Soon after the discovery of carbon nanotubes, it was realized that the theoretically predicted mechanical properties of these interesting structures–including high strength, high stiffness, low density and structural perfection–could make them ideal for a wealth of technological applications. The experimental verification, and in some cases refutation, of these predictions, along with a number of computer simulation methods applied to their modeling, has led over the past decade to an improved but by no means complete understanding of the mechanics of carbon nanotubes. We review the theoretical predictions and discuss the experimental techniques that are most often used for the challenging tasks of visualizing and manipulating these tiny structures. We also outline the computational approaches that have been taken, including ab initio quantum mechanical simulations, classical molecular dynamics, and continuum models. The development of multiscale and multiphysics models and simulation tools naturally arises as a result of the link between basic scientific research and engineering application; while this issue is still under intensive study, we present here some of the approaches to this topic. Our concentration throughout is on the exploration of mechanical properties such as Young’s modulus, bending stiffness, buckling criteria, and tensile and compressive strengths. Finally, we discuss several examples of exciting applications that take advantage of these properties, including nanoropes, filled nanotubes, nanoelectromechanical systems, nanosensors, and nanotube-reinforced polymers. This review article cites 349 references.

1.
Iijima
S
(
1991
),
Helical microtubules of graphitic carbon
,
Nature (London)
354
(
6348
),
56
58
.
2.
Normile
D
(
1999
),
Technology-nanotubes generate full-color displays
,
Science
286
(
5447
),
2056
2057
.
3.
Choi
WB
,
Chung
DS
,
Kang
JH
,
Kim
HY
,
Jin
YW
,
Han
IT
,
Lee
YH
,
Jung
JE
,
Lee
NS
,
Park
GS
, and
Kim
JM
(
1999
),
Fully sealed, high-brightness carbon-nanotube field-emission display
,
Appl. Phys. Lett.
75
(
20
),
3129
3131
.
4.
Bachtold
A
,
Hadley
P
,
Nakanishi
T
, and
Dekker
C
(
2001
),
Logic circuits with carbon nanotube transistors
,
Science
294
(
5545
),
1317
1320
.
5.
Derycke V, Martel R, Appenzeller J, and Avouris P (2001), Carbon nanotube inter- and intramolecular logic gates, Nano Letters 10.1021/n1015606f.
6.
Baughman
RH
,
Cui
CX
,
Zakhidov
AA
,
Iqbal
Z
,
Barisci
JN
,
Spinks
GM
,
Wallace
GG
,
Mazzoldi
A
,
De Rossi
D
,
Rinzler
AG
,
Jaschinski
O
,
Roth
S
, and
Kertesz
M
(
1999
),
Carbon nanotube actuators
,
Science
284
(
5418
),
1340
1344
.
7.
Harris PJF (1999), Carbon Nanotube and Related Structures: New Materials for the 21st Century, Cambridge University Press, Cambridge, UK.
8.
Dresselhaus MS, Dresselhaus G, and Eklund PC (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego.
9.
Dresselhaus
MS
and
Avouris
P
(
2001
), Introduction to carbon materials research,
Carbon Nanotubes
80
,
1
9
.
10.
Brown TLL, Bursten BE, and Lemay HE (1999), Chemistry: The Central Science, 8th ed, Prentice Hall PTR.
11.
Yu
MF
,
Yakobson
BI
, and
Ruoff
RS
(
2000
),
Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes
,
J. Phys. Chem. B
104
(
37
),
8764
8767
.
12.
Saito
R
,
Fujita
M
,
Dresselhaus
G
, and
Dresselhaus
MS
(
1992
),
Electronic-structure of chiral graphene tubules
,
Appl. Phys. Lett.
60
(
18
),
2204
2206
.
13.
Dresselhaus
MS
,
Dresselhaus
G
, and
Saito
R
(
1995
),
Physics of carbon nanotubes
,
Carbon
33
(
7
),
883
891
.
14.
Fujita
M
,
Saito
R
,
Dresselhaus
G
, and
Dresselhaus
MS
(
1992
),
Formation of general fullerenes by their projection on a honeycomb lattice
,
Phys. Rev. B
45
(
23
),
13834
13836
.
15.
Dresselhaus
MS
,
Dresselhaus
G
, and
Eklund
PC
(
1993
),
Fullerenes
,
J. Mater. Res.
8
,
2054
2054
.
16.
Yuklyosi K (ed), (1977), Encyclopedic Dictionary of Mathematics, MIT Press, Cambridge.
17.
Iijima
S
(
1993
),
Growth of carbon nanotubes
,
Mater. Sci. Eng., B
19
(
1–2
),
172
180
.
18.
Dravid
VP
,
Lin
X
,
Wang
Y
,
Wang
XK
,
Yee
A
,
Ketterson
JB
, and
Chang
RPH
(
1993
),
Buckytubes and derivatives-their growth and implications for buckyball formation
,
Science
259
(
5101
),
1601
1604
.
19.
Iijima
S
,
Ichihashi
T
, and
Ando
Y
(
1992
),
Pentagons, heptagons and negative curvature in graphite microtubule growth
,
Nature (London)
356
(
6372
),
776
778
.
20.
Saito
Y
,
Yoshikawa
T
,
Bandow
S
,
Tomita
M
, and
Hayashi
T
(
1993
),
Interlayer spacings in carbon nanotubes
,
Phys. Rev. B
48
(
3
),
1907
1909
.
21.
Zhou
O
,
Fleming
RM
,
Murphy
DW
,
Chen
CH
,
Haddon
RC
,
Ramirez
AP
, and
Glarum
SH
(
1994
),
Defects in carbon nanostructures
,
Science
263
(
5154
),
1744
1747
.
22.
Kiang
CH
,
Endo
M
,
Ajayan
PM
,
Dresselhaus
G
, and
Dresselhaus
MS
(
1998
),
Size effects in carbon nanotubes
,
Phys. Rev. Lett.
81
(
9
),
1869
1872
.
23.
Amelinckx
S
,
Bernaerts
D
,
Zhang
XB
,
Vantendeloo
G
, and
Vanlanduyt
J
(
1995
),
A structure model and growth-mechanism for multishell carbon nanotubes
,
Science
267
(
5202
),
1334
1338
.
24.
Lavin
JG
,
Subramoney
S
,
Ruoff
RS
,
Berber
S
, and
Tomanek
D
(
2001
),
Scrolls and nested tubes in multiwall carbon tubes
,
Carbon
40
(
7
),
1123
1130
.
25.
Ajayan
PM
and
Ebbesen
TW
(
1997
),
Nanometer-size tubes of carbon
,
Rep. Prog. Phys.
60
(
10
),
1025
1062
.
26.
Amelinckx
S
,
Lucas
A
, and
Lambin
P
(
1999
),
Electron diffraction and microscopy of nanotubes
,
Rep. Prog. Phys.
62
(
11
),
1471
1524
.
27.
Lourie
O
and
Wagner
HD
(
1998
),
Evaluation of young’s modulus of carbon nanotubes by micro-raman spectroscopy
,
J. Mater. Res.
13
(
9
),
2418
2422
.
28.
Yu
MF
,
Files
BS
,
Arepalli
S
, and
Ruoff
RS
(
2000
),
Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties
,
Phys. Rev. Lett.
84
(
24
),
5552
5555
.
29.
Yu
MF
,
Lourie
O
,
Dyer
MJ
,
Moloni
K
,
Kelly
TF
, and
Ruoff
RS
(
2000
),
Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load
,
Science
287
(
5453
),
637
640
.
30.
Overney
G
,
Zhong
W
, and
Tomanek
D
(
1993
),
Structural rigidity and low-frequency vibrational-modes of long carbon tubules
,
Z. Phys. D: At., Mol. Clusters
27
(
1
),
93
96
.
31.
Treacy
MMJ
,
Ebbesen
TW
, and
Gibson
JM
(
1996
),
Exceptionally high young’s modulus observed for individual carbon nanotubes
,
Nature (London)
381
(
6584
),
678
680
.
32.
Tibbetts
GG
(
1984
),
Why are carbon filaments tubular
,
J. Cryst. Growth
66
(
3
),
632
638
.
33.
Ruoff
RS
and
Lorents
DC
(
1995
),
Mechanical and thermal-properties of carbon nanotubes
,
Carbon
33
(
7
),
925
930
.
34.
Robertson
DH
,
Brenner
DW
, and
Mintmire
JW
(
1992
),
Energetics of nanoscale graphitic tubules
,
Phys. Rev. B
45
(
21
),
12592
12595
.
35.
Brenner
DW
(
1990
),
Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films
,
Phys. Rev. B
42
(
15
),
9458
9471
.
36.
Gao
GH
,
Cagin
T
, and
Goddard
WA
(
1998
),
Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes
,
Nanotechnology
9
(
3
),
184
191
.
37.
Yakobson
BI
,
Brabec
CJ
, and
Bernholc
J
(
1996
),
Nanomechanics of carbon tubes: Instabilities beyond linear response
,
Phys. Rev. Lett.
76
(
14
),
2511
2514
.
38.
Timoshenko S and Gere J (1988), Theory of of Elastic Stability, McGraw-Hill, New York.
39.
Lu
JP
(
1997
),
Elastic properties of carbon nanotubes and nanoropes
,
Phys. Rev. Lett.
79
(
7
),
1297
1300
.
40.
Yao
N
and
Lordi
V
(
1998
),
Young’s modulus of single-walled carbon nanotubes
,
J. Appl. Phys.
84
(
4
),
1939
1943
.
41.
Hernandez
E
,
Goze
C
,
Bernier
P
, and
Rubio
A
(
1998
),
Elastic properties of c and bxcynz composite nanotubes
,
Phys. Rev. Lett.
80
(
20
),
4502
4505
.
42.
Zhou
X
,
Zhou
JJ
, and
Ou-Yang
ZC
(
2000
),
Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory
,
Phys. Rev. B
62
(
20
),
13692
13696
.
43.
Yakobson
BI
and
Smalley
RE
(
1997
),
Fullerene nanotubes: C-1000000 and beyond
,
Am. Sci.
85
(
4
),
324
337
.
44.
Poncharal
P
,
Wang
ZL
,
Ugarte
D
, and
de Heer
WA
(
1999
),
Electrostatic deflections and electromechanical resonances of carbon nanotubes
,
Science
283
(
5407
),
1513
1516
.
45.
Liu
JZ
,
Zheng
Q
, and
Jiang
Q
(
2001
),
Effect of a rippling mode on resonances of carbon nanotubes
,
Phys. Rev. Lett.
86
(
21
),
4843
4846
.
46.
Krishnan
A
,
Dujardin
E
,
Ebbessen
TW
,
Yianilos
PN
, and
Treacy
MMJ
(
1998
),
Young’s modulus of single-walled nanotubes
,
Phys. Rev. B
58
(
20
),
14013
14019
.
47.
Yu MF, Dyer MJ, Chen J, and Bray K (2001), Multiprobe nanomanipulation and functional assembly of nanomaterials inside a scanning electron microscope, Int Conf IEEE-NANO2001 (eds), Maui.
48.
Wong
EW
,
Sheehan
PE
, and
Lieber
CM
(
1997
),
Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes
,
Science
277
(
5334
),
1971
1975
.
49.
Salvetat
JP
,
Kulik
AJ
,
Bonard
JM
,
Briggs
GAD
,
Stockli
T
,
Metenier
K
,
Bonnamy
S
,
Beguin
F
,
Burnham
NA
, and
Forro
L
(
1999
),
Elastic modulus of ordered and disordered multiwalled carbon nanotubes
,
Adv. Mater.
11
(
2
),
161
165
.
50.
Salvetat
JP
,
Briggs
GAD
,
Bonard
JM
,
Bacsa
RR
,
Kulik
AJ
,
Stockli
T
,
Burnham
NA
, and
Forro
L
(
1999
),
Elastic and shear moduli of single-walled carbon nanotube ropes
,
Phys. Rev. Lett.
82
(
5
),
944
947
.
51.
Govindjee
S
and
Sackman
JL
(
1999
),
On the use of continuum mechanics to estimate the properties of nanotubes
,
Solid State Commun.
110
(
4
),
227
230
.
52.
Harik
VM
(
2001
),
Ranges of applicability for the continuum-beam model in the mechanics of carbon-nanotubes and nanorods
,
Solid State Commun.
120
,
331
335
.
53.
Harik VM (2001), Ranges of applicability for the continuum-beam model in the constitutive analysis of carbon-nanotubes: Nanotubes or nano-beams?, in NASA/CR-2001-211013.
54.
Ru
CQ
(
2000
),
Effect of van der waals forces on axial buckling of a double-walled carbon nanotube
,
J. Appl. Phys.
87
(
10
),
7227
7231
.
55.
Ru
CQ
(
2000
),
Effective bending stiffness of carbon nanotubes
,
Phys. Rev. B
62
(
15
),
9973
9976
.
56.
Ru
CQ
(
2000
),
Column buckling of multiwalled carbon nanotubes with interlayer radial displacements
,
Phys. Rev. B
62
(
24
),
16962
16967
.
57.
Ru
CQ
(
2001
),
Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips
,
J. Appl. Phys.
89
(
6
),
3426
3433
.
58.
Ru
CQ
(
2001
),
Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium
,
J. Mech. Phys. Solids
49
(
6
),
1265
1279
.
59.
Ru
CQ
(
2000
),
Elastic buckling of single-walled carbon nanotube ropes under high pressure
,
Phys. Rev. B
62
(
15
),
10405
10408
.
60.
Bernholc
J
,
Brabec
C
,
Nardelli
MB
,
Maiti
A
,
Roland
C
, and
Yakobson
BI
(
1998
),
Theory of growth and mechanical properties of nanotubes
,
Appl. Phys. A: Mater. Sci. Process.
67
(
1
),
39
46
.
61.
Yakobson BI and Avouris P (2001), Mechanical properties of carbon nanotubes, Carbon Nanotubes 287–327.
62.
Qian D, Liu WK, and Ruoff RS (2002), Bent and kinked multi-shell carbon nanotubes-treating the interlayer potential more realistically, 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conf, Denver CO.
63.
Iijima
S
,
Brabec
C
,
Maiti
A
, and
Bernholc
J
(
1996
),
Structural flexibility of carbon nanotubes
,
J. Chem. Phys.
104
(
5
),
2089
2092
.
64.
Ruoff
RS
,
Lorents
DC
,
Laduca
R
,
Awadalla
S
,
Weathersby
S
,
Parvin
K
, and
Subramoney
S
(
1995
),
Proc. Electrochem. Soc.
95–10
,
557
562
.
65.
Subramoney
S
,
Ruoff
RS
,
Laduca
R
,
Awadalla
S
, and
Parvin
K
(
1995
),
Proc. Electrochem. Soc.
95-10
,
563
569
.
66.
Falvo
MR
,
Clary
GJ
,
Taylor
RM
,
Chi
V
,
Brooks
FP
,
Washburn
S
, and
Superfine
R
(
1997
),
Bending and buckling of carbon nanotubes under large strain
,
Nature (London)
389
(
6651
),
582
584
.
67.
Hertel
T
,
Martel
R
, and
Avouris
P
(
1998
),
Manipulation of individual carbon nanotubes and their interaction with surfaces
,
J. Phys. Chem. B
102
(
6
),
910
915
.
68.
Lourie
O
,
Cox
DM
, and
Wagner
HD
(
1998
),
Buckling and collapse of embedded carbon nanotubes
,
Phys. Rev. Lett.
81
(
8
),
1638
1641
.
69.
Ruoff
RS
,
Tersoff
J
,
Lorents
DC
,
Subramoney
S
, and
Chan
B
(
1993
),
Radial deformation of carbon nanotubes by van-der-waals forces
,
Nature (London)
364
(
6437
),
514
516
.
70.
Tersoff
J
and
Ruoff
RS
(
1994
),
Structural-properties of a carbon-nanotube crystal
,
Phys. Rev. Lett.
73
(
5
),
676
679
.
71.
Lopez
MJ
,
Rubio
A
,
Alonso
JA
,
Qin
LC
, and
Iijima
S
(
2001
), Novel polygonized single-wall carbon nanotube bundles,
Phys. Rev. Lett.
86
(
14
),
3056
3059
.
72.
Chopra
NG
,
Benedict
LX
,
Crespi
VH
,
Cohen
ML
,
Louie
SG
, and
Zettl
A
(
1995
),
Fully collapsed carbon nanotubes
,
Nature (London)
377
(
6545
),
135
138
.
73.
Benedict
LX
,
Chopra
NG
,
Cohen
ML
,
Zettl
A
,
Louie
SG
, and
Crespi
VH
(
1998
),
Microscopic determination of the interlayer binding energy in graphite
,
Chem. Phys. Lett.
286
(
5–6
),
490
496
.
74.
Hertel
T
,
Walkup
RE
, and
Avouris
P
(
1998
),
Deformation of carbon nanotubes by surface van der waals forces
,
Phys. Rev. B
58
(
20
),
13870
13873
.
75.
Avouris
P
,
Hertel
T
,
Martel
R
,
Schmidt
T
,
Shea
HR
, and
Walkup
RE
(
1999
),
Carbon nanotubes: Nanomechanics, manipulation, and electronic devices
,
Appl. Surf. Sci.
141
(
3–4
),
201
209
.
76.
Yu
MF
,
Dyer
MJ
, and
Ruoff
RS
(
2001
),
Structure and mechanical flexibility of carbon nanotube ribbons: An atomic-force microscopy study
,
J. Appl. Phys.
89
(
8
),
4554
4557
.
77.
Yu
MF
,
Kowalewski
T
, and
Ruoff
RS
(
2001
),
Structural analysis of collapsed, and twisted and collapsed, multiwalled carbon nanotubes by atomic force microscopy
,
Phys. Rev. Lett.
86
(
1
),
87
90
.
78.
Lordi
V
and
Yao
N
(
1998
),
Radial compression and controlled cutting of carbon nanotubes
,
J. Chem. Phys.
109
(
6
),
2509
2512
.
79.
Shen
WD
,
Jiang
B
,
Han
BS
, and
Xie
SS
(
2000
),
Investigation of the radial compression of carbon nanotubes with a scanning probe microscope
,
Phys. Rev. Lett.
84
(
16
),
3634
3637
.
80.
Yu
MF
,
Kowalewski
T
, and
Ruoff
RS
(
2000
),
Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force
,
Phys. Rev. Lett.
85
(
7
),
1456
1459
.
81.
Chesnokov
SA
,
Nalimova
VA
,
Rinzler
AG
,
Smalley
RE
, and
Fischer
JE
(
1999
),
Mechanical energy storage in carbon nanotube springs
,
Phys. Rev. Lett.
82
(
2
),
343
346
.
82.
Tang
J
,
Qin
LC
,
Sasaki
T
,
Yudasaka
M
,
Matsushita
A
, and
Iijima
S
(
2000
),
Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure
,
Phys. Rev. Lett.
85
(
9
),
1887
1889
.
83.
Yu
MF
,
Dyer
MJ
,
Chen
J
,
Qian
D
,
Liu
WK
, and
Ruoff
RS
(
2001
),
Locked twist in multi-walled carbon nanotube ribbons
,
Phys. Rev. B
64
,
24 1403
24 1403
, 1–4.
84.
Ebbesen
TW
and
Ajayan
PM
(
1992
),
Large-scale synthesis of carbon nanotubes
,
Nature (London)
358
(
6383
),
220
222
.
85.
Iijima
S
,
Ajayan
PM
, and
Ichihashi
T
(
1992
),
Growth-model for carbon nanotubes
,
Phys. Rev. Lett.
69
(
21
),
3100
3103
.
86.
Thess
A
,
Lee
R
,
Nikolaev
P
,
Dai
HJ
,
Petit
P
,
Robert
J
,
Xu
CH
,
Lee
YH
,
Kim
SG
,
Rinzler
AG
,
Colbert
DT
,
Scuseria
GE
,
Tomanek
D
,
Fischer
JE
, and
Smalley
RE
(
1996
),
Crystalline ropes of metallic carbon nanotubes
,
Science
273
(
5274
),
483
487
.
87.
Guo
T
,
Nikolaev
P
,
Thess
A
,
Colbert
DT
, and
Smalley
RE
(
1995
),
Catalytic growth of single-walled nanotubes by laser vaporization
,
Chem. Phys. Lett.
243
(
1–2
),
49
54
.
88.
Kong
J
,
Soh
HT
,
Cassell
AM
,
Quate
CF
, and
Dai
HJ
(
1998
),
Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers
,
Nature (London)
395
(
6705
),
878
881
.
89.
Cassell
AM
,
Raymakers
JA
,
Kong
J
, and
Dai
HJ
(
1999
),
Large scale cvd synthesis of single-walled carbon nanotubes
,
Journal of Physical Chemistry B.
103
(
31
),
6484
6492
.
90.
Li
WZ
,
Xie
SS
,
Qian
LX
,
Chang
BH
,
Zou
BS
,
Zhou
WY
,
Zhao
RA
, and
Wang
G
(
1996
),
Large-scale synthesis of aligned carbon nanotubes
,
Science
274
(
5293
),
1701
1703
.
91.
Dal
HJ
,
Rinzler
AG
,
Nikolaev
P
,
Thess
A
,
Colbert
DT
, and
Smalley
RE
(
1996
),
Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide
,
Chem. Phys. Lett.
260
(
3–4
),
471
475
.
92.
Nardelli
MB
,
Yakobson
BI
, and
Bernholc
J
(
1998
),
Brittle and ductile behavior in carbon nanotubes
,
Phys. Rev. Lett.
81
(
21
),
4656
4659
.
93.
Walters
DA
,
Ericson
LM
,
Casavant
MJ
,
Liu
J
,
Colbert
DT
,
Smith
KA
, and
Smalley
RE
(
1999
),
Elastic strain of freely suspended single-wall carbon nanotube ropes
,
Appl. Phys. Lett.
74
(
25
),
3803
3805
.
94.
Pan
ZW
,
Xie
SS
,
Lu
L
,
Chang
BH
,
Sun
LF
,
Zhou
WY
,
Wang
G
, and
Zhang
DL
(
1999
),
Tensile tests of ropes of very long aligned multiwall carbon nanotubes
,
Appl. Phys. Lett.
74
(
21
),
3152
3154
.
95.
Wagner
HD
,
Lourie
O
,
Feldman
Y
, and
Tenne
R
(
1998
),
Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix
,
Appl. Phys. Lett.
72
(
2
),
188
190
.
96.
Li
F
,
Cheng
HM
,
Bai
S
,
Su
G
, and
Dresselhaus
MS
(
2000
),
Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes
,
Appl. Phys. Lett.
77
(
20
),
3161
3163
.
97.
Yakobson
BI
,
Campbell
MP
,
Brabec
CJ
, and
Bernholc
J
(
1997
),
High strain rate fracture and c-chain unraveling in carbon nanotubes
,
Comput. Mater. Sci.
8
(
4
),
341
348
.
98.
Belytschko T, Xiao SP, Schatz GC, and Ruoff RS (2001), Simulation of the fracture of nanotubes, Phys. Rev. B (accepted for publication).
99.
Yakobson BI 1997, in Dynamic topology and yield strength of carbon nanotubes, Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, RS Ruoff and KM Kadish (eds), Electrochem Soc, Pennington NJ, 549–560.
100.
Nardelli
MB
,
Yakobson
BI
, and
Bernholc
J
(
1998
),
Mechanism of strain release in carbon nanotubes
,
Phys. Rev. B
57
(
8
),
R4277–R4280
R4277–R4280
.
101.
Srivastava
D
,
Menon
M
, and
Cho
KJ
(
1999
),
Nanoplasticity of single-wall carbon nanotubes under uniaxial compression
,
Phys. Rev. Lett.
83
(
15
),
2973
2976
.
102.
Wei
CY
,
Srivastava
D
, and
Cho
KJ
(
2002
), Molecular dynamics study of temperature dependent plastic collapse of carbon nanotubes under axial compression,
Comput Model Eng Sci
3
,
255
255
.
103.
Wei CY, Srivastava D, and Cho KJ (2003), Temperature and strain-rate dependent plastic deformation of carbon nanotubes, Special Issue on Nanotechnology, Appl Mech Rev (submitted for publication).
104.
Yakobson
BI
(
1998
),
Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes
,
Appl. Phys. Lett.
72
(
8
),
918
920
.
105.
Zhang
PH
,
Lammert
PE
, and
Crespi
VH
(
1998
),
Plastic deformations of carbon nanotubes
,
Phys. Rev. Lett.
81
(
24
),
5346
5349
.
106.
Zhang
PH
and
Crespi
VH
(
1999
),
Nucleation of carbon nanotubes without pentagonal rings
,
Phys. Rev. Lett.
83
(
9
),
1791
1794
.
107.
Bockrath
M
,
Cobden
DH
,
McEuen
PL
,
Chopra
NG
,
Zettl
A
,
Thess
A
, and
Smalley
RE
(
1997
),
Single-electron transport in ropes of carbon nanotubes
,
Science
275
(
5308
),
1922
1925
.
108.
Cumings
J
and
Zettl
A
(
2000
),
Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes
,
Science
289
(
5479
),
602
604
.
109.
Kelly BT (1981), Physics of Graphite, Applied Science, London.
110.
Ausman KD and Ruoff RS (2001), personal communication.
111.
Yakobson BI (2001), personal communication.
112.
Geohegan
DB
,
Schittenhelm
H
,
Fan
X
,
Pennycook
SJ
,
Puretzky
AA
,
Guillorn
MA
,
Blom
DA
, and
Joy
DC
(
2001
),
Condensed phase growth of single-wall carbon nanotubes from laser annealed nanoparticulates
,
Appl. Phys. Lett.
78
(
21
),
3307
3309
.
113.
Piner RD and Ruoff RS (2001), personal communication.
114.
Born M and Huang K (1954), Dynamical Theory of Crystal Lattices, Oxford Univ Press, Oxford.
115.
Keating
PN
(
1966
),
Theory of 3rd-order elastic constants of diamond-like crystals
,
Phys. Rev.
149
(
2
),
674
679
.
116.
Keating
PN
(
1966
),
Effect of invariance requirements on elastic strain energy of crystals with application to diamond structure
,
Phys. Rev.
145
(
2
),
637
645
.
117.
Keating
PN
(
1967
),
On sufficiency of born-huang relations
,
Phys. Lett. A
25
(
7
),
496
497
.
118.
Keating
PN
(
1968
),
Relationship between macroscopic and microscopic theory of crystal elasticity. 2. Nonprimitive crystals
,
Phys. Rev.
169
(
3
),
758
766
.
119.
Brugger
K
(
1964
),
Thermodynamic definition of higher order elastic coefficients
,
Phys. Rev.
133
(
6A
),
A1611
A1611
.
120.
Martin
JW
(
1975
),
Many-body forces in metals and brugger elastic-constants
,
J. Phys. C
8
(
18
),
2837
2857
.
121.
Martin
JW
(
1975
),
Many-body forces in solids and brugger elastic-constants. 2. Inner elastic-constants
,
J. Phys. C
8
(
18
),
2858
2868
.
122.
Martin
JW
(
1975
),
Many-body forces in solids-elastic-constants of diamond-type crystals
,
J. Phys. C
8
(
18
),
2869
2888
.
123.
Daw
MS
and
Baskes
MI
(
1984
),
Embedded-atom method-derivation and application to impurities, surfaces, and other defects in metals
,
Phys. Rev. B
29
(
12
),
6443
6453
.
124.
Daw
MS
,
Foiles
SM
, and
Baskes
MI
(
1993
),
The embedded-atom method-A review of theory and applications
,
Mater. Sci. Rep.
9
(
7–8
),
251
310
.
125.
Tadmor EB, Ortiz M, and Phillips R (1996), Quasicontinuum analysis of defects in solids, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties 73(6), 1529–1563.
126.
Tadmor
EB
,
Phillips
R
, and
Ortiz
M
(
1996
),
Mixed atomistic and continuum models of deformation in solids
,
Langmuir
12
(
19
),
4529
4534
.
127.
Friesecke
G
and
James
RD
(
2000
),
A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods
,
J. Mech. Phys. Solids
48
(
6–7
),
1519
1540
.
128.
Belytschko T, Liu WK, and Moran B (2000), Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons.
129.
Marsden JE and Hughes TJR (1983), Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs NJ.
130.
Malvern LE (1969), Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Englewood Cliffs NJ.
131.
Milstein F (1982), Crystal elasticity, Mechanics of Solids, MJ Sewell (ed), Pergamon Press, Oxford.
132.
Ericksen JL (1984), The cauchy-born hypothesis for crystals, Phase Transformations and Material Instabilities in Solids, M Gurtin (ed), Academic Press, New York, 61–77.
133.
Tersoff
J
(
1986
),
New empirical-model for the structural-properties of silicon
,
Phys. Rev. Lett.
56
(
6
),
632
635
.
134.
Tersoff
J
(
1988
),
New empirical-approach for the structure and energy of covalent systems
,
Phys. Rev. B
37
(
12
),
6991
7000
.
135.
Tersoff
J
(
1988
),
Empirical interatomic potential for carbon, with applications to amorphous-carbon
,
Phys. Rev. Lett.
61
(
25
),
2879
2882
.
136.
Tersoff
J
(
1989
),
Modeling solid-state chemistry-interatomic potentials for multicomponent systems
,
Phys. Rev. B
39
(
8
),
5566
5568
.
137.
Green
AE
and
Rivlin
RS
(
1964
),
Multipolar continuum mechanics
,
Arch. Ration. Mech. Anal.
17
,
113
147
.
138.
Cousins
CSG
(
1978
),
Inner elasticity
,
J. Phys. C
11
(
24
),
4867
4879
.
139.
Zhang P, Huang Y, Geubelle PH, and Hwang KC (2002), On the continuum modeling of carbon nanotubes, Acta Mech. Sin. (in press).
140.
Zhang P, Huang Y, Geubelle PH, Klein P, and Hwang KC (2002), The elastic modulus of single-wall carbon nanotubes: A continuum analysis incorporating interatomic potentials, Int. J. Solids Struct. (in press).
141.
Zhang P, Huang Y, Gao H, and Hwang KC (2002), Fracture nucleation in single-wall carbon nanotubes under tension: A continuum analysis incorporating interatomic potentials, ASME J. Appl. Mech. (in press).
142.
Wiesendanger R, (1994), Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge Univ Press, Oxford.
143.
Binnig
G
and
Quate
CF
(
1986
),
Atomic force microscope
,
Phys. Rev. Lett.
56
,
930
933
.
144.
Cumings
J
,
Collins
PG
, and
Zettl
A
(
2000
),
Materials-Peeling and sharpening multiwall nanotubes
,
Nature (London)
406
(
6796
),
586
586
.
145.
Ohno K, Esfarjani K, and Kawazoe Y (1999), Computational Material Science: From ab initio to Monte Carlo Methods, Solid state sciences, M Cardona et al. (eds), Springer.
146.
Dirac PAM (1958), The Principles of Quantum Mechanics, Oxford Univ Press, London.
147.
Landau LD and Lifshitz EM (1965), Quantum Mechanics: Non-Relativistic Theory, Pergamon, Oxford.
148.
Merzbacher E (1998), Quantum Mechanics, Wiley, New York.
149.
Messiah A (1961), Quantum Mechanics, North-Holland, Amsterdam.
150.
Schiff LI (1968), Quantum Mechanics, McGraw-Hill, New York.
151.
Fock
V
(
1930
),
Naherungsmethode zur losung des quantenmechanis-chen mehrkorperproblems
,
Z. Phys.
61
,
126
126
.
152.
Hartree
DR
(
1928
),
The wave mechanics of an atom with a non-coulomb central field, Part I, theory and methods
,
Proc. Cambridge Philos. Soc.
24
,
89
89
.
153.
Hartree
DR
(
1932
–1933),
A practical method for the numerical solution of differential equations
,
Mem. and Proc. Manchester Literary and Phil. Soc.
77
,
91
91
.
154.
Clementi
E
(
2000
),
Ab initio computations in atoms and molecules (reprinted from IBM J Res and Dev 9, 1965
),
IBM J. Res. Dev.
44
(
1–2
),
228
245
.
155.
Hohenberg
P
and
Kohn
W
(
1964
),
Inhomogeneous electron gas
,
Phys. Rev.
136
,
864
864
.
156.
Kohn
W
and
Sham
LJ
(
1965
),
Self-consistent equations including exchange and correlation effects
,
Phys. Rev.
140
(
4A
),
1133
1133
.
157.
Perdew
JP
,
McMullen
ER
, and
Zunger
A
(
1981
),
Density-functional theory of the correlation-energy in atoms and ions-A simple analytic model and a challenge
,
Phys. Rev. A
23
(
6
),
2785
2789
.
158.
Perdew
JP
and
Zunger
A
(
1981
),
Self-interaction correction to density-functional approximations for many-electron systems
,
Phys. Rev. B
23
(
10
),
5048
5079
.
159.
Slater
JC
,
Wilson
TM
, and
Wood
JH
(
1969
),
Comparison of several exchange potentials for electrons in cu+ ion
,
Phys. Rev.
179
(
1
),
28
38
.
160.
Moruzzi VJ and Sommers CB (1995), Calculated Electronic Properties of Ordered Alloys: A Handbook, World Scientific, Singapore.
161.
Payne
MC
,
Teter
MP
,
Allan
DC
,
Arias
TA
, and
Joannopoulos
JD
(
1992
),
Iterative minimization techniques for ab initio total-energy calculations–molecular-dynamics and conjugate gradients
,
Rev. Mod. Phys.
64
(
4
),
1045
1097
.
162.
Car
R
and
Parrinello
M
(
1985
),
Unified approach for molecular-dynamics and density-functional theory
,
Phys. Rev. Lett.
55
(
22
),
2471
2474
.
163.
Slater
JC
and
Koster
GF
(
1954
),
Wave functions for impurity levels
,
Phy. Rev.
94
,
1498
1498
.
164.
Harrison WA (1989), Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Dover, New York.
165.
Matthew
W
,
Foulkes
C
, and
Haydock
R
(
1989
),
Tight-binding models and density-functional theory
,
Phys. Rev. B
39
(
17
),
12520
12536
.
166.
Xu
CH
,
Wang
CZ
,
Chan
CT
, and
Ho
KM
(
1992
),
A transferable tight-binding potential for carbon
,
J. Phys.: Condens. Matter
4
(
28
),
6047
6054
.
167.
Mehl
MJ
and
Papaconstantopoulos
DA
(
1996
),
Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals
,
Phys. Rev. B
54
(
7
),
4519
4530
.
168.
Liu
F
(
1995
),
Self-consistent tight-binding method
,
Phys. Rev. B
52
(
15
),
10677
10680
.
169.
Porezag
D
,
Frauenheim
T
,
Kohler
T
,
Seifert
G
, and
Kaschner
R
(
1995
),
Construction of tight-binding-like potentials on the basis of density-functional theory–Application to carbon
,
Phys. Rev. B
51
(
19
),
12947
12957
.
170.
Taneda
A
,
Esfarjani
K
,
Li
ZQ
, and
Kawazoe
Y
(
1998
),
Tight-binding parametrization of transition metal elements from lcao ab initio hamiltonians
,
Comput. Mater. Sci.
9
(
3–4
),
343
347
.
171.
Menon
M
and
Subbaswamy
KR
(
1991
),
Universal parameter tight-binding molecular-dynamics–application to c-60
,
Phys. Rev. Lett.
67
(
25
),
3487
3490
.
172.
Sutton
AP
,
Finnis
MW
,
Pettifor
DG
, and
Ohta
Y
(
1988
),
The tight-binding bond model
,
J. Phys. C
21
(
1
),
35
66
.
173.
Menon
M
and
Subbaswamy
KR
(
1997
),
Nonorthogonal tight-binding molecular-dynamics scheme for silicon with improved transferability
,
Phys. Rev. B
55
(
15
),
9231
9234
.
174.
Haile JM (1992), Molecular Dynamics Simulation, Wiley Intersci.
175.
Rapaport DC (1995), The Art of Molecular Dynamics Simulation, Cambridge Univ Press.
176.
Frenkel D and Smit B (1996), Understanding molecular simulation: From algorithms to applications, Academic Press.
177.
Hockney RW, Eastwood JW (1989), Computer Simulation using Particles, IOP Publ, New York.
178.
Li
SF
and
Liu
WK
(
2002
),
Meshfree and particle methods
,
Appl. Mech. Rev.
55
(
1
),
1
34
.
179.
Berendsen HJC and van Gunsteren WF (1986), Dynamics Simulation of Statistical Mechanical Systems, Vol 63, GPF Ciccotti and WG Hoover (eds), North Holland, Amsterdam, 493.
180.
Verlet
L
(
1967
),
Computer experiments on classical fluids. I. Thermodynamical properties of lennard-jones molecules
,
Phys. Rev.
159
(
1
),
98
98
.
181.
Gray
SK
,
Noid
DW
, and
Sumpter
BG
(
1994
),
Symplectic integrators for large-scale molecular-dynamics simulations–A comparison of several explicit methods
,
J. Chem. Phys.
101
(
5
),
4062
4072
.
182.
Allinger
NL
(
1977
),
Conformational-analysis. 130. Mm2–Hydrocarbon force-field utilizing v1 and v2 torsional terms
,
J. Am. Chem. Soc.
99
(
25
),
8127
8134
.
183.
Allinger
NL
,
Yuh
YH
, and
Lii
JH
(
1989
),
Molecular mechanics–The mm3 force-field for hydrocarbons. 1
,
J. Am. Chem. Soc.
111
(
23
),
8551
8566
.
184.
Mayo
SL
,
Olafson
BD
, and
Goddard
WA
(
1990
),
Dreiding–A generic force-field for molecular simulations
,
J. Phys. Chem.
94
(
26
),
8897
8909
.
185.
Guo
YJ
,
Karasawa
N
, and
Goddard
WA
(
1991
),
Prediction of fullerene packing in c60 and c70 crystals
,
Nature (London)
351
(
6326
),
464
467
.
186.
Tuzun
RE
,
Noid
DW
,
Sumpter
BG
, and
Merkle
RC
(
1996
),
Dynamics of fluid flow inside carbon nanotubes
,
Nanotechnology
7
(
3
),
241
246
.
187.
Tuzun
RE
,
Noid
DW
,
Sumpter
BG
, and
Merkle
RC
(
1997
),
Dynamics of he/c-60 flow inside carbon nanotubes
,
Nanotechnology
8
(
3
),
112
118
.
188.
Abell
GC
(
1985
),
Empirical chemical pseudopotential theory of molecular and metallic bonding
,
Phys. Rev. B
31
(
10
),
6184
6196
.
189.
Brenner
DW
(
2000
),
The art and science of an analytic potential
,
Phys. Status Solidi B
217
(
1
),
23
40
.
190.
Nordlund
K
,
Keinonen
J
, and
Mattila
T
(
1996
),
Formation of ion irradiation induced small-scale defects on graphite surfaces
,
Phys. Rev. Lett.
77
(
4
),
699
702
.
191.
Brenner
DW
,
Harrison
JA
,
White
CT
, and
Colton
RJ
(
1991
),
Molecular-dynamics simulations of the nanometer-scale mechanical-properties of compressed buckminsterfullerene
,
Thin Solid Films
206
(
1–2
),
220
223
.
192.
Robertson
DH
,
Brenner
DW
, and
White
CT
(
1992
),
On the way to fullerenes–molecular-dynamics study of the curling and closure of graphite ribbons
,
J. Phys. Chem.
96
(
15
),
6133
6135
.
193.
Robertson
DH
,
Brenner
DW
, and
White
CT
(
1995
),
Temperature-dependent fusion of colliding c-60 fullerenes from molecular-dynamics simulations
,
J. Phys. Chem.
99
(
43
),
15721
15724
.
194.
Sinnott
SB
,
Colton
RJ
,
White
CT
, and
Brenner
DW
(
1994
),
Surface patterning by atomically-controlled chemical forces–molecular-dynamics simulations
,
Surf. Sci.
316
(
1–2
),
L1055–L1060
L1055–L1060
.
195.
Harrison
JA
,
White
CT
,
Colton
RJ
, and
Brenner
DW
(
1992
),
Nano-scale investigation of indentation, adhesion and fracture of diamond (111) surfaces
,
Surf. Sci.
271
(
1–2
),
57
67
.
196.
Harrison
JA
,
White
CT
,
Colton
RJ
, and
Brenner
DW
(
1992
),
Molecular-dynamics simulations of atomic-scale friction of diamond surfaces
,
Phys. Rev. B
46
(
15
),
9700
9708
.
197.
Harrison
JA
,
Colton
RJ
,
White
CT
, and
Brenner
DW
(
1993
),
Effect of atomic-scale surface-roughness on friction–a molecular-dynamics study of diamond surfaces
,
Wear
168
(
1–2
),
127
133
.
198.
Harrison
JA
,
White
CT
,
Colton
RJ
, and
Brenner
DW
(
1993
),
Effects of chemically-bound, flexible hydrocarbon species on the frictional-properties of diamond surfaces
,
J. Phys. Chem.
97
(
25
),
6573
6576
.
199.
Harrison
JA
,
White
CT
,
Colton
RJ
, and
Brenner
DW
(
1993
),
Atomistic simulations of friction at sliding diamond interfaces
,
MRS Bull.
18
(
5
),
50
53
.
200.
Harrison
JA
and
Brenner
DW
(
1994
),
Simulated tribochemistry–An atomic-scale view of the wear of diamond
,
J. Am. Chem. Soc.
116
(
23
),
10399
10402
.
201.
Harrison
JA
,
White
CT
,
Colton
RJ
, and
Brenner
DW
(
1995
),
Investigation of the atomic-scale friction and energy-dissipation in diamond using molecular-dynamics
,
Thin Solid Films
260
(
2
),
205
211
.
202.
Tupper
KJ
and
Brenner
DW
(
1993
),
Atomistic simulations of frictional wear in self-assembled monolayers
,
Abstr. Pap. - Am. Chem. Soc.
206
,
172–POLY
172–POLY
.
203.
Tupper
KJ
and
Brenner
DW
(
1993
),
Molecular-dynamics simulations of interfacial dynamics in self-assembled monolayers
,
Abstr. Pap. - Am. Chem. Soc.
206
,
72
72
.
204.
Tupper
KJ
and
Brenner
DW
(
1994
),
Molecular-dynamics simulations of friction in self-assembled monolayers
,
Thin Solid Films
253
(
1–2
),
185
189
.
205.
Brenner
DW
,
Shenderova
O
,
Harrison
JA
,
Stuart
SJ
,
Ni
B
, and
Sinnott
SB
(
2002
),
A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons
,
J. Phys.: Condens. Matter
14
(
4
),
783
802
.
206.
Pettifor
DG
and
Oleinik
II
(
1999
),
Analytic bond-order potentials beyond tersoff-brenner. Ii. Application to the hydrocarbons
,
Phys. Rev. B
59
(
13
),
8500
8500
.
207.
Pettifor
DG
and
Oleinik
II
(
2000
),
Bounded analytic bond-order potentials for sigma and pi bonds
,
Phys. Rev. Lett.
84
(
18
),
4124
4127
.
208.
Jones
JE
(
1924
),
On the determination of molecular fields-i. From the variation of the viscosity of a gas with temperature
,
Proc. Roy. Soc.
106
,
441
441
.
209.
Jones
JE
(
1924
),
On the determination of molecular fields-ii. From the equation of state of a gas
,
Proc. Roy. Soc.
106
,
463
463
.
210.
Girifalco
LA
and
Lad
RA
(
1956
),
Energy of cohesion, compressibility and the potential energy functions of the graphite system
,
J. Chem. Phys.
25
(
4
),
693
697
.
211.
Girifalco
LA
(
1992
),
Molecular-properties of c-60 in the gas and solid-phases
,
J. Phys. Chem.
96
(
2
),
858
861
.
212.
Wang
Y
,
Tomanek
D
, and
Bertsch
GF
(
1991
),
Stiffness of a solid composed of c60 clusters
,
Phys. Rev. B
44
(
12
),
6562
6565
.
213.
Qian
D
,
Liu
WK
, and
Ruoff
RS
(
2001
),
Mechanics of c60 in nanotubes
,
J. Phys. Chem.
105
,
10753
10758
.
214.
Zhao
YX
and
Spain
IL
(
1989
),
X-ray-diffraction data for graphite to 20 gpa
,
Phys. Rev. B
40
(
2
),
993
997
.
215.
Hanfland
M
,
Beister
H
, and
Syassen
K
(
1989
),
Graphite under pressure–equation of state and 1st-order raman modes
,
Phys. Rev. B
39
(
17
),
12598
12603
.
216.
Boettger
JC
(
1997
),
All-electron full-potential calculation of the electronic band structure, elastic constants, and equation of state for graphite
,
Phys. Rev. B
55
(
17
),
11202
11211
.
217.
Girifalco
LA
,
Hodak
M
, and
Lee
RS
(
2000
),
Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential
,
Phys. Rev. B
62
(
19
),
13104
13110
.
218.
Falvo
MR
,
Clary
G
,
Helser
A
,
Paulson
S
,
Taylor
RM
,
Chi
V
,
Brooks
FP
,
Washburn
S
, and
Superfine
R
(
1998
),
Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes
,
Microsc. Microanal.
4
(
5
),
504
512
.
219.
Falvo
MR
,
Taylor
RM
,
Helser
A
,
Chi
V
,
Brooks
FP
,
Washburn
S
, and
Superfine
R
(
1999
),
Nanometre-scale rolling and sliding of carbon nanotubes
,
Nature (London)
397
(
6716
),
236
238
.
220.
Falvo
MR
,
Steele
J
,
Taylor
RM
, and
Superfine
R
(
2000
),
Evidence of commensurate contact and rolling motion: Afm manipulation studies of carbon nanotubes on hopg
,
Tribol. Lett.
9
(
1–2
),
73
76
.
221.
Falvo
MR
,
Steele
J
,
Taylor
RM
, and
Superfine
R
(
2000
),
Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on hopg
,
Phys. Rev. B
62
(
16
),
R10665–R10667
R10665–R10667
.
222.
Schall
JD
and
Brenner
DW
(
2000
),
Molecular dynamics simulations of carbon nanotube rolling and sliding on graphite
,
Mol. Simul.
25
(
1–2
),
73
79
.
223.
Buldum
A
and
Lu
JP
(
1999
),
Atomic scale sliding and rolling of carbon nanotubes
,
Phys. Rev. Lett.
83
(
24
),
5050
5053
.
224.
Kolmogorov
AN
and
Crespi
VH
(
2000
),
Smoothest bearings: Interlayer sliding in multiwalled carbon nanotubes
,
Phys. Rev. Lett.
85
(
22
),
4727
4730
.
225.
Shenoy
VB
,
Miller
R
,
Tadmor
EB
,
Phillips
R
, and
Ortiz
M
(
1998
),
Quasicontinuum models of interfacial structure and deformation
,
Phys. Rev. Lett.
80
(
4
),
742
745
.
226.
Miller
R
,
Ortiz
M
,
Phillips
R
,
Shenoy
V
, and
Tadmor
EB
(
1998
),
Quasicontinuum models of fracture and plasticity
,
Eng. Fract. Mech.
61
(
3–4
),
427
444
.
227.
Miller
R
,
Tadmor
EB
,
Phillips
R
, and
Ortiz
M
(
1998
),
Quasicontinuum simulation of fracture at the atomic scale
,
Modell. Simul. Mater. Sci. Eng.
6
(
5
),
607
638
.
228.
Shenoy
VB
,
Miller
R
,
Tadmor
EB
,
Rodney
D
,
Phillips
R
, and
Ortiz
M
(
1999
),
An adaptive finite element approach to atomic-scale mechanics–the quasicontinuum method
,
J. Mech. Phys. Solids
47
(
3
),
611
642
.
229.
Tadmor
EB
,
Miller
R
,
Phillips
R
, and
Ortiz
M
(
1999
),
Nanoindentation and incipient plasticity
,
J. Mater. Res.
14
(
6
),
2233
2250
.
230.
Rodney
D
and
Phillips
R
(
1999
),
Structure and strength of dislocation junctions: An atomic level analysis
,
Phys. Rev. Lett.
82
(
8
),
1704
1707
.
231.
Smith
GS
,
Tadmor
EB
, and
Kaxiras
E
(
2000
),
Multiscale simulation of loading and electrical resistance in silicon nanoindentation
,
Phys. Rev. Lett.
84
(
6
),
1260
1263
.
232.
Knap
J
and
Ortiz
M
(
2001
),
An analysis of the quasicontinuum method
,
J. Mech. Phys. Solids
49
(
9
),
1899
1923
.
233.
Shin
CS
,
Fivel
MC
,
Rodney
D
,
Phillips
R
,
Shenoy
VB
, and
Dupuy
L
(
2001
),
Formation and strength of dislocation junctions in fcc metals: A study by dislocation dynamics and atomistic simulations
,
J. Phys. IV
11
(
PR5
),
19
26
.
234.
Shenoy V, Shenoy V, and Phillips R 1999, Finite temperature quasicontinuum methods, Multiscale Modelling of Materials, N Ghoniem (ed), Mat Res Soc, Warrendale PA, 465–471.
235.
Arroyo M and Belytschko T (2002), An atomistic-based membrane for crystalline films one atom thick, J. Mech. Phys. Solids (in press).
236.
Liu
WK
and
Chen
YJ
(
1995
),
Wavelet and multiple scale reproducing kernel methods
,
Int. J. Numer. Methods Fluids
21
(
10
),
901
931
.
237.
Liu
WK
,
Jun
S
, and
Zhang
YF
(
1995
),
Reproducing kernel particle methods
,
Int. J. Numer. Methods Fluids
20
(
8–9
),
1081
1106
.
238.
Liu
WK
,
Jun
S
,
Li
SF
,
Adee
J
, and
Belytschko
T
(
1995
),
Reproducing kernel particle methods for structural dynamics
,
Int. J. Numer. Methods Eng.
38
(
10
),
1655
1679
.
239.
Liu
WK
,
Chen
YJ
,
Uras
RA
, and
Chang
CT
(
1996
),
Generalized multiple scale reproducing kernel particle methods
,
Comput. Methods Appl. Mech. Eng.
139
(
1–4
),
91
157
.
240.
Liu
WK
,
Chen
Y
,
Chang
CT
, and
Belytschko
T
(
1996
),
Advances in multiple scale kernel particle methods
,
Computational Mechanics
18
(
2
),
73
111
.
241.
Liu
WK
,
Jun
S
,
Sihling
DT
,
Chen
YJ
, and
Hao
W
(
1997
),
Multiresolution reproducing kernel particle method for computational fluid dynamics
,
Int. J. Numer. Methods Fluids
24
(
12
),
1391
1415
.
242.
Liu
WK
,
Li
SF
, and
Belytschko
T
(
1997
),
Moving least-square reproducing kernel methods. 1. Methodology and convergence
,
Comput. Methods Appl. Mech. Eng.
143
(
1–2
),
113
154
.
243.
Chen JS and Liu WK (eds), (2000), Computational Mechanics, Vol 25, Springer-Verlag.
244.
Liu WK Belytshko T and Oden JT, (eds) (1996), Computer Methods in Applied Mechanics and Engineering, Vol 139, North-Holland Publ, Amsterdam.
245.
Odegard GM, Gates TS, Nicholson LM, and Wise KE (2001), Equivalent-continuum modeling of nano-structured materials, NASA Langley Res Center, NASA-2001-TM210863.
246.
Odegard GM, Harik VM, Wise KE, and Gates TS (2001), Constitutive modeling of nanotube-reinforced polymer composite systems, NASA Langley Res Center, NASA-2001-TM211044.
247.
Abraham
FF
,
Broughton
JQ
,
Bernstein
N
, and
Kaxiras
E
(
1998
),
Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture
,
Europhys. Lett.
44
(
6
),
783
787
.
248.
Broughton
JQ
,
Abraham
FF
,
Bernstein
N
, and
Kaxiras
E
(
1999
),
Concurrent coupling of length scales: Methodology and application
,
Phys. Rev. B
60
(
4
),
2391
2403
.
249.
Nakano
A
,
Bachlechner
ME
,
Kalia
RK
,
Lidorikis
E
,
Vashishta
P
,
Voyiadjis
GZ
,
Campbell
TJ
,
Ogata
S
, and
Shimojo
F
(
2001
),
Multiscale simulation of nanosystems
,
Comput. Sci. Eng.
3
(
4
),
56
66
.
250.
Rafii-Tabar
H
,
Hua
L
, and
Cross
M
(
1998
),
Multiscale numerical modelling of crack propagation in two-dimensional metal plate
,
Mater. Sci. Technol.
14
(
6
),
544
548
.
251.
Rafii-Tabar
H
,
Hua
L
, and
Cross
M
(
1998
),
A multi-scale atomistic-continuum modelling of crack propagation in a two-dimensional macroscopic plate
,
J. Phys.: Condens. Matter
10
(
11
),
2375
2387
.
252.
Rudd
RE
and
Broughton
JQ
(
1998
),
Coarse-grained molecular dynamics and the atomic limit of finite elements
,
Phys. Rev. B
58
(
10
),
R5893–R5896
R5893–R5896
.
253.
Rudd
RE
and
Broughton
JQ
(
2000
),
Concurrent coupling of length scales in solid state systems
,
Phys. Status Solidi B
217
(
1
),
251
291
.
254.
Liu
WK
,
Zhang
Y
, and
Ramirez
MR
(
1991
),
Multiple scale finite-element methods
,
Int. J. Numer. Methods Eng.
32
(
5
),
969
990
.
255.
Liu
WK
,
Uras
RA
, and
Chen
Y
(
1997
),
Enrichment of the finite element method with the reproducing kernel particle method
,
ASME J. Appl. Mech.
64
(
4
),
861
870
.
256.
Hao
S
,
Liu
WK
, and
Qian
D
(
2000
),
Localization-induced band and cohesive model
,
ASME J. Appl. Mech.
67
(
4
),
803
812
.
257.
Wagner
GJ
,
Moes
N
,
Liu
WK
, and
Belytschko
T
(
2001
),
The extended finite element method for rigid particles in stokes flow
,
Int. J. Numer. Methods Eng.
51
(
3
),
293
313
.
258.
Wagner
GJ
and
Liu
WK
(
2001
),
Hierarchical enrichment for bridging scales and mesh-free boundary conditions
,
Int. J. Numer. Methods Eng.
50
(
3
),
507
524
.
259.
Wagner GJ, Qian D, and Liu WK (2002), Coupling of atomistic and continuum simulations, Computational Mechanics Lab Research Report (02–04), Dept of Mech Eng, Northwestern Univ.
260.
Castello
GA
(
1978
),
Analytical investigation of wire rope
,
Appl. Mech. Rev.
31
,
897
900
.
261.
Costello GA (1997), Theory of Wire Rope, second edition, Springer, New York.
262.
Qian D, Liu WK, and Ruoff RS (2002), Load transfer mechanism in nano-ropes, Computational Mechanics Lab Res Report (02-03), Dept of Mech Eng, Northwestern Univ.
263.
Ruoff RS, Qian D, Liu WK, Ding WQ, Chen XQ, and Dikin D (2002), What kind of carbon nanofiber is ideal for structural applications?, 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conf, Denver CO.
264.
Pipes
BR
and
Hubert
P
(
2001
),
Helical carbon nanotube arrays: Mechanical properties
,
Compos. Sci. Technol.
62
(
3
),
419
428
.
265.
Yu
MF
,
Dyer
MJ
,
Skidmore
GD
,
Rohrs
HW
,
Lu
XK
,
Ausman
KD
,
Von Ehr
JR
, and
Ruoff
RS
(
1999
),
Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope
,
Nanotechnology
10
(
3
),
244
252
.
266.
Ruoff
RS
,
Lorents
DC
,
Chan
B
,
Malhotra
R
, and
Subramoney
S
(
1993
),
Single-crystal metals encapsulated in carbon nanoparticles
,
Science
259
(
5093
),
346
348
.
267.
Tomita
M
,
Saito
Y
, and
Hayashi
T
(
1993
),
Lac2 encapsulated in graphite nano-particle
,
Jpn. J. Appl. Phys., Part 2
32
(
2B
),
L280–L282
L280–L282
.
268.
Seraphin
S
,
Zhou
D
,
Jiao
J
,
Withers
JC
, and
Loutfy
R
(
1993
),
Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters
,
Appl. Phys. Lett.
63
(
15
),
2073
2075
.
269.
Seraphin
S
,
Zhou
D
,
Jiao
J
,
Withers
JC
, and
Loutfy
R
(
1993
),
Yttrium carbide in nanotubes
,
Nature (London)
362
(
6420
),
503
503
.
270.
Seraphin
S
,
Zhou
D
, and
Jiao
J
(
1996
),
Filling the carbon nanocages
,
J. Appl. Phys.
80
(
4
),
2097
2104
.
271.
Saito
Y
,
Yoshikawa
T
,
Okuda
M
,
Ohkohchi
M
,
Ando
Y
,
Kasuya
A
, and
Nishina
Y
(
1993
),
Synthesis and electron-beam incision of carbon nanocapsules encaging yc2
,
Chem. Phys. Lett.
209
(
1–2
),
72
76
.
272.
Saito
Y
,
Yoshikawa
T
,
Okuda
M
,
Fujimoto
N
,
Sumiyama
K
,
Suzuki
K
,
Kasuya
A
, and
Nishina
Y
(
1993
),
Carbon nanocapsules encaging metals and carbides
,
J. Phys. Chem. Solids
54
(
12
),
1849
1860
.
273.
Saito
Y
and
Yoshikawa
T
(
1993
),
Bamboo-shaped carbon tube filled partially with nickel
,
J. Cryst. Growth
134
(
1–2
),
154
156
.
274.
Saito
Y
,
Okuda
M
, and
Koyama
T
(
1996
),
Carbon nanocapsules and single-wall nanotubes formed by arc evaporation
,
Surf. Rev. Lett.
3
(
1
),
863
867
.
275.
Saito
Y
,
Nishikubo
K
,
Kawabata
K
, and
Matsumoto
T
(
1996
),
Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (ru, rh, pd, os, ir, pt) by arc discharge
,
J. Appl. Phys.
80
(
5
),
3062
3067
.
276.
Saito
Y
(
1996
),
Carbon cages with nanospace inside: Fullerenes to nanocapsules
,
Surf. Rev. Lett.
3
(
1
),
819
825
.
277.
Saito
Y
(
1995
),
Nanoparticles and filled nanocapsules
,
Carbon
33
(
7
),
979
988
.
278.
McHenry
ME
,
Majetich
SA
,
Artman
JO
,
Degraef
M
, and
Staley
SW
(
1994
),
Superparamagnetism in carbon-coated co particles produced by the kratschmer carbon-arc process
,
Phys. Rev. B
49
(
16
),
11358
11363
.
279.
Majetich
SA
,
Artman
JO
,
McHenry
ME
,
Nuhfer
NT
, and
Staley
SW
(
1993
),
Preparation and properties of carbon-coated magnetic nano-crystallites
,
Phys. Rev. B
48
(
22
),
16845
16848
.
280.
Jiao
J
,
Seraphin
S
,
Wang
XK
, and
Withers
JC
(
1996
),
Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles
,
J. Appl. Phys.
80
(
1
),
103
108
.
281.
Diggs
B
,
Zhou
A
,
Silva
C
,
Kirkpatrick
S
,
Nuhfer
NT
,
McHenry
ME
,
Petasis
D
,
Majetich
SA
,
Brunett
B
,
Artman
JO
, and
Staley
SW
(
1994
),
Magnetic-properties of carbon-coated rare-earth carbide nanocrystallites produced by a carbon-arc method
,
J. Appl. Phys.
75
(
10
),
5879
5881
.
282.
Brunsman
EM
,
Sutton
R
,
Bortz
E
,
Kirkpatrick
S
,
Midelfort
K
,
Williams
J
,
Smith
P
,
McHenry
ME
,
Majetich
SA
,
Artman
JO
,
Degraef
M
, and
Staley
SW
(
1994
),
Magnetic-properties of carbon-coated, ferromagnetic nanoparticles produced by a carbon-arc method
,
J. Appl. Phys.
75
(
10
),
5882
5884
.
283.
Funasaka
H
,
Sugiyama
K
,
Yamamoto
K
, and
Takahashi
T
(
1995
),
Synthesis of actinide carbides encapsulated within carbon nanoparticles
,
J. Appl. Phys.
78
(
9
),
5320
5324
.
284.
Kikuchi
K
,
Kobayashi
K
,
Sueki
K
,
Suzuki
S
,
Nakahara
H
,
Achiba
Y
,
Tomura
K
, and
Katada
M
(
1994
),
Encapsulation of radioactive gd-159 and tb-161 atoms in fullerene cages
,
J. Am. Chem. Soc.
116
(
21
),
9775
9776
.
285.
Burch
WM
,
Sullivan
PJ
, and
McLaren
CJ
(
1986
),
Technegas-a new ventilation agent for lung-scanning
,
Nucl. Med. Commun.
7
(
12
),
865
865
.
286.
Senden
TJ
,
Moock
KH
,
Gerald
JF
,
Burch
WM
,
Browitt
RJ
,
Ling
CD
, and
Heath
GA
(
1997
),
The physical and chemical nature of technegas
,
J. Nucl. Med.
38
(
8
),
1327
1333
.
287.
Ajayan
PM
and
Iijima
S
(
1993
),
Capillarity-induced filling of carbon nanotubes
,
Nature (London)
361
(
6410
),
333
334
.
288.
Ajayan
PM
,
Ebbesen
TW
,
Ichihashi
T
,
Iijima
S
,
Tanigaki
K
, and
Hiura
H
(
1993
),
Opening carbon nanotubes with oxygen and implications for filling
,
Nature (London)
362
(
6420
),
522
525
.
289.
Tsang
SC
,
Harris
PJF
, and
Green
MLH
(
1993
),
Thinning and opening of carbon nanotubes by oxidation using carbon-dioxide
,
Nature (London)
362
(
6420
),
520
522
.
290.
Xu
CG
,
Sloan
J
,
Brown
G
,
Bailey
S
,
Williams
VC
,
Friedrichs
S
,
Coleman
KS
,
Flahaut
E
,
Hutchison
JL
,
Dunin-Borkowski
RE
, and
Green
MLH
(
2000
),
1d lanthanide halide crystals inserted into single-walled carbon nanotubes
,
Chem. Commun. (Cambridge)
24
,
2427
2428
.
291.
Tsang
SC
,
Chen
YK
,
Harris
PJF
, and
Green
MLH
(
1994
),
A simple chemical method of opening and filling carbon nanotubes
,
Nature (London)
372
(
6502
),
159
162
.
292.
Sloan
J
,
Hammer
J
,
Zwiefka-Sibley
M
, and
Green
MLH
(
1998
),
The opening and filling of single walled carbon nanotubes (swts
),
Chem. Commun. (Cambridge)
3
,
347
348
.
293.
Hiura
H
,
Ebbesen
TW
, and
Tanigaki
K
(
1995
),
Opening and purification of carbon nanotubes in high yields
,
Adv. Mater.
7
(
3
),
275
276
.
294.
Hwang
KC
(
1995
),
Efficient cleavage of carbon graphene layers by oxidants
,
J. Chem. Soc. Chem. Commun.
2
,
173
174
.
295.
Ajayan
PM
,
Colliex
C
,
Lambert
JM
,
Bernier
P
,
Barbedette
L
,
Tence
M
, and
Stephan
O
(
1994
),
Growth of manganese filled carbon nanofibers in the vapor-phase
,
Phys. Rev. Lett.
72
(
11
),
1722
1725
.
296.
Subramoney
S
,
Ruoff
RS
,
Lorents
DC
,
Chan
B
,
Malhotra
R
,
Dyer
MJ
, and
Parvin
K
(
1994
),
Magnetic separation of gdc2 encapsulated in carbon nanoparticles
,
Carbon
32
(
3
),
507
513
.
297.
Tsang
SC
,
Davis
JJ
,
Green
MLH
,
Allen
H
,
Hill
O
,
Leung
YC
, and
Sadler
PJ
(
1995
),
Immobilization of small proteins in carbon nanotubes–high–resolution transmission electron-microscopy study and catalytic activity
,
J. Chem. Soc. Chem. Commun.
17
,
1803
1804
.
298.
Tsang
SC
,
Guo
ZJ
,
Chen
YK
,
Green
MLH
,
Hill
HAO
,
Hambley
TW
, and
Sadler
PJ
(
1997
),
Immobilization of platinated and iodinated oligonucleotides on carbon nanotubes
,
Angew. Chem.
36
(
20
),
2198
2200
.
299.
Dillon
AC
,
Jones
KM
,
Bekkedahl
TA
,
Kiang
CH
,
Bethune
DS
, and
Heben
MJ
(
1997
),
Storage of hydrogen in single-walled carbon nanotubes
,
Nature (London)
386
(
6623
),
377
379
.
300.
Gadd
GE
,
Blackford
M
,
Moricca
S
,
Webb
N
,
Evans
PJ
,
Smith
AN
,
Jacobsen
G
,
Leung
S
,
Day
A
, and
Hua
Q
(
1997
),
The world’s smallest gas cylinders?
,
Science
277
(
5328
),
933
936
.
301.
Sloan
J
,
Wright
DM
,
Woo
HG
,
Bailey
S
,
Brown
G
,
York
APE
,
Coleman
KS
,
Hutchison
JL
, and
Green
MLH
(
1999
),
Capillarity and silver nanowire formation observed in single walled carbon nanotubes
,
Chem. Commun. (Cambridge)
8
,
699
700
.
302.
Smith
BW
and
Luzzi
DE
(
2000
),
Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis
,
Chem. Phys. Lett.
321
(
1–2
),
169
174
.
303.
Smith
BW
,
Monthioux
M
, and
Luzzi
DE
(
1998
),
Encapsulated c-60 in carbon nanotubes
,
Nature (London)
396
(
6709
),
323
324
.
304.
Smith
BW
,
Monthioux
M
, and
Luzzi
DE
(
1999
),
Carbon nanotube encapsulated fullerenes: A unique class of hybrid materials
,
Chem. Phys. Lett.
315
(
1–2
),
31
36
.
305.
Burteaux
B
,
Claye
A
,
Smith
BW
,
Monthioux
M
,
Luzzi
DE
, and
Fischer
JE
(
1999
),
Abundance of encapsulated c-60 in single-wall carbon nanotubes
,
Chem. Phys. Lett.
310
(
1–2
),
21
24
.
306.
Sloan
J
,
Dunin-Borkowski
RE
,
Hutchison
JL
,
Coleman
KS
,
Williams
VC
,
Claridge
JB
,
York
APE
,
Xu
CG
,
Bailey
SR
,
Brown
G
,
Friedrichs
S
, and
Green
MLH
(
2000
),
The size distribution, imaging and obstructing properties of c-60 and higher fullerenes formed within arc-grown single walled carbon nanotubes
,
Chem. Phys. Lett.
316
(
3–4
),
191
198
.
307.
Zhang
Y
,
Iijima
S
,
Shi
Z
, and
Gu
Z
(
1999
),
Defects in arc-discharge-produced single-walled carbon nanotubes
,
Philos. Mag. Lett.
79
(
7
),
473
479
.
308.
Pederson
MR
and
Broughton
JQ
(
1992
),
Nanocapillarity in fullerene tubules
,
Phys. Rev. Lett.
69
(
18
),
2689
2692
.
309.
Prasad
R
and
Lele
S
(
1994
),
Stabilization of the amorphous phase inside carbon nanotubes-solidification in a constrained geometry
,
Philos. Mag. Lett.
70
(
6
),
357
361
.
310.
Berber S, Kwon YK, and Tomanek D (2001), personal communication.
311.
Stan
G
and
Cole
MW
(
1998
),
Hydrogen adsorption in nanotubes
,
J. Low Temp. Phys.
110
(
1–2
),
539
544
.
312.
Mao
ZG
,
Garg
A
, and
Sinnott
SB
(
1999
),
Molecular dynamics simulations of the filling and decorating of carbon nanotubules
,
Nanotechnology
10
(
3
),
273
277
.
313.
Stan
G
,
Gatica
SM
,
Boninsegni
M
,
Curtarolo
S
, and
Cole
MW
(
1999
),
Atoms in nanotubes: Small dimensions and variable dimensionality
,
Am. J. Phys.
67
(
12
),
1170
1176
.
314.
Liu
J
,
Casavant
MJ
,
Cox
M
,
Walters
DA
,
Boul
P
,
Lu
W
,
Rimberg
AJ
,
Smith
KA
,
Colbert
DT
, and
Smalley
RE
(
1999
),
Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates
,
Chem. Phys. Lett.
303
(
1–2
),
125
129
.
315.
Chung J and Lee JH (2001), Personal communication.
316.
Ren
Y
and
Price
DL
(
2001
),
Neutron scattering study of h-2 adsorption in single-walled carbon nanotubes
,
Appl. Phys. Lett.
79
(
22
),
3684
3686
.
317.
Zhang
YG
,
Chang
AL
,
Cao
J
,
Wang
Q
,
Kim
W
,
Li
YM
,
Morris
N
,
Yenilmez
E
,
Kong
J
, and
Dai
HJ
(
2001
),
Electric-field-directed growth of aligned single-walled carbon nanotubes
,
Appl. Phys. Lett.
79
(
19
),
3155
3157
.
318.
Collins
PG
,
Bradley
K
,
Ishigami
M
, and
Zettl
A
(
2000
),
Extreme oxygen sensitivity of electronic properties of carbon nanotubes
,
Science
287
(
5459
),
1801
1804
.
319.
Kong
J
,
Franklin
NR
,
Zhou
CW
,
Chapline
MG
,
Peng
S
,
Cho
KJ
, and
Dai
HJ
(
2000
),
Nanotube molecular wires as chemical sensors
,
Science
287
(
5453
),
622
625
.
320.
Yamamoto
K
,
Akita
S
, and
Nakayama
Y
(
1998
),
Orientation and purification of carbon nanotubes using ac electrophoresis
,
J. Phys. D
31
(
8
),
L34–L36
L34–L36
.
321.
Tombler
TW
,
Zhou
CW
,
Alexseyev
L
,
Kong
J
,
Dai
HJ
,
Lei
L
,
Jayanthi
CS
,
Tang
MJ
, and
Wu
SY
(
2000
),
Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation
,
Nature (London)
405
(
6788
),
769
772
.
322.
Maiti
A
(
2001
),
Application of carbon nanotubes as electromechanical sensors-Results from first-principles simulations
,
Phys. Status Solidi B
226
(
1
),
87
93
.
323.
Maiti
A
,
Andzelm
J
,
Tanpipat
N
, and
von Allmen
P
(
2001
),
Carbon nanotubes as field emission device and electromechanical sensor: Results from first-principles dft simulations
,
Abstr. Pap. - Am. Chem. Soc.
222
,
204
204
-COMP.
324.
Kong
J
,
Chapline
MG
, and
Dai
HJ
(
2001
),
Functionalized carbon nanotubes for molecular hydrogen sensors
,
Adv. Mater.
13
(
18
),
1384
1386
.
325.
Peng
S
and
Cho
KJ
(
2000
),
Chemical control of nanotube electronics
,
Nanotechnology
11
(
2
),
57
60
.
326.
Wood
JR
,
Frogley
MD
,
Meurs
ER
,
Prins
AD
,
Peijs
T
,
Dunstan
DJ
, and
Wagner
HD
(
1999
),
Mechanical response of carbon nanotubes under molecular and macroscopic pressures
,
J. Phys. Chem. B
103
(
47
),
10388
10392
.
327.
Wood
JR
and
Wagner
HD
(
2000
),
Single-wall carbon nanotubes as molecular pressure sensors
,
Appl. Phys. Lett.
76
(
20
),
2883
2885
.
328.
Wood
JR
,
Zhao
Q
,
Frogley
MD
,
Meurs
ER
,
Prins
AD
,
Peijs
T
,
Dunstan
DJ
, and
Wagner
HD
(
2000
),
Carbon nanotubes: From molecular to macroscopic sensors
,
Phys. Rev. B
62
(
11
),
7571
7575
.
329.
Zhao
Q
,
Wood
JR
, and
Wagner
HD
(
2001
),
Using carbon nanotubes to detect polymer transitions
,
J. Polym. Sci., Part B: Polym. Phys.
39
(
13
),
1492
1495
.
330.
Zhao
Q
,
Wood
JR
, and
Wagner
HD
(
2001
),
Stress fields around defects and fibers in a polymer using carbon nanotubes as sensors
,
Appl. Phys. Lett.
78
(
12
),
1748
1750
.
331.
Ilic
B
,
Czaplewski
D
,
Craighead
HG
,
Neuzil
P
,
Campagnolo
C
, and
Batt
C
(
2000
),
Mechanical resonant immunospecific biological detector
,
Appl. Phys. Lett.
77
(
3
),
450
452
.
332.
Carr
DW
,
Evoy
S
,
Sekaric
L
,
Craighead
HG
, and
Parpia
JM
(
1999
),
Measurement of mechanical resonance and losses in nanometer scale silicon wires
,
Appl. Phys. Lett.
75
(
7
),
920
922
.
333.
Turner
KL
,
Miller
SA
,
Hartwell
PG
,
MacDonald
NC
,
Strogatz
SH
, and
Adams
SG
(
1998
),
Five parametric resonances in a microelectromechanical system
,
Nature (London)
396
(
6707
),
149
152
.
334.
Yu MF, Wagner GJ, Ruoff RS, and Dyer MJ (2002), Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope, Phys. Rev. B. (accepted for publication).
335.
Sandler
J
,
Shaffer
MSP
,
Prasse
T
,
Bauhofer
W
,
Schulte
K
, and
Windle
AH
(
1999
),
Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties
,
Polymer
40
(
21
),
5967
5971
.
336.
Schadler
LS
,
Giannaris
SC
, and
Ajayan
PM
(
1998
),
Load transfer in carbon nanotube epoxy composites
,
Appl. Phys. Lett.
73
(
26
),
3842
3844
.
337.
Qian
D
,
Dickey
EC
,
Andrews
R
, and
Rantell
T
(
2000
),
Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites
,
Appl. Phys. Lett.
76
(
20
),
2868
2870
.
338.
Ajayan
PM
,
Schadler
LS
,
Giannaris
C
, and
Rubio
A
(
2000
),
Single-walled carbon nanotube-polymer composites: Strength and weakness
,
Adv. Mater.
12
(
10
),
750
753
.
339.
Thostenson
ET
,
Ren
ZF
, and
Chou
TW
(
2001
),
Advances in the science and technology of carbon nanotubes and their composites: A review
,
Compos. Sci. Technol.
61
(
13
),
1899
1912
.
340.
Jin
L
,
Bower
C
, and
Zhou
O
(
1998
),
Alignment of carbon nanotubes in a polymer matrix by mechanical stretching
,
Appl. Phys. Lett.
73
(
9
),
1197
1199
.
341.
Haggenmueller
R
,
Gommans
HH
,
Rinzler
AG
,
Fischer
JE
, and
Winey
KI
(
2000
),
Aligned single-wall carbon nanotubes in composites by melt processing methods
,
Chem. Phys. Lett.
330
(
3–4
),
219
225
.
342.
Barrera
EV
(
2000
),
Key methods for developing single-wall nanotube composites
,
Journal of the Minerals Metals & Materials Society
52
(
11
),
A38–A42
A38–A42
.
343.
Fisher JE (2002), Nanomechanics and the viscoelastic behavior of carbon nanotube-reinformed polymers, PhD Thesis, Northwestern Univ, Evanston IL.
344.
Fisher
FT
,
Bradshaw
RD
, and
Brinson
LC
(
2001
), Effects of nanotube waviness on the mechanical properties of nanoreinforced polymers,
Appl. Phys. Lett.
80
(
24
),
4647
4649
.
345.
Shaffer
MSP
and
Windle
AH
(
1999
),
Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites
,
Adv. Mater.
11
(
11
),
937
941
.
346.
Gong
XY
,
Liu
J
,
Baskaran
S
,
Voise
RD
, and
Young
JS
(
2000
),
Surfactant-assisted processing of carbon nanotube/polymer composites
,
Chem. Mater.
12
(
4
),
1049
1052
.
347.
Lozano
K
,
Bonilla-Rios
J
, and
Barrera
EV
(
2001
),
A study on nanofiber-reinforced thermoplastic composites (II): Investigation of the mixing rheology and conduction properties
,
J. Appl. Polym. Sci.
80
(
8
),
1162
1172
.
348.
Qian D and Liu WK (2002), Multiscale computational modeling of nanorope reinforced composites, Computational Mechanics Lab Research Report (02–06), Dept of Mech Eng, Northwestern Univ.
349.
Mitsubishi Chemical Corp Public Relations Dept (2001), Frontier carbon corporation launched world’s first large scale, economic production of fullerenes will lower cost and increase availability.
You do not currently have access to this content.