Damage modeling of metallic materials under high strain rate loading conditions is reviewed. The emphasis is on the modeling efforts based on continuum damage mechanics, although many important references dealing with general aspects of dynamic behavior of materials are also discussed. Relevant issues on the use of continuum damage mechanics and on the damage modeling of composites are addressed as well. This review article deals with 134 references

1.
Johnson W (1972), Impact Strength of Materials, Edward Arnold, London.
2.
Nicholas T and Recht RF (1990), Introduction to impact phenomena, High Velocity Impact Dynamics, JA Zukas (eds), John Wiley & Sons, New York, 1–63.
3.
Meyers MA (1994), Dynamic Behavior of Materials, Wiley & Sons, New York.
4.
Clifton
RJ
(
2000
),
Response of materials under dynamic loading
,
Int. J. Solids Struct.
37
,
105
113
.
5.
Nicholas T (1982), Material behavior at high strain rates, Impact Dynamics, JA Zukas, et al. (eds), John Wiley & Sons, New York, 277–332.
6.
Nicholas T and Rajendran AM (1990), Material characterization at high strain rates, High Velocity Impact Dynamics, JA Zukas (ed), John Wiley & Sons, New York, 127–296.
7.
Regazzoni
G
,
Johnson
JN
, and
Follansbee
PS
(
1986
),
Theoretical study of the dynamic tension test
,
ASME J. Appl. Mech.
53
,
519
528
.
8.
Ravid
M
,
Bodner
SR
, and
Holcman
I
(
1987
),
Analysis of very high speed impact
,
Int. J. Eng. Sci.
,
25
,
473
482
.
9.
Dudzinski D, Majdoubi ME, and Molinari A (1992), Plastic flow localization at high strain rates, Shock-Wave and High-Strain-Rate Phenomena in Materials, MA Meyers, et al. (eds), Marcel Dekker, New York, 193–201.
10.
Zhao
H
, and
Gary
G
(
1995
),
A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar: Application to experimental techniques
,
J. Mech. Phys. Solids
43
,
1335
1348
.
11.
Zukas JA (1982a), Numerical simulation of impact phenomena, Impact Dynamics, JA Zukas et al. (eds), John Wiley & Sons, New York, 367–417.
12.
Zukas JA (1982b), Three-dimensional computer codes for high velocity impact simulation, Impact Dynamics, JA Zukas et al. (eds), John Wiley & Sons, New York, 419–447.
13.
Anderson
CE
,
Cox
PA
,
Johnson
GR
, and
Maudlin
PJ
(
1994
),
A constitutive formulation for anisotropic materials suitable for wave propagation computer programs-II
,
Comput. Mech.
15
,
201
223
.
14.
Zukas JA (1990), Survey of computer codes for impact simulation, High Velocity Impact Dynamics, JA Zukas (ed), John Wiley & Sons, New York, 593–714.
15.
Wilkins ML (1999), Computer Simulation of Dynamic Phenomena, Springer, Berlin.
16.
Nemat-Nasser S (1992), Dynamic deformation and failure, Shock-Wave and High-Strain-Rate Phenomena in Materials, MA Meyers et al. (eds), Marcel Dekker, New York, 3–19.
17.
Nemat-Nasser S (2000), Recovery Hopkinson bar techniques, ASM Handbook, Vol 8, Mechanical Testing and Evaluation, H Kuhn and D Medlin (eds), ASM Int, Materials Park OH, 477–487.
18.
Noble
JP
,
Goldthorpe
BD
,
Church
P
, and
Harding
J
(
1999
),
The use of the Hopkinson bar to validate constitutive relations at high rates of strain
,
J. Mech. Phys. Solids
47
,
1187
1206
.
19.
Gray GT (2000), Classic Split-Hopkinson pressure bar testing, ASM Handbook, Vol 8, Mechanical Testing and Evaluation, H Kuhn and D Medlin (eds), ASM Int Materials Park OH, 462–476.
20.
Gray GT and Blumenthal WR (2000), Split-Hopkinson pressure bar testing of soft materials, ASM Handbook, Vol 8, Mechanical Testing and Evaluation, H Kuhn and D Medlin (eds), ASM Int, Materials Park OH, 488–496.
21.
Subhash G and Ravichandran G (2000), Split-Hopkinson pressure bar for testing of ceramics, ASM Handbook, Vol 8, Mechanical Testing and Evaluation, H Kuhn and D Medlin (eds), ASM Int, Materials Park OH, 497–504.
22.
Field
JE
,
Walley
SM
,
Bourne
NK
, and
Huntley
JM
(
1994
),
Experimental methods at high rates of strain
,
J. Phys. IV
4
(
C8
),
3
22
.
23.
Field JE, Walley SM, Bourne NK, and Huntley JM (1998), Review of experimental techniques for high rate deformation studies, Proc of 1998 Asian Acoustics and Vibrations Conf, Singapore, Nov 1998, 9–38.
24.
Subhash G (2000), Dynamic indentation testing, ASM Handbook, Vol 8, Mechanical Testing and Evaluation, H Kuhn and D Medlin (eds), ASM Int, Materials Park OH, 519–529.
25.
Voyiadjis GZ and Kattan P (1999), Advances in Damage Mechanics: Metals and Metal Matrix Composites, Elsevier, Oxford.
26.
Bruhns
OT
and
Diehl
H
(
1989
),
An internal variable theory of inelastic behavior at high rates of strain
,
Arch. Mech.
41
,
427
460
.
27.
Harding J Ed (1974), Mechanical Properties at High Rates of Strain, Conf Series No. 21, Institute of Physics, London.
28.
Harding J (ed) (1979), Mechanical Properties at High Rates of Strain, Conf Series No. 47, Ins of Physics, London.
29.
Harding J (ed) (1984), Mechanical Properties at High Rates of Strain, Conf Series No. 70, Inst of Physics, London.
30.
Harding J (ed) (1989), Mechanical Properties of Materials at High Rates of Strain, Conf Series No. 102, Inst of Physics, London.
31.
Meyers MA and Murr L (eds) (1981), Shock Waves and High-Strain-Rate Phenomena in Metals, Plenum Press, New York.
32.
Meyers MA, Murr LE, and Staudhammer KP (eds) (1992), Shock-Wave and High-Strain-Rate Phenomena in Materials, Marcel Dekker, New York.
33.
Kawata K and Shioiri J (eds) (1996), Constitutive Relation in High/Very High Strain Rates, Springer-Verlag, Tokyo.
34.
Woodward RL (1990), Material failure at high strain rates, High Velocity Impact Dynamics, JA Zukas (ed), John Wiley & Sons, New York, 65–125.
35.
Valanis
KC
(
1990
),
Back stress and Jaumann rates in finite plasticity
,
Int. J. Plast.
6
,
353
367
.
36.
Benallal
A
,
Billardon
R
, and
Lemaitre
J
(
1991
),
Continuum damage mechanics and local approach to fracture: numerical procedures
,
Comput. Methods Appl. Mech. Eng.
92
,
141
155
.
37.
Kachanov
M
(
1992
),
Effective elastic properties of cracked solids: critical review of some basic concepts
,
Appl. Mech. Rev.
45
,
304
335
.
38.
Petrova
V
,
Tamuzs
V
, and
Romalis
N
(
2000
),
A survey of macro-microcrack interaction problems
,
Appl. Mech. Rev.
53
,
117
146
.
39.
Curran
DR
,
Seaman
L
, and
Shockey
DA
(
1987
),
Dynamic failure of solids
,
Phys. Rep.
147
,
253
388
.
40.
Rosakis
AJ
, and
Ravichandran
G
(
2000
),
Dynamic failure mechanics
,
Int. J. Solids Struct.
37
,
331
348
.
41.
Cho K, Lee S, and Won B (1993), Formation of adiabatic shear band in AL-SiCw metal matrix, Proc of Int Conf on Adv Composite Materials, Feb 1993, Aust, 1265–1269.
42.
Ireck
E
,
Heinol
C
,
Clayton
T
,
Hashemi
J
,
Cardenas-Garcia
JF
, and
Sadhneni
R
(
1995
),
Numerical and experimental investigation of adiabatic shear bands in metal under low-velocity impact conditions
,
J. Mater. Eng. Perform.
4
,
709
716
.
43.
Lebourier
A
,
Lipinski
P
, and
Molinari
A
(
2000
),
Numerical study of the propagation of an adiabatic shear band
,
J. Phys. (France)
10
,
403
408
.
44.
Clos
R
,
Schreppel
U
, and
Viet
P
(
2000
),
Experimental investigation of adiabatic shear band formation in steels
,
J. Phys. (France)
10
,
257
262
.
45.
Molinari
A
(
1997
),
Collective behavior and spacing of adiabatic shear band
,
J. Mech. Phys. Solids
45
,
1551
1575
.
46.
Perez-Prado
MT
(
2001
),
Micro structural evolution in adiabatic shear bands in Ta and Ta-W alloys
,
Acta Mater.
49
,
2905
2917
.
47.
Grady
DE
(
1988
),
The spall strength of condensed matter
,
J. Mech. Phys. Solids
36
,
353
384
.
48.
Meyers
MA
and
Aimone
CT
(
1983
),
Dynamic fracture (spalling) of metals
,
Prog. Mater. Sci.
28
,
1
96
.
49.
Bai
Y
,
Bai
J
,
Li
HL
,
Ke
FJ
, and
Xia
MF
(
2000
),
Damage evolution, localization and failure of solids subjected to impact loading
,
Int. J. Impact Eng.
24
,
685
701
.
50.
Bai YL and Dodd B (1992), Adiabatic Shear Localization, Pergamon, Oxford.
51.
Bodner SR (1988), Material modeling at high rates of strain, Impact Loading and Dynamic Behavior of Materials, CY Chiem et al. (eds), Vol 1, Informationsgesellschaft, Verlag, Germany, 77–92.
52.
Harding J (1988), Material behavior at high rates of strain, Impact Loading and Dynamic Behavior of Materials, CY Chiem et al. (eds), Vol 1, Informationsgesellschaft, Verlag, Germany, 23–42.
53.
Chiem CY (1992), Material deformation at high strain rate, Shock-Wave and High-Strain-Rate Phenomena in Materials, MA Meyers et al. (eds), Marcel Dekker, New York, 69–85.
54.
Meyer LW (1992), Constitutive equations at high strain rates, Shock-Wave and High-Strain-Rate Phenomena in Materials, MA Meyers et al. (eds), Marcel Dekker, New York, 49–68.
55.
Radchenko
AV
,
Kobenko
SV
,
Marzenyuk
IN
,
Khorev
IE
,
Kanel
GI
, and
Fortov
VE
(
1999
),
Research on features of behavior of isotropic and anisotropic materials under impact
,
Int. J. Impact Eng.
23
,
745
756
.
56.
Gurson
AL
(
1977
),
Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media
,
ASME J. Eng. Mater. Technol.
99
,
2
15
.
57.
Tvergaard
V
(
1990
),
Material failure by void coalescence
,
Adv. Appl. Mech.
27
,
83
151
.
58.
Wang
ZP
and
Jiang
Q
(
1997
),
A yield criterion for porous ductile media at high strain rate
,
ASME J. Appl. Mech.
64
,
503
509
.
59.
Wang
ZP
(
1997
),
Void-containing nonlinear materials subject to high-rate loading
,
J. Appl. Phys.
81
,
7213
7227
.
60.
Pardoen
T
and
Hutchinson
JW
(
2000
),
An extended model for void growth and coalescence
,
J. Mech. Phys. Solids
48
,
2467
2512
.
61.
Li
QM
(
2000
),
Energy correlations between a damaged macroscopic continuum and its subscale
,
Int. J. Solids Struct.
37
,
4539
4556
.
62.
Coleman
BD
and
Gurtin
ME
(
1967
),
Thermodynamics with internal state variables
,
J. Chem. Phys.
47
,
597
613
.
63.
Rice
JR
(
1971
),
Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity
,
J. Mech. Phys. Solids
19
,
433
455
.
64.
Lubliner
J
(
1972
),
On the thermodynamic foundations of non-linear solid mechanics
,
Int. J. Non-Linear Mech.
7
,
237
254
.
65.
Germain
P
,
Nguyen
QS
, and
Suquet
P
(
1983
),
Continuum thermodynamics
,
ASME J. Appl. Mech.
50
,
1010
1020
.
66.
Li
QM
(
1999
),
Dissipative flow model based on dissipative surface and irreversible thermodynamics
,
Arch. Appl. Mech.
69
,
379
392
.
67.
Murakami
S
(
1988
),
Mechanical modeling of material damage
,
ASME J. Appl. Mech.
55
,
280
286
.
68.
Krajcinovic
D
(
1984
),
Continuum damage mechanics
,
Appl. Mech. Rev.
37
,
1
6
.
69.
Krajcinovic
D
(
1989
),
Damage mechanics
,
Mech. Mater.
8
,
117
197
.
70.
Krajcinovic
D
(
2000
),
Damage mechanics: accomplishments, trends and needs
,
Int. J. Solids Struct.
37
,
267
277
.
71.
Chaboche
JL
(
1988
),
Continuum damage mechanics: Part I-General concepts
,
ASME J. Appl. Mech.
55
,
59
64
.
72.
Chaboche
JL
(
1988
),
Continuum damage mechanics: Part II-Damage growth, crack initiation, and crack growth
,
ASME J. Appl. Mech.
55
,
65
72
.
73.
Murakami
S
and
Liu
Y
(
1996
),
Local approach of fracture based on continuum damage mechanics and the related problems
,
Mater. Sci. Res. Int.
2
,
131
142
.
74.
Lemaitre J and Chaboche JL (1990), Mechanics of Solid Materials, Ch 7, Cambridge Univ. Press, Cambridge, 346–450.
75.
Krajcinovic D (1996), Damage Mechanics, North-Holland, Amsterdam.
76.
Valanis
KC
(
1966
),
Some exact wave propagation solutions in viscoplastic materials
,
Iowa State Univ Bull
,
65
Ames, Iowa.
77.
Baste
S
and
Audoin
B
(
1991
),
On internal variables in anisotropic damage
,
Eur. J. Mech. A/Solids
10
,
587
606
.
78.
Voyiadjis
GZ
and
Deliktas
B
(
2000
),
A coupled anisotropic damage model for the inelastic response of composite materials
,
Comput. Methods Appl. Mech. Eng.
183
,
159
199
.
79.
Krajcinovic
D
and
Mastilovic
S
(
1995
),
Some fundamental issues of damage mechanics
,
Mech. Mater.
21
,
217
230
.
80.
Budiansky
B
and
O’Connell
R
(
1976
),
Elastic moduli of cracked solids
,
Int. J. Solids Struct.
12
,
81
97
.
81.
Cauvin
A
and
Testa
RB
(
1999
),
Damage mechanics: basic variables in continuum theories
,
Int. J. Solids Struct.
36
,
747
761
.
82.
Onat
ET
and
Leckie
FA
(
1988
),
Representation of mechanical behavior in the presence of changing internal structure
,
ASME J. Appl. Mech.
55
,
1
10
.
83.
Ju
JW
(
1990
),
Isotropic and anisotropic damage variables in continuum damage mechanics
,
J. Eng. Mech. Div.
116
,
2764
2770
.
84.
Pijaudier-Cabot G (1995), Non-local damage, Continuum Models for Materials with Microstructure, H-B Mu¨hlhaus (ed), John Wiley, New York, 105–143.
85.
Aifantis
EC
(
1984
),
On the micro structural origin of certain inelastic models
,
ASME J. Eng. Mater. Technol.
106
,
326
330
.
86.
Mu¨hlhaus
HB
and
Aifantis
EC
(
1991
),
A variational principle for gradient plasticity
,
Int. J. Solids Struct.
28
,
845
857
.
87.
Lasry
D
and
Belytschko
T
(
1988
),
Localization limiters in transient problems
,
Int. J. Solids Struct.
24
,
581
597
.
88.
de Borst
R
,
Benellal
A
, and
Heeres
O
(
1996
),
A gradient enhanced damage approach to fracture
,
J. Phys. (France)
6
,
491
502
.
89.
Peerlings
RH
,
de Borst
R
,
Brekelmans
WA
, and
de Vree
JH
(
1996
),
Gradient enhanced damage for quasi-brittle materials
,
Int. J. Numer. Methods Eng.
39
,
3391
3403
.
90.
Kuhl E, Ramm E, and de Borst R (2000), An anisotropic gradient damage model for quasibrittle materials, Comput. Methods Appl. Mech. Eng. (in press).
91.
Valanis
KC
(
1996
),
Gradient theory of internal variables
,
Acta Mech.
116
,
1
23
.
92.
Valanis
KC
(
1998
),
Gradient thermodynamic theory of self-organization
,
Acta Mech.
127
,
1
23
.
93.
Zheng
QS
(
1997
),
A unified invariant description of micromechanically-based effective elastic properties for two-dimensional damaged solids
,
Mech. Mater.
25
,
273
289
.
94.
Hansen
NR
and
Schreyer
HL
(
1994
),
A thermodynamically consistent framework for theories of elastoplasticity coupled with damage
,
Int. J. Solids Struct.
31
,
359
389
.
95.
Arnold
SM
and
Saleeb
AF
(
1994
),
On the thermodynamic framework of generalized coupled thermoelastic-viscoplastic-damage modeling
,
Int. J. Plast.
10
,
263
278
.
96.
Lubarda
VA
and
Krajcinovic
D
(
1995
),
Some fundamental issues in rate theory of damage-elastoplasticity
,
Int. J. Plast.
11
,
763
797
.
97.
Murakami
S
and
Kamiya
K
(
1997
),
Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics
,
Int. J. Mech. Sci.
39
,
473
486
.
98.
Hayakawa
K
,
Murakami
S
, and
Liu
Y
(
1998
),
An irreversible thermodynamics theory for elastic-plastic-damage materials
,
Eur. J. Mech. A/Solids
17
,
13
32
.
99.
Kratzig
B
and
Polling
R
(
1998
),
Elasto-plastic damage-theories and elasto-plastic fracturing-theories: A comparison
,
Comput. Mater. Sci.
13
,
117
131
.
100.
de Borst
R
,
Pamin
J
, and
Geers
MGD
(
1999
),
On coupled gradient-dependent plasticity and damage theories with a view to localization analysis
,
Eur. J. Mech. A/Solids
18
,
939
962
.
101.
Gao
XL
and
Mall
S
(
2000
),
A two-dimensional rule-of-mixtures micromechanics model for woven fabric composites
,
J. Compos. Technol. Res.
22
,
60
70
.
102.
Gao
XL
and
Mall
S
(
2001
),
Variational solution for a cracked mosaic model of woven fabric composites
,
Int. J. Solids Struct.
38
,
855
874
.
103.
Burr
A
,
Hild
F
, and
Leckie
FA
(
1995
),
Micro-mechanics and continuum damage mechanics
,
Arch. Appl. Mech.
65
,
437
456
.
104.
Perzyna
P
(
1986a
),
Constitutive modeling for brittle dynamic fracture in dissipative solids
,
Arch. Mech.
38
,
725
738
.
105.
Lacy
TE
,
McDowell
DL
, and
Talreja
R
(
1999
),
Gradient concepts for evolution of damage
,
Mech. Mater.
31
,
831
860
.
106.
Voyiadjis
GZ
and
Deliktas
B
(
2000
),
Multi-scale analysis of multiple damage mechanisms coupled with inelastic behavior of composite materials
,
Mech. Res. Commun.
27
,
295
300
.
107.
Steinmann
P
and
Carol
I
(
1998
),
A framework for geometrically nonlinear continuum damage mechanics
,
Int. J. Eng. Sci.
36
,
1793
1814
.
108.
Davison
L
and
Stevens
AL
(
1972
),
Continuum measures of spall damage
,
J. Appl. Phys.
43
,
988
994
.
109.
Davison
L
and
Stevens
AL
(
1973
),
Thermomechanical constitution of spalling elastic bodies
,
J. Appl. Phys.
44
,
668
674
.
110.
Davison
L
,
Stevens
AL
, and
Kipp
ME
(
1977
),
Theory of spall damage accumulation in ductile metals
,
J. Mech. Phys. Solids
25
,
11
28
.
111.
Cochran
S
and
Banner
D
(
1977
),
Spall studies in uranium
,
J. Appl. Phys.
48
,
2729
2737
.
112.
Perzyna
P
(
1986b
),
Internal state variable description of dynamic fracture of ductile solids
,
Int. J. Solids Struct.
22
,
797
818
.
113.
Nemes
JA
,
Eftis
J
, and
Randles
PW
(
1990
),
Viscoplastic constitutive modeling of high strain-rate deformation, material damage, and spall fracture
,
ASME J. Appl. Mech.
57
,
282
291
.
114.
Nemes JA and Eftis J (1992), Rate-dependent modeling of multidimensional impact and post-spall behavior, Shock-Wave and High-Strain-Rate Phenomena in Materials, MA Meyers et al. (eds), Marcel Dekker, New York, 723–731.
115.
Dornowski
W
and
Perzyna
P
(
1999
),
Constitutive modeling of inelastic solids for plastic flow processes under cyclic dynamic loadings
,
ASME J. Eng. Mater. Technol.
121
,
210
220
.
116.
Bruhns OT (1992), A continuum damage theory for high strain rate deformations of metals with application to impact problems, Proc of 6th Int Conf on Mechanical Behavior of Materials, M Jono and T Inoue (eds), Vol. 1, Pergamon, Oxford, 499–506.
117.
Bruhns
OT
and
Sluzalec
A
(
1989
),
Thermal effects in thermoplastic metal with internal variables
,
Comput. Struct.
33
,
1459
1464
.
118.
Hong HK and Chyu YA (1988), A continuum damage thermomechanics model for ductile fracture, Impact Loading and Dynamic Behavior of Materials, CY Chiem et al. (eds), Vol 1, Informationsgesellschaft, Verlag, Germany, 499–506.
119.
Kiselev
AB
and
Yumashev
MV
(
1991
),
Deformation and failure under impact loading-model of a thermoelastoplastic medium
,
J. Appl. Mech. Tech. Phys.
31
,
775
782
.
120.
Martin
JB
,
Kaunda
MAE
, and
Isted
RD
(
1996
),
Internal variable formulations of elastic-plastic dynamic problems
,
Int. J. Impact Eng.
18
,
849
858
.
121.
Fahrenthold
EP
and
Horban
BA
(
1997
),
Thermodynamics of continuum damage and fragmentation models for hypervelocity impact
,
Int. J. Impact Eng.
20
,
241
252
.
122.
Borvik
T
,
Hopperstad
OS
,
Berstad
T
, and
Langseth
M
(
2001
),
A computational model of viscoplasticity and ductile damage for impact and penetration
,
Eur. J. Mech. A/Solids
20
,
685
712
.
123.
Johnson
G
and
Cook
W
(
1985
),
Fracture characteristics of three metals subjected to various strain, strain rates, temperature and pressures
,
Eng. Fract. Mech.
121
,
31
48
.
124.
Subhash
G
(
1995
),
The constitutive behavior of refractory metals as a function of strain rate
,
JOM
5
,
55
58
.
125.
Koeppel
BJ
and
Subhash
G
(
1999
),
Influence of cold rolling and strain rate on plastic response of powder metallurgy and chemical vapor deposition rhenium
,
Metall. Mater. Trans. A
30
,
2641
2648
.
126.
Staehler
JM
,
Predebon
WW
,
Pletka
BJ
, and
Subhash
G
(
1995
),
Strain-rate effects in high-purity alumina
,
JOM
5
,
60
63
.
127.
Ravichandran
G
and
Subhash
G
(
1995
),
A micromechanical model for high strain rate behavior of ceramics
,
Int. J. Solids Struct.
32
,
2627
2646
.
128.
Naboulsi
SK
and
Palazotto
AN
(
2001
),
Thermodynamic damage model for a composite under severe loading
,
J. Eng. Mech.
126
,
1001
1011
.
129.
Olsson
R
(
2001
),
Analytical prediction of large mass impact damage in composite laminates
,
J. Appl. Clin. Med. Phys.
19
,
322
339
.
130.
Hou
JP
,
Petrinc
N
,
Ruiz
C
, and
Hallett
SR
(
2000
),
Prediction of impact damage in composite plates
,
Compos. Sci. Technol.
60
,
273
281
.
131.
Pradhan
B
and
Kumar
S
(
2000
),
Finite element analysis of low-velocity impact damage in composite plates
,
Compos. Sci. Technol.
60
,
273
281
.
132.
Yang
X
and
Shen
W
(
1994
),
An advanced dynamic three-dimensional finite element method to simulate deformation damage process of laminates under impact
,
Eng. Fract. Mech.
49
,
631
638
.
133.
Luo
RK
,
Green
ER
, and
Morrison
CJ
(
2001
),
An approach to evaluate the impact damage initiation and propagation in composite plates
,
Composites
B32
,
513
520
.
134.
Christoforou
AP
(
2001
),
Impact dynamics and damage in composite structures
,
Compos. Struct.
52
(
2
),
181
188
.
You do not currently have access to this content.