantorovich
LV
(
1942
),
Application of Galerkin’s method to the so-called procedure of reduction to ordinary differential equations (in Russian
),
Prikl. Mat. Mekh.
6
,
31
40
.
1.
Semenov
NS
(
1939
),
Application of the method of variation developed by L Kantorovich for the solution of problems of bending of thin rectangular plates (in Russian, with English summary
),
Prikl. Mat. Mekh.
3
,
107
116
.
2.
(German review in
Zentralblatt Mech.
11
,
12
13
.)
1.
Whittaker
ET
(
1937
),
Alfred Cardew Dixon
,
J. London Math. Soc.
12
,
145
154
.
2.
(Also:
Obit Notices Fellows Roy. Soc. London
2
,
165
174
.)
1.
Dixon
AC
(
1921
),
Expansions and functions reduced to zero the operator sinh D−cD,
Proc. London Math. Soc.
(ser. 2)
21
,
271
290
.
2.
Dixon
AC
(
1925
),
The functions involved in the theory of a thin elastic rectangular plate, clamped at the edges, and certain integral equations satisfied by such functions
,
Proc. London Math. Soc.
(ser. 2)
25
,
417
450
.
1.
Miln
EH
(
1941
),
Obituary: Augustus Edward Hough Love, 1863–1940
,
J. London Math. Soc.
16
,
69
80
.
2.
(Also:
Obit Notices Fellows Roy. Soc. London
3
,
467
482
;
3.
Nature
146
,
393
394
.)
1.
Calladine
CR
(
1988
),
The theory of thin elastic structures 1888–1988
,
Proc. Inst. Mech. Eng.
202
(
A3
),
141
149
.
2.
Love
AEH
(
1929
),
Biharmonic analysis, especially in a rectangle, and its application to the theory of elasticity
,
Proc. London Math. Soc.
(ser. 2)
29
,
189
242
.
3.
Seth
BR
(
1947
),
Bending of clamped rectilinear plates
,
Philos. Mag.
(ser. 7)
38
,
292
297
.
1.
Radenkovicˇ
D
(
1949
),
A solution of the problem of steady state stresses for a rectangular domain
,
Glas Srpske Akad. Nauka
195
,
89
104
, (in Serbian).
2.
(English review in
Math. Revs.
11
,
436.)
436.)
1.
Radenkovicˇ
D
(
1950
),
Une solution du proble`me a` deux dimensions de la the´orie de l’e´lasticite´
,
Publ. Inst. Math. Acad. Serbie Sci.
3
,
127
136
.
2.
(English review in
Math. Revs.
12
,
652
652
;
3.
Appl. Mech. Rev.
4
,
No 3798.)
No 3798.)
1.
Winslow
AM
(
1956
),
Stress solutions for rectangular plates by conformal transformation
,
Q. J. Mech. Appl. Math.
10
,
160
168
.
2.
Magnaradze
LG
(
1937
),
Basic problems of plane theory of elasticity for contours with corners
,
Dokl. Akad. Nauk SSSR
16
,
157
161
.
1.
Magnaradze
LG
(
1938
),
Solution of the fundamental problems of plane theory of elasticity in the case of contours with corners
,
Dokl. Akad. Nauk SSSR
19
,
673
676
.
2.
(German review in
Jbuch. Fortschr. Math.
64
,
828.)
828.)
1.
Deverall
LI
(
1957
),
Solution of some problems in bending of thin clamped plates by means of the method of Muskhelishvili
,
ASME J. Appl. Mech.
24
,
295
298
.
2.
Belonosov SM (1962), Basic Plane Static Problems of the Theory of Elasticity (in Russian), Izd Akad Nauk SSSR, Novosibirsk.
3.
Belonosov SM (1966), Mathematical problems of the theory of elasticity for domains with angles, Trudy II Vsesoyuz s’ezda Teor Prikl. mekh. Vol. 3. Mechanics of Solids (in Russian), AS Vol’mir and GK Mikhailov (eds), Nauka, Moscow, 3, 48–60.
4.
Thomson W and Tait PG (1883), Treatise on Natural Philosophy, Cambridge Univ Press, Cambridge.
5.
Mikhel’son
NN
(
1973
),
Boris Mikhailovich Koialovich (in Russian
),
Istor.-Mat. Issled
18
,
310
321
.
1.
Koialovich BM (1894) A study of the differential equation ydy−ydx=Rdx. (Master dissertation), Izd St Petersburg Univ, St Petersburg, (in Russian).
2.
(German review in
Jbuch. Fortschr. Math.
26
,
365
369
.)
1.
Sobolev
SL
(
1936
),
L’a´lgorithme de Schwarz dans la the´orie de l’e´lasticite´
,
Dokl. Akad. Nauk SSSR
4
,
243
246
.
2.
Grattan-Guinnes I (1972), Joseph Fourier 1768–1830. A survey of his life and work, based on a critical edition of his monograph on the propagation of heat presented to the Institut de France in 1807, MIT Press, Cambridge MA.
3.
Fourier J (1955), The Analytical Theory of Heat, Dover, New York.
4.
Riesz F (1913), Les syste`mes d’e´quations line´aires a` une infinite´ d’inconnues, Gauthier-Villars, Paris.
5.
Bubnov IG (1904), Stresses in the bottom plating of ship due to water pressure (in Russian), (Adjunct dissertation), Venike, St-Petersburg.
1.
Bubnov
IG
(
1902
),
Stresses in the bottom plating of ship due to water pressure
,
Morskoi Sbornik
312
(
10
),
119
138
.
2.
(Reprinted in Bubnov IG (1953), Researches on the Plate Theory (in Russian), AS Vol’mir (ed) GITTL, Moscow, 61–80.)
1.
Koialovich
BM
(
1930
),
Studies on infinite systems of linear equations (in Russian
),
Izvestiya Fiz-Mat Inst Steklov
3
,
41
167
. (German review in Jbuch Fortschr. Math. 61, 414.)
2.
Bubnov IG (1953), Researches on the Plate Theory (in Russian), AS Vol’mir (ed), GITTL, Moscow.
3.
Happel H (1914), U¨ber das Gleichgewicht rechteckiger Platten, Nachr. K. Ges. Wiss. Go¨ttingen Math.-Phys. Kl. 37–62.
4.
Na´dai
A
(
1915
),
Die Forma¨nderungen und die Spannungen von rechteckigen elastischen Platten
,
Forsch. Geb. Ingenieurwes.
170/171
,
1
87
.
5.
Leitz
H
(
1917
),
Berechnung der eingespannten rechteckigen Platte
,
Z. Math. Phys.
64
,
262
272
.
6.
March
HW
(
1925
),
The deflexion of a rectangular plate fixed at the edges
,
Trans. Am. Math. Soc.
27
,
307
317
.
7.
Schmidt
H
(
1932
),
Zur Statik eingespannter Rechtecks-platten
,
Z. Angew. Math. Mech.
12
,
142
151
.
8.
Iguchi S (1933), Eine Lo¨sung fu¨r die Berechnung der biegsamen rechteckigen Platten, Julius Springer-Verlag, Berlin.
9.
To¨lke
F
(
1934
),
U¨ber Spannungszusta¨nde in du¨nnen Rechtecksplatten
,
Ing.-Arch.
5
,
187
237
.
10.
Shimanski YuA (1934), Bending of Plates (in Russian), ONTI, Leningrad.
11.
Wojtaszak
IA
(
1937
),
The calculation of maximum deflection, moment, and shear for uniformly loaded rectangular plate with clamped edges
,
ASME J. Appl. Mech.
4
,
173
176
.
12.
Bourgin
DG
(
1939
),
The clamped square sheet
,
Am. J. Math.
61
,
417
439
.
13.
Evans
TH
(
1939
),
Tables of moments and deflections for a rectangular plate fixed on all edges and carrying a uniformly distributed load
,
ASME J. Appl. Mech.
6
,
7
10
.
14.
Timoshenko SP (1939), Bending of rectangular plates with clamped edges, Proc of 5th Int Congress for Applied Mechanics, John Wiley and Sons, New York, 40–43.
15.
Young
D
(
1939
),
Clamped rectangular plates with a central concentrated load
,
ASME J. Appl. Mech.
6
,
114
116
.
16.
Young
D
(
1940
),
Clamped rectangular plates with a central concentrated load
,
J. Roy. Aeronaut. Soc.
44
,
350
354
.
17.
Young
D
(
1940
),
Analysis of clamped rectangular plates
,
ASME J. Appl. Mech.
7
,
139
142
.
18.
Go¨hner
O
(
1940
),
Zur Berechnung des gekru¨mmten Tra¨gers
,
Ing.-Arch.
11
,
344
360
.
19.
Green
AE
(
1944
),
Double Fourier series and boundary value problems
,
Proc. Cambridge Philos. Soc.
40
,
222
228
.
20.
Goriupp
K
(
1947
),
Die dreiseitig gelagerte Rechteckplatte, I, II
,
Ing.-Arch.
16
,
77
98
, 153–163.
21.
Odley
EG
(
1947
),
Deflections and moments of a rectangular plate clamped on all edges and under hydrostatic pressure
,
ASME J. Appl. Mech.
14
,
289
299
.
22.
Stiles
WR
(
1947
),
Bending of clamped plates
,
ASME J. Appl. Mech.
14
,
55
62
.
23.
Ohling
R
(
1949
),
Die eingespannte Rechteckplatte
,
Ing.-Arch.
17
,
243
263
.
1.
Klitchieff
JM
(
1950
),
Some series applied to the theory of structures
,
Publ. Inst. Math. Acad. Serbie Sci.
3
,
1
23
.
2.
(English review in
Math. Revs.
12
,
559
560
;
3.
Appl. Mech. Rev.
4
,
No 2405.)
No 2405.)
1.
Klitchieff
JM
(
1951
),
On bending of a rectangular plate (in Serbian
),
Glas Srpske Akad. Nauka Od. Tekn. Nauka
CX-CIX
(
2
),
91
95
.
2.
(English review in
Appl. Mech. Rev.
5
,
No 1340.)
No 1340.)
1.
Klitchieff
JM
(
1951
),
U¨ber die Biegung rechteckiger Platten
,
Bull. Acad. Serbie Sci. Ci. Sci. Tech.
2
,
69
76
.
2.
(English review in
Math. Revs.
13
,
404.)
404.)
1.
Girkmann
K
and
Tungl
E
(
1953
),
Na¨herungsweise Berechnung eigespannter Rechteckplatten
,
O¨sterreich Bauzeitschr.
8
,
47
60
.
2.
Fletcher HJ and Thorne CJ (1955), Bending of thin rectangular plates, Proc of the 2nd US Nat Congress of Applied Mechanics, PM Naghdi (ed), ASME, New York, 389–406.
3.
Coffman
CV
(
1986
),
On the construction of series solution to the first biharmonic boundary value problem in a rectangle
,
SIAM J. Math. Anal.
17
,
384
402
.
4.
Grinchenko
VT
and
Ulitko
AF
(
1965
),
Bending of a square elastic plate by a uniform load (in Russian
),
Prikl. Mekh.
1
(
9
),
71
75
.
5.
Meleshko
VV
(
1997
),
Bending of an elastic rectangular clamped plate: Exact versus ‘engineering’ solutions
,
J. Elast.
48
,
1
50
.
6.
Meleshko
VV
and
Gomilko
AM
(
1997
),
Infinite systems for a biharmonic problem in a rectangle
,
Proc. R. Soc. London, Ser. A
453
,
2139
2160
.
1.
Koialovich
BM
(
1932
),
On the theory of infinite systems of linear equations (reply to Prof RO Kuz’min) (in Russian
),
Trudy Fiz.-Mat. Inst. Steklov
2
(
4
),
1
16
.
2.
(German review in
Jbuch. Fortschr. Math.
58
,
1115
1116
.)
1.
Koialovich
B
(
1935
),
Etudes sur les syste`mes line´aires infinis
,
Zhurnal Inst. Mat. Ukrain Akad. Nauk
1
(
1
),
49
74
.
2.
Koialovich
BM
(
1937
),
On the basic notions of the theory of the infinite systems of the linear equations (in Russian
),
Uchenye Zapiski Leningrad. Gos. Pedagog. Inst.
5
,
83
99
.
1.
Kuz’min
RO
(
1931
),
On the theory of infinite systems of linear equations (in Russian
),
Trudy Fiz.-Mat. Inst. Steklov.
2
(
2
),
1
16
.
2.
(German review in
Jbuch. Fortschr. Math.
58
,
1115.)
1115.)
1.
Kuz’min RO (1934), On one class of the infinite systems of the linear equations (in Russian), Izvestiya. Akad. Nauk SSSR Otd. Mat. Est. Nauk (ser. 7), No 8, 515–546.
2.
(German review in
Jbuch. Fortschr. Math.
60
,
320.)
320.)
1.
Meleshko
VV
and
Gomilko
AM
(
1994
),
On the bending of clamped rectangular plates
,
Mech. Res. Commun.
21
,
19
24
.
2.
Meleshko
VV
,
Gomilko
AM
, and
Gourjii
AA
(
2001
),
Normal reactions in a clamped elastic rectangular plate
,
J. Eng. Math.
40
,
377
398
.
3.
Inglis
CE
(
1921
),
Two dimensional stresses in rectangular plates
,
Engineering
112
,
523
524
.
4.
Sezawa
K
(
1923
),
The stress on rectangular plates
,
Engineering
116
,
188
191
.
5.
Kuno
J
(
1932
),
Application of the law of photo-elastic extinction to some problems
,
Philos. Mag.
(ser. 7)
13
,
810
824
.
6.
Klitchieff
J
(
1936
),
Eine Lo¨sung der ebenen Spannungsaufgabe mittels trigonometrischer Reihen
,
Publ. Math. Univ. Belgrade
5
,
157
162
.
7.
O^kubo
H
(
1940
),
Similarity of the stress distributions in a circular disk and a square plate
,
J. Appl. Phys.
11
,
720
723
.
1.
Ling
C-B
,
Lee
T-C
, and
Chang
T-Y
(1944), Stresses in a rectangular plate under a pair of symmetric loads inside the plate, Techn. Rep. Chinese Bureau Aero. Res. No. 15.
2.
(Reprinted in Ling C-B (1963), The Collected Papers, Academia Sinica, Taipei, 125–145.)
1.
Pickett
G
(
1944
),
Application of the Fourier method to the solution of certain boundary problems in the theory of elasticity
,
ASME J. Appl. Mech.
11
,
176
182
.
2.
Parkus
H
(
1948
),
Der wandartige Tra¨ger auf drei Stu¨tzen
,
O¨sterreich Ing.-Arch.
2
,
185
200
.
3.
Mann
EH
(
1949
),
Shearing displacement of a rectangular plate
,
Proc. Cambridge Philos. Soc.
45
,
258
362
.
1.
Abramyan
BL
(
1955
),
On one case of the plane problem of the theory of elasticity for a rectangle (in Russian)
Dokl. Akad. Nauk Armyan. SSR
21
,
193
198
.
2.
(English review in
Math. Revs.
17
,
915.)
915.)
1.
Abramyan
BL
(
1957
),
On a plane problem of the theory of elasticity for a rectangle (in Russian
),
Prikl. Mat. Mekh.
21
,
89
101
.
2.
Teodorescu
PP
(
1957
),
Asupra calculului grinzilor pereticu o singura˘ deschidere
,
Stud. Cerc. Mecan. Apl.
8
,
115
134
, 451–490.
3.
Ling
C-B
and
Cheng
F-H
(
1971
),
Stress systems in a rectangular plate
,
Appl. Sci. Res.
25
,
97
112
.
4.
Baker
G
,
Pavlovic´
MN
, and
Tahan
N
(
1993
),
An exact solution to the two-dimensional elasticity problem with rectangular boundaries under arbitrary edge forces
,
Philos. Trans. R. Soc. London, Ser. A
343
,
307
336
.
5.
Kalmanok AS (1950), Structural Mechanics of Plates (in Russian), Mashstroiizdat, Moscow. (English review Appl. Mech. Rev. 5, No. 74.)
6.
Kalmanok AS (1956), Design of Deap Beams (in Russian), Gosstrojizdat, Moscow.
7.
Takematsu
M
(
1965
),
Viscous flow in a two-dimensional cavity
,
J. Phys. Soc. Jpn.
20
,
283
283
.
8.
Meleshko
VV
(
1996
),
Steady Stokes flow in a rectangular cavity
,
Proc. R. Soc. London, Ser. A
452
,
1999
2022
.
9.
Dougall
J
(
1904
),
An analytical theory of the equilibrium of an isotropic elastic plate
,
Trans. Roy. Soc. Edinburgh
41
,
129
228
.
10.
Filon
LNG
(
1907
),
On the expansion of polynomials in series of functions
,
Proc. London Math. Soc.
(ser. 2)
4
,
396
430
.
11.
Andrade EN da
C
(
1911
),
The distribution of slide in a rigid six-face subject to pure shear
,
Proc. R. Soc. London, Ser. A
85
,
448
461
.
1.
Lourye [Lu’re
]
AI
(
1942
),
On the theory of thick plates (in Russian
),
Prikl. Mat. Mekh.
6
,
151
168
.
2.
(English review in
Math. Revs.
5
,
138.)
138.)
1.
Prokopov
VK
(
1952
),
One plane problem of the theory of elasticity for a rectangular region (in Russian
),
Prikl. Mat. Mekh.
16
,
45
56
.
2.
(English review in
Math. Revs.
14
,
221.)
221.)
1.
Papkovich PF (1941), Structural Mechanics of a Ship (in Russian), 2, Sudpromgiz, Leningrad.
2.
Slepov BI (1991), Petr Fedorovich Papkovich, 1887–1946 (in Russian), Nauka, Leningrad.
3.
Pozdyunin VL (1944), A nomination for PF Papkovich by the board of the all Union naval architects society for the Stalin prize, Reminiscences about PF Papkovich (1984) (in Russian), BI Slepov (ed), Nauka, Leningrad, 262–267.
4.
Gaydon
FA
and
Shepherd
WM
(
1965
),
Generalized plane stress in a semi-infinite strip under arbitrary end-load
,
Proc. R. Soc. London, Ser. A
281
,
184
205
.
5.
Horgan
CO
(
1978
),
Plane entry flows and energy estimates for the Navier-Stokes equations
,
Arch. Ration. Mech. Anal.
68
,
359
381
.
6.
Horgan
CO
(
1989
),
Decay estimates for the biharmonic equation with applications to Saint-Venant principles in plane elasticity and Stokes flows
,
Q Appl Math
47
,
147
157
.
1.
Papkovich
PF
(
1940
), On one form of solution of the plane problem of the theory of elasticity for a rectangular strip (in Russian),
Dokl. Akad. Nauk SSSR
27
,
335
339
.
2.
German translation: Papkovitch PF (
1940
),
Uber eine Form der Lo¨sung des biharmonischen Problems fu¨r das Rechteck
,
CR (Doklady) Acad. Sci. URSS
27
,
334
338
. (
3.
German reviews in
Jbuch. Fortschr. Math.
66
,
453
453
;
4.
Zentralblatt Math
23
,
127
128
;
5.
English review by E Reissner in
Math. Revs.
2
,
332
332
.)
1.
Fadle
J
(
1940
),
Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe
,
Ing.-Arch.
11
,
125
148
.
2.
Fadle J 1940, Die Selbstspannungs-Eigenwertfun-ktionen der quadratischen Scheibe, (dissertation), Teubner, Berlin.
1.
Papkovich
PF
(
1941
),
Two questions of the theory of bending of thin elastic plates (in Russian
),
Prikl. Mat. Mekh.
5
,
359
374
.
2.
(English review in
Math. Revs.
4
,
230.)
230.)
1.
Smith
RCT
(
1952
),
The bending of a semi-infinite strip
,
Austr. J. Sci. Res.
A5
,
227
237
.
2.
Gomilko
AM
and
Meleshko
VV
(
1986
),
Filon’s method of series expansion of functions in homogeneous solutions in problem of elasticity
,
Mech. Solids
21
(
4
),
49
55
.
3.
Koepcke W (1940), Umfangsgelagerte Rechteckplatten mit drehbaren und eigespannten Ra¨ndern (Dissertation), Noske, Leipzig.
4.
Gurevich
SG
(
1955
),
Stress distribution in a rectangular plate arbitrary loaded along the edges (in Russian
),
Izvestiya Leningrad. Elektrotech. Inst.
27
,
77
122
.
5.
Gaydon
FA
(
1965
),
The rectangle, under general equilibrium loading, in generalized plane stress
,
Proc. R. Soc. London, Ser. A
283
,
356
378
.
6.
Gaydon
FA
(
1965
),
The rectangle in generalized plane stress, with numerically prescribed boundary stresses and applications to discontinuous loading
,
Proc. R. Soc. London, Ser. A
286
,
251
269
.
7.
Keldysh
MV
(
1951
),
On eigenvalues and eigenfunctions of some classes of non-self-adjoint equations (in Russian
),
Dokl. Akad. Nauk SSSR
77
,
11
14
.
1.
Kitover
KA
(
1952
),
On the use of special systems of biharmonic functions for the solution of some problems of the theory of elasticity (in Russian
),
Prikl. Mat. Mekh.
16
,
739
748
.
2.
(English review in
Math. Revs.
14
,
1037.)
1037.)
1.
Grinberg
GA
(
1953
),
On a method applied by PF Papkovich for the solution of the plane problem of the theory of elasticity for a rectangular region and of problem of bending of a rectangular thin plate with two clamped edges, and on some of its generalizations (in Russian
),
Prikl. Mat. Mekh.
17
,
211
228
.
2.
(English review in
Math. Revs.
14
,
1143.)
1143.)
1.
Wegner
U
(
1956
),
Berechnung von teilweise eingespannten rechteckigen Platten bei Vorgabe von Randmomenten
,
Z. Angew. Math. Mech.
36
,
340
355
.
1.
Prokopov
VK
(
1964
),
On the relation of the generalized orthogonality of PF Papkovich for rectangular plates (in Russian
),
Prikl. Mat. Mekh.
28
,
351
355
. (
2.
English translation:
J. Appl. Math. Mech.
28
,
428
439
.)
1.
Gusein-Zade
MI
(
1965
),
On conditions of existence of decaying solutions of the two-dimensional problem of the theory of elasticity for a semi-finite strip (in Russian
),
Prikl. Mat. Mekh.
29
,
393
399
. (English translation: J. Appl. Math. Mech. 29, 447–454.)
2.
Gusein-Zade
MI
(
1965
),
On necessary and sufficient conditions for the existence of decaying solutions of the plane problem of the theory of elasticity for a semistrip (in Russian
),
Prikl. Mat. Mekh.
29
,
752
760
. (English translation: J. Appl. Math. Mech. 29, 892–901.)
3.
Vorovich
II
and
Koval’chuk
VE
(
1967
),
On the basic properties of a system of homogeneous solutions (in Russian
),
Prikl. Mat. Mekh.
31
,
861
870
. (English translation: J. Appl. Math. Mech. 31, 869–877.)
4.
Koval’chuk
VE
(
1969
),
On the behaviour of the solution of the first fundamental problem of the theory of elasticity for a long rectangular plate (in Russian
),
Prikl. Mat. Mekh.
33
,
511
518
. (English translation: J. Appl. Math. Mech. 33, 495–503.)
5.
Ustinov
YuA
and
Yudovich
VI
(
1973
),
On the completeness of a system of elementary solutions of the biharmonic equation in a semistrip (in Russian
),
Prikl. Mat. Mekh.
37
,
706
714
. (English translation: J. Appl. Math. Mech. 37, 665–674.)
6.
Joseph
DD
(
1977
),
The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part I
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
33
,
337
347
.
7.
Joseph
DD
and
Sturges
L
(
1978
),
The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
34
,
7
26
.
8.
Gregory
RD
(
1979
),
Green’s functions, bi-linear forms, and completeness of the eigenfunctions for the elastostatic strip and wedge
,
J. Elast.
9
,
283
309
.
9.
Gregory
RD
(
1980
),
The traction boundary value problem for the elastostatic semi-infinite strip, existence of solution and completeness of the Papkovich–Fadle eigenfunctions
,
J. Elast.
10
,
295
327
.
10.
Gregory
RD
(
1984
),
The semi-infinite strip x⩾0, −1⩽y⩽1; completeness of the Papkovich-Fadle eigenfunctions when ϕxy(0,y), ϕyy(0,y) are prescribed
,
J. Elast.
14
,
27
64
.
11.
Joseph
DD
,
Sturges
L
, and
Warner
W H
(
1982
),
Convergence of biorthogonal series of biharmonic eigenfunctions by the method of Titchmarsh
,
Arch. Ration. Mech. Anal.
78
,
229
279
.
12.
Spence
DA
(
1983
),
A class of biharmonic end-strip problems arising in elasticity and Stokes flow
,
IMA J. Appl. Math.
30
,
107
139
.
13.
Lurie SA and Vasiliev VV (1995), The Biharmonic Problem in the Theory of Elasticity, Gordon and Breach, Amsterdam.
14.
Dzhanelidze GYu and Prokopov VK (1964), Method of homogeneous solutions in the mathematical theory of elasticity (in Russian), Trudy IV Vsesoyuznogo Matematicheskogo S’ezda, Nauka, Leningrad, 2, 551–557.
15.
Vorovich II (1966), Some mathematical problems in the theory of plates and shells, Trudy II Vsesoyuznogo S’ezda po Teoreticheskoi i Prikladnoi Mekhanike (in Russian), AS Vol’mir and GK Mikhailov (eds), Nauka, Moscow, 3, 116–136.
16.
Prokopov VK (1966), Homogeneous solutions in the theory of elasticity and their applications to the theory of thin plates, Trudy II Vsesoyuznogo S’ezda po Teoreticheskoi i Prikladnoi Mekhanike, (in Russian), AS Vol’mir and GK Mikhailov (eds), Nauka, Moscow, 3, 253–259.
17.
Prokopov VK (1967), A survey of works on homogeneous solutions in the theory of elasticity and their applications (in Russian), Trudy Leningrad Politechn. Inst. No. 279, 31–46.
18.
Grinberg
GA
and
Ufliand
Ya S
(
1949
),
On bending of a clamped rectangular plate under arbitrary loading (in Russian
),
Prikl. Mat. Mekh.
13
,
413
434
.
1.
Grinberg
GA
(
1951
),
On the solution of the plane problem of the theory of elasticity and of the problem of bending of a thin plate with clamped contour (in Russian
),
Dokl. Akad. Nauk SSSR
76
,
661
664
.
2.
(English review in
Appl. Mech. Rev.
4
,
No. 3800
No. 3800
3.
Math. Revs.
13
,
184.)
184.)
1.
Grinberg
GA
,
Lebedev
NN
and
Ufliand
Ya S
(
1953
),
A method of solution of a general biharmonic problem for a rectangular region with given values of the function and its normal derivative on the contour (in Russian
),
Prikl. Mat. Mekh.
17
,
73
86
.
2.
(English review in
Math. Revs.
15
,
425.)
425.)
1.
Morley
LSD
(
1963
),
Simple series solution for the bending of a clamped rectangular plate under uniform normal load
,
Q. J. Mech. Appl. Math.
16
,
109
114
.
2.
Sturges
LD
(
1986
),
Stokes flow in a two-dimensional cavity with moving end walls
,
Phys. Fluids
29
,
1731
1734
.
3.
Shankar
PN
(
1993
),
The eddy structure in Stokes flow in a cavity
,
J. Fluid Mech.
250
,
371
383
.
4.
Srinivasan
R
(
1995
),
Accurate solutions for steady plane flow in the driven cavity. I. Stokes flow
,
Z. Angew. Math. Phys.
46
,
524
545
.
5.
Inglis
CE
(
1947
),
Solid body mechanics in relation to mechanical engineering
,
Proc. Inst. Mech. Eng.
157
,
271
274
.
6.
Truesdell C (1962), Reactions of the history of mechanics upon modern research, Proc of 4th US Natl Congress on Applied Mechanics, RM Rosenberg (ed), 35–47.
7.
Gaiduk
YuM
and
Naumov
IA
(
1965
),
Russian pages of G Lame´’s biography, (in Russian
),
Istor.-Mat. Issled.
16
,
337
372
.
8.
Bradley
M
(
1981
),
Franco-Russian engineering links: the careers of Lame´ and Clapeyron, 1820–1830
,
Ann. Sci.
38
,
291
312
.
9.
Greitzer SL (1973), Lame´, Gabriel, Dictionary Scientific Biography, CC Gillispie (ed), Scribner, New York, X, 601–602.
10.
Voronina MM (1987), Gabriel Lame´ (in Russian), Nauka, Leningrad.
11.
Lame´ G (1865), Cours de physique mathe´matique rationnelle, 1861. Discours pre´liminaire, Gauthier-Villars, Paris.
You do not currently have access to this content.