The theory of sandwich construction has been an active field of research for more than five decades. Aim of the present article is to review the work dedicated to the theoretical determination of the effective stress-strain material behavior of two-dimensional cellular materials with large-scale cells used as core material of structural sandwich panels. Both, the applied homogenization schemes and the applied material models are considered. Explicit expressions for the linear properties of a variety of basic cell geometries are presented, as well as schemes for the analysis of more general cases. In addition, the incorporation of specific effects such as cell wall imperfections or core face sheet constraints and the analysis of nonlinear elastic and elastic-plastic effective material response are reviewed. This review article includes 148 references.

1.
Bitzer TN (1997), Honeycomb Technology, Chapman & Hall, London.
2.
Hoff
NJ
and
Mautner
SE
(
1944
),
Sandwich construction
,
Aero. Eng. Rev.
3
,
29
43
.
3.
Bitzer
TN
(
1994
),
Honeycomb marine applications
,
J. Reinf. Plast. Compos.
13
,
355
360
.
4.
Atkinson
R
(
1997
),
Innovative uses for sandwich constructions
,
Reinf. Plastics
41
,
30
33
.
5.
Mash
G
(
1999
),
The meat in the sandwich
,
Reinf. Plastics
43
,
28
35
.
6.
Allen HG (1969), Analysis and Design of Structural Sandwich Panels, Pergamon Press, Oxford.
7.
Corden J (1995), Honeycomb structure, ASM Handbook I. Composites, JR Davis (ed), American Society for Metals, Metals Park OH, 721–728.
8.
Marshall AC (1990), Core composite and sandwich structures, International Encyclopedia of Composites I, SM Lee (ed), VCH Publishers, New York, 488–507.
9.
Vinson JR (1999), The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic Publ, Lancaster PA.
10.
Zenkert D (1997), Sandwich Construction, EMAS Publishing, Warley.
11.
Habip
LM
(
1964
),
A review of recent Russian work on sandwich structures
,
Int. J. Mech. Sci.
6
,
483
487
.
12.
Habip
LM
(
1965
),
A survey of modern developments in the analysis of sandwich structures
Appl. Mech. Rev.
18
,
93
98
.
13.
Frostig Y (1998), Inaccuracies and validity of simplified models in the theory of sandwich structures, Sandwich Construction 4 (Ohlsson, KA ed.), Proc of 4th Int Conf Sandwich Construction, (Stockholm, Sweden, 08.-12.06.1998), EMAS Publishing, London, 167–189.
14.
Librescu
L
and
Hause
T
(
2000
),
Recent developments in the modeling and behavior of advanced sandwich constructions: A survey
,
Compos. Struct.
48
,
1
17
.
15.
Noor
AK
,
Burton
WS
, and
Bert
CW
(
1996
),
Computational models for sandwich panels and shells
,
Appl. Mech. Rev.
49
,
155
199
.
16.
Noor
AK
,
Burton
WS
, and
Peters
JM
(
1995
),
Hierarchical adaptive modeling of structural sandwiches and multilayered composite panels
,
Eng. Fract. Mech.
50
,
801
817
.
17.
O’Sullivan
HP
(
1961
),
Double block shear test for foil honeycomb cores
,
Aircraft Eng.
33
,
64
66
.
18.
Smallen
H
and
Roberts
WF
(
1961
),
Properties of stainless steel sandwich using low-density honeycomb cores
,
Weld. J. (Miami)
40
,
90s–96s
90s–96s
.
19.
Adams
RD
and
Maheri
MR
(
1993
),
The dynamic shear properties of structural honeycomb materials
,
Compos. Sci. Technol.
47
,
15
23
.
20.
Bitzer, TN (1998), Basic sandwich panel tests, Sandwich Construction 4, KA Ohlsson (ed), Proc of 4th Int Conf Sandwich Construction (Stockholm, Sweden, 08.-12.06.1998), EMAS Publ, London, 615–621.
21.
European Space Agency (1994), Structural Materials Handbook, ESA PSS-03-203, European Space Agency, Paris.
22.
Hexcel Co (1987), Mechanical Properties of Hexcel Honeycomb Materials, Report TSB 120, Hexcel Co, Dublin CA.
23.
Voigt
W
(
1889
),
On the relation between the elasticity constants of isotropic bodies
,
Ann. Phys. Chem.
274
,
573
587
.
24.
Reuss
A
(
1929
),
Determination of the yield point of polycrystals based on the yield condition of sigle crystals (German
),
Z. Angew. Math. Mech.
9
,
49
58
.
25.
Hill
R
(
1952
),
The elastic behaviour of a crystalline aggregate
,
Proc. R. Soc. London, Ser. A
65
,
349
354
.
26.
Hashin
Z
and
Shtrikman
S
(
1962
),
On some variational principles in anisotropic and nonhomogeneous elasticity
,
J. Mech. Phys. Solids
10
,
335
342
.
27.
Talbot
DRS
and
Willis
JR
(
1985
),
Variational principles for inhomogeneous non-linear media
,
ASME J. Appl. Mech.
35
,
39
54
.
28.
Eshelby
JD
(
1957
),
The determination of the elastic field of an ellipsoidal inclusion, and related problems
,
Proc. R. Soc. London, Ser. A
241
,
376
396
.
29.
Bakhvalov N and Panasenko G (1989), Homogenisation: Averaging Process in Periodic Media, Kluwer Academic Publ, Dordrecht.
30.
Bensoussan A Lions JL and Papanicolaou G (1978), Asymptotic Analysis for Periodic Structures, North Holland Publ, Amsterdam.
31.
Sanchez-Palencia E and Zaoui A (eds) (1987), Homogenization Techniques for Composite Media, Springer-Verlag, Berlin.
32.
Nemat-Nasser S and Hori M (1993), Micromechanics: Overall Properties of Heterogeneous Materials, North Holland Publ, Amsterdam.
33.
Garrard
A
(
1949
),
Theory of sandwich construction I
,
Br. Plast.
18
,
380
388
.
34.
Garrard
A
(
1949
),
Theory of sandwich construction II
,
Br. Plast.
18
,
451
458
.
35.
Horvay
G
(
1952
),
Bending of honeycombs and of perforated plates
,
ASME J. Appl. Mech.
19
,
122
123
.
36.
Libove C and Hubka RE (1951), Elastic constants for corrugated-core sandwich plates, NACA TN 2289, Washington DC.
37.
Sapowith
AD
(
1959
),
Transverse shear stiffness for the double ”V” corrugated-core sandwich panel
,
J. Aerospace Eng.
18
,
53
56
.
38.
Akasaka
T
and
Takagishi
T
(
1959
),
The shear modulus of foil honeycomb sandwich structures
,
Trans. Japan Soc. Aerospace Sci.
2
,
83
90
.
39.
Chang
CC
and
Ebcioglu
LK
(
1961
),
Effect of cell geometry on the shear modulus and on density of sandwich panel cores
,
J. Basic Eng.
83
,
513
518
.
40.
Hoffman
GA
(
1958
),
Poisson’s ratio for honeycomb sandwich cores
,
J. Aerosp. Sci.
25
,
534
535
.
41.
Kelsey
S
,
Gellatley
RA
, and
Clark
BW
(
1958
),
The shear modulus of foil honeycomb cores
,
Aircraft Eng.
30
,
294
302
.
42.
Nagao H (1959), The shear modulus of honeycomb cores, Proc of 9th Japan Natl Congress for Applied Mechanics, 97–100.
43.
Penzien
J
and
Didriksson
T
(
1964
),
Effective shear modulus of honeycomb cellular structure
,
AIAA
2
,
531
535
.
44.
Ponte Castan˜eda
P
and
Suquet
P
(
1995
),
On the Effective Mechanical Behaviour of Weakly Inhomogeneous Nonlinear Materials
,
Eur. J. Mech. A/Solids
A14
,
205
236
.
45.
Becker
W
(
1998
),
The inplane stiffness of a honeycomb core including the thickness effect
,
Arch. Appl. Mech.
68
,
334
341
.
46.
Becker
W
(
2000
),
Closed-form analysis of the thickness effect of regular honeycomb core material
,
Compos. Struct.
48
,
67
70
.
47.
Hohe
J
and
Becker
W
(
1999
),
Determination of the elasticity tensor of non-orthotropic cellular sandwich cores
,
Techn. Mech.
19
,
259
268
.
48.
Hohe
J
and
Becker
W
(
2001
),
A refined analysis of the effective elasticity tensor for general cellular sandwich cores
,
Int. J. Solids Struct.
38
,
3689
3717
.
49.
Guedes
JM
and
Kikuchi
N
(
1990
),
Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods
,
Comput. Methods Appl. Mech. Eng.
83
,
143
198
.
50.
Kalamkarov AL (1992), Composite and Reinforced Elements of Construction, John Wiley & Sons, Chichester.
51.
Kalamkarov
AL
and
Kolpakov
AG
(
1993
),
Numerical design of thin-walled structural members on account of their strength
,
Int. J. Numer. Methods Eng.
36
,
3441
3449
.
52.
Kalamkarov AL and Kolpakov AG (1997), Analysis, Design and Optimization of Composite Structures, John Wiley & Sons, Chichester.
53.
Kolpakov
AG
(
1985
),
Determination of the average characteristics of elastic frameworks
,
J. Appl. Math. Mech.
49
,
739
745
.
54.
Lee
J
,
Choi
JB
, and
Choi
K
(
1996
),
Application of homogenization FEM analysis to regular and re-entrant honeycomb structures
,
J. Mater. Sci.
31
,
4105
4110
.
55.
Shi
G
and
Tong
P
(
1995
),
Equivalent transverse shear stiffness of honeycomb cores
,
Int. J. Solids Struct.
32
,
1383
1393
.
56.
Shi
G
and
Tong
P
(
1995
),
The derivation of equivalent constitutive equations of honeycomb structures by a two-scale method
,
Comput. Mech.
15
,
395
407
.
57.
Ueng
CES
,
Underwood
EE
, and
Liu
TL
(
1979
),
Shear modulus of superplastically formed sandwich cores
,
Comput. Struct.
10
,
393
397
.
58.
Ko WL (1980), Comparison of structural behavior of superplastically formed/diffusion bonded sandwich structures and honeycomb core sandwich structures, NASA TM 81348, Washington DC.
59.
Borris PW, Caldwell MS, Castillo JI, and Bitzner TN (1989), Recent honeycomb developments, Tomorrow’s Materials Today, Proc of 34th SAMPE Symp (Reno NV, 08.-11.05.1989), 849–860.
60.
Christensen
RM
(
2000
),
Mechanics of cellular and other low-density materials
,
Int. J. Solids Struct.
37
,
93
104
.
61.
Kim
B
and
Christensen
RM
(
2000
),
Basic two-dimensional core types for sandwich structures
,
Int. J. Mech. Sci.
42
,
657
676
.
62.
Cosserat E and Cosserat F (1909), Theory of Deformable Bodies (French), A Hermann et Fils, Paris.
63.
Lakes
R
(
1993
),
Materials with structural hierarchy
,
Nature (London)
361
,
511
515
.
64.
Bishop
JFW
and
Hill
R
(
1951
),
A theory of the plastic distortion of a polycrystalline aggregate under combined stress
,
Philos. Mag.
42
,
414
427
.
65.
Gibson LJ and Ashby MF (1997), Cellular Solids, Cambridge Univ Press, Cambridge.
66.
Gibson
LJ
,
Ashby
MF
,
Schajer
GS
, and
Robertson
CI
(
1982
),
The mechanics of two-dimensional cellular materials
,
Proc. R. Soc. London, Ser. A
382
,
25
42
.
67.
Abd El-Sayed
FK
,
Jones
R
, and
Burgess
IW
(
1979
),
A theoretical approach to the deformation of honeycomb based composite materials
,
Composites
10
,
209
214
.
68.
Caddock BD, Evans KE, and Masters IG (1991), Honeycomb cores with a negative Poisson’s ratio for use in composite sandwich panels, Composites: Design Manufacture and Application, BD Caddock, KE Evans, and IG Masters (eds), Proc of 8th Int Conf Composite Materials (Hawaii, 1991), 3-E-1–3-E-10.
69.
Gibson
LJ
(
1989
),
Modelling the mechanical behavior of cellular materials
,
Mater. Sci. Eng., A
110
,
1
36
.
70.
Meraghni
F
,
Desrumaux
F
, and
Benzeggagh
ML
(
1999
),
Mechanical behaviour of cellular core for structural sandwich panels
,
Compos. A
30
,
767
779
.
71.
Nast E (1997), On the numerical and experimental analysis of shells consisting of sandwich and composite materials, PhD-thesis (German) Univ of the German Forces Hamburg, Dept of Electrical Eng, Hamburg.
72.
Papka
SD
and
Kyriakides
S
(
1999
),
Biaxial crushing of honeycombs – Part II: Analysis
,
Int. J. Solids Struct.
36
,
4397
4423
.
73.
Ueng CES, Underwood EE and Liu TL (1979), Shear modulus of new sandwich cores made of superplastic sheet, Proc of 20th Structures, Structural Dynamics and Materials Conf (St Louis MO, 04.-06.04.1979), 176-180.
74.
Ueng
CES
,
Underwood
EE
, and
Liu
TL
(
1980
),
Shear modulus of new sandwich cores made of superplastic sheet
,
AIAA J.
18
,
721
723
.
75.
Burton
WS
and
Noor
AK
(
1997
),
Assessment of continuum models for sandwich panel honeycomb cores
,
Comput. Methods Appl. Mech. Eng.
145
,
341
360
.
76.
Chamis CC, Aiello RA, and Murthy PLN (1986), Composite sandwich thermostructural behavior: Computational simulation, Proc of 27th Structures, Structural Mechanics and Materials Conf (San Antonio TX, 19.-21.05.1986) Part I: Structures and Materials, New York, 370–381.
77.
Chamis
CC
,
Aiello
RA
, and
Murthy
PLN
(
1988
),
Fiber composite sandwich thermostructural behavior: Computational simulation
,
J. Compos. Technol. Res.
10
,
93
99
.
78.
Overaker
DW
,
Cuitin˜o
AM
, and
Langrana
NA
(
1998
),
Effects of morphology and orientation on the behavior of two-dimensional hexagonal foams and application in a re-entrant foam anchor model
,
Mech. Mater.
29
,
43
52
.
79.
Overaker
DW
,
Cuitin˜o
AM
, and
Langrana
NA
(
1998
),
Elastoplastic micromechanical modeling of two-dimensional irregular convex and nonconvex (re-entrant) hexagonal foams
,
ASME J. Appl. Mech.
65
,
748
757
.
80.
Warren
WE
and
Kraynik
AM
(
1987
),
Foam mechanics: The linear elastic response of two-dimensional spatially periodic cellular materials
,
Mech. Mater.
6
,
27
37
.
81.
Warren
WE
and
Kraynik
AM
, and
Stone
CM
(
1989
),
A constitutive model for two-dimensional nonlinear elastic foams
,
J. Mech. Phys. Solids
37
,
717
733
.
82.
Hohe
J
and
Becker
W
(
2001
),
An energetic homogenization procedure for the elastic properties of general cellular sandwich cores
,
Compos. B
32
,
185
197
.
83.
Ueng
CES
and
Kim
TD
(
1983
),
Shear modulus of core materials with arbitrary polygonal shape
,
Comput. Struct.
16
,
21
25
.
84.
Scholz SP (1992), Continuum mechanical modeling of sandwich grid structures, PhD-thesis (German) Technical Univ of Berlin, Dept of Physical Eng, Berlin.
85.
Vinson JR and Sierakowski RL (1987), The Behavior of Sandwich Structures composed of Composite Materials, Martinus Nijhoff Publ, Dordrecht.
86.
Masters IG and Evans KE (1993), Auxetic honeycombs for composite sandwich panels, Proc of 2nd Canadian and Int Composites Conf, 701–710.
87.
Masters
IG
and
Evans
KE
(
1996
),
Models for the elastic deformation of honeycombs
,
Compos. Struct.
35
,
403
422
.
88.
Zhang
J
and
Ashby
MF
(
1992
),
The out-of-plane properties of honeycombs
,
Int. J. Mech. Sci.
34
,
475
489
.
89.
Nast E (1997), On honeycomb-type core moduli, Proc of 38th Structures, Structural Dynamics, and Materials Conf (Kissimmee FL, 07.-10.04.1997), 1035–1044.
90.
Torquato
S
,
Gibianski
LV
,
Silva
MJ
, and
Gibson
LJ
(
1998
),
Effective mechanical and transport properties of cellular solids
,
Int. J. Mech. Sci.
40
,
71
82
.
91.
Fu
M
and
Yin
J
(
1999
),
Equivalent elastic parameters of the honeycomb core (Chinese
),
Acta Mech. Sin.
31
,
113
118
.
92.
Ladd
AJC
and
Kinney
JH
(
1997
),
Elastic constants of cellular structures
,
Physica A
A240
,
349
360
.
93.
Warren
TL
(
1990
),
Negative Poisson’s ratio in transversely isotropic foam structure
,
J. Appl. Phys.
67
,
7591
7594
.
94.
Hohe
J
,
Beschorner
C
, and
Becker
W
(
1999
),
Effective elastic properties of hexagonal and quadrilateral grid structures
,
Compos. Struct.
46
,
73
89
.
95.
Elspass W and Flemming M (1990), Analysis of precision sandwich structures under thermal loading, Proc of 17th Congress Int Council of Aeronautical Sciences (Stockholm, Sweden, 09.-14.09.1990) 2, ICAS-90-4.8.1, AIAA, Reston VA, 1513–1518.
96.
Grediac
M
(
1993
),
A finite element study of the transverse shear in honeycomb cores
,
Int. J. Solids Strcut.
30
,
1777
1788
.
97.
Simone
AE
and
Gibson
LJ
(
1998
),
Effects of solid distribution on the stiffness and strength of metallic foams
,
Acta Mater.
46
,
2139
2150
.
98.
Simone
AE
and
Gibson
LJ
(
1998
),
The effect of cell wall curvature and corrugations on the stiffness and strength of metallic foams
,
Acta Mater.
46
,
3929
3935
.
99.
Friis
EA
,
Lakes
RS
, and
Parks
JB
(
1988
),
Negative Poisson’s Ratio Polymeric and Metallic Foams
,
J. Mater. Sci.
23
,
4406
4414
.
100.
Lakes
R
(
1987
),
Foam structures with negative Poisson’s ratio
,
Science
235
,
1038
1040
.
101.
Choi
JB
and
Lakes
RS
(
1995
),
Nonlinear analysis of the Poisson’s ratio of negative Poisson’s ratio foams
,
J. Compos. Mater.
29
,
113
128
.
102.
Evans
KE
(
1991
),
The design of doubly curved sandwich panels with honeycomb cores
,
Compos. Struct.
17
,
95
111
.
103.
Smith
CW
,
Grima
JN
, and
Evans
KE
(
2000
),
A novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model
,
Acta Mater.
48
,
4349
4356
.
104.
Kalamkarov
AL
(
1987
),
On the determination of the effective characteristics of cellular plates and shells of periodic structure
,
Mech. Solids
22
,
175
179
.
105.
Hohe
J
and
Becker
W
(
1999
),
Effective elastic properties of triangular grid structures
,
Compos. Struct.
45
,
131
145
.
106.
Hunt
HEM
(
1993
),
The mechanical strength of honeycomb monoliths as determined by simple experiments
,
Trans. Inst. Chem. Eng.
71
,
257
266
.
107.
Chen
HJ
and
Tsai
SW
(
1996
),
Analysis and optimum design of composite grid structures
,
J. Compos. Mater.
30
,
503
534
.
108.
Sippel R and Helwig G (1991), A High performance sandwich reflector for “’First”’: Design and mechanical analysis of the sandwich core, Proc of Int Conf Spacecraft Structures and Mechanical Testing (Noordwijk, The Netherlands, 24.-26.04.1991), 738–787.
109.
Chung
J
and
Waas
AM
(
2000
),
The inplane elastic properties of circular cell and elliptical cell honeycombs
,
Acta Mech.
144
,
29
42
.
110.
Hohe
J
and
Becker
W
(
2000
),
A mechanical model for two-dimensional cellular sandwich cores with general geometry
,
Comput. Mater. Sci.
19
,
108
115
.
111.
Kalamkarov
AL
(
1989
),
The thermoelasticity problem for structurally non-uniform shells of regular structure
,
J. Appl. Mech. Tech. Phys.
30
,
981
988
.
112.
Silva
MJ
,
Hayes
WC
, and
Gibson
LJ
(
1995
),
The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids
,
Int. J. Mech. Sci.
37
,
1161
1177
.
113.
Fortes
MA
and
Ashby
MF
(
1999
),
The effect of non-uniformity on the in-plane modulus of honeycombs
,
Acta Mater.
47
,
3469
3473
.
114.
Ko WL (1979), Elastic constants for superplastically formed/diffusion bonded sandwich structures, Proc of 20th Structures, Structural Dynamics and Materials Conf (St. Louis MO, 04.-06.04.1979), 188–207.
115.
Ko
WL
(
1980
),
Elastic constants for superplastically formed/diffusion bonded sandwich structures
,
AIAA J.
18
,
986
987
.
116.
Nordstrand
TM
and
Carlsson
LA
(
1997
),
Evaluation of transverse shear stiffness of structural core sandwich plates
,
Compos. Struct.
37
,
145
153
.
117.
Nordstrand
TM
,
Carlsson
LA
, and
Allen
HG
(
1994
),
Transverse shear stiffness of structural core sandwich
,
Compos. Struct.
27
,
317
329
.
118.
Ko
WL
(
1982
),
Structural properties of superplastically formed/diffusion bonded orthogonally corrugated core sandwich plates
,
AIAA J.
20
,
536
543
.
119.
Kobelev
VN
,
Ustarkhanov
OM
, and
Bulgakov
AL
(
1991
),
Reduced characteristics of sandwich structure pyramidal filler (Russian),
Izvestiya VUZ
34
,
3
6
.
120.
Jensen DV and Schneller C (1991), Transverse shearing of novel honeycomb cores, Proc of Conf Advanced Composite Materials in Civil Eng (Las Vegas NV, 31.01.-01.02.1991), 394–404.
121.
Grenestedt
JL
(
1998
),
Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids
,
J. Mech. Phys. Solids
46
,
29
50
.
122.
Guo
XE
and
Gibson
LJ
(
1999
),
Behavior of intact and damaged honeycombs: A finite element study
,
Int. J. Mech. Sci.
41
,
85
105
.
123.
Prakash
O
,
Bichebois
P
,
Brechet
Y
,
Louchet
F
, and
Embury
JD
(
1996
),
A note on the deformation behaviour of two-dimensional model cellular structures
,
Philos. Mag.
A73
,
739
751
.
124.
Elspass W (1990), Design of high precision sandwich structures using analytical and finite element methods, Finite Element Methods in the Design Process, Proc of 6th World Congress on Finite Element (Banff, Canada, 1990).
125.
Carlsson
L
,
Fellers
C
, and
Jonsson
P
(
1985
),
Bending stiffness of corrugated cardboard with special reference to unsymmetrical and multi-layer constructions
,
Das Papier
39
,
149
156
(German).
126.
Norris CB (1947), An Analysis of the Compressive Strength of Honeycomb Cores, NACA TN 1251, Washington DC.
127.
Werren F and Norris B (1950), Analysis of Shear Strength of Honeycomb Cores for Sandwich Construction, NACA TN 2208, Washington DC.
128.
Wang
Y
(
1991
),
Elastic collapse of honeycombs under out-of-plane pressure
,
Int. J. Mech. Sci.
33
,
637
644
.
129.
Shi
G
and
Tong
P
(
1994
),
Local buckling of honeycomb sandwich plates under action of transverse shear forces
,
AIAA J.
32
,
1520
1524
.
130.
Ogawa
T
and
Okazaki
N
(
1993
),
Compressive strength of various honeycombs
,
J. Soc. Mater. Sci. Jpn.
42
,
823
828
(Japanese).
131.
Gibson
LJ
,
Ashby
MF
,
Zhang
J
, and
Triantafillou
TC
(
1989
),
Failure surfaces for cellular materials under multiaxial loads - I. Modelling
,
Int. J. Mech. Sci.
31
,
635
663
.
132.
Zhang
J
and
Ashby
MF
(
1992
),
Buckling of honeycombs under in-plane biaxial stresses
,
Int. J. Mech. Sci.
34
,
491
509
.
133.
Klintworth
JW
and
Stronge
WJ
(
1988
),
Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs
,
Int. J. Mech. Sci.
30
,
273
292
.
134.
Hutzler
S
and
Weaire
D
(
1997
),
Buckling properties of 2D regular elastomeric honeycombs
,
J. Phys.: Condens. Matter
9
,
L323–L329
L323–L329
.
135.
Huybrechts
S
and
Tsai
WT
(
1996
),
Analysis and behavior of grid structures
,
Compos. Sci. Technol.
56
,
1001
1015
.
136.
Kraynik
AM
,
Reinelt
DA
, and
Princen
HM
(
1991
),
The nonlinear elastic behavior of polydisperse hexagonal foams and concentrated emulsions
,
J. Rheol.
35
,
1235
1253
.
137.
Papka
SD
and
Kyriakides
S
(
1994
),
In-plane compressive response and crushing of honeycomb
,
J. Mech. Phys. Solids
42
,
1499
1532
.
138.
Zhu
HX
and
Mills
NJ
(
2000
),
The in-plane non-linear compression of regular honeycombs
,
Int. J. Solids Struct.
37
,
1931
1949
.
139.
Silva
MJ
and
Gibson
LJ
(
1997
),
The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids
,
Int. J. Mech. Sci.
39
,
549
563
.
140.
Klintworth
JW
and
Stronge
WJ
(
1989
),
Plane punch indentation of a ductile honeycomb
,
Int. J. Mech. Sci.
31
,
359
378
.
141.
Stronge
WJ
and
Shim
VPW
(
1988
),
Microdynamics of crushing in cellular solids
,
J. Eng. Mat. Tech.
110
,
185
190
.
142.
Papka
SD
and
Kyriakides
S
(
1999
),
Biaxial crushing of honeycombs – Part I: Experiments
,
Int. J. Solids Struct.
36
,
4367
4396
.
143.
Schreyer
HL
,
Zuo
QH
, and
Maji
AK
(
1994
),
Anisotropic plasticity model for foams and honeycombs
,
J. Eng. Mech.
120
,
1913
1930
.
144.
Caddock
BD
and
Evans
KE
(
1989
),
Microporous materials with negative Poisson’s ratios: I. Microstructure and mechanical properties
,
J. Phys. D
22
,
1877
1882
.
145.
Onck
PR
,
Andrews
EW
, and
Gibson
LJ
(
2001
),
Size effects in ductile cellular solids. Part I: Modeling
,
Int. J. Mech. Sci.
43
,
681
699
.
146.
Brulin O and Hsieh RKT (eds) (1982), Mechanics of Micropolar Media, World Scientific Publ, Singapore.
147.
Mu¨hlhaus HB (ed) (1995), Continuum Models for Materials with Microstructure, John Wiley & Sons, Chichester.
148.
Warren WE and Byskov E (1997), Micropolar and nonlocal effects in spatially periodic, two-dimensional structures, Report R 37, Technical Univ of Denmark, Dept of Structural Eng and Materials, Lyngby.
You do not currently have access to this content.