This review presents the potential that lattice (or spring network) models hold for micromechanics applications. The models have their origin in the atomistic representations of matter on one hand, and in the truss-type systems in engineering on the other. The paper evolves by first giving a rather detailed presentation of one-dimensional and planar lattice models for classical continua. This is followed by a section on applications in mechanics of composites and key computational aspects. We then return to planar lattice models made of beams, which are a discrete counterpart of non-classical continua. The final two sections of the paper are devoted to issues of connectivity and rigidity of networks, and lattices of disordered (rather than periodic) topology. Spring network models offer an attractive alternative to finite element analyses of planar systems ranging from metals, composites, ceramics and polymers to functionally graded and granular materials, whereby a fiber network model of paper is treated in considerable detail. This review article contains 81 references.

1.
Hrennikoff
A
(
1941
),
Solution of problems of elasticity by the framework method
,
ASME J. Appl. Mech.
8
,
A619–A715
A619–A715
.
2.
Maxwell JC (1869), Scientific Papers II.
3.
Askar A (1985), Lattice Dynamical Foundations of Continuum Theories, World Scientific, Singapore.
4.
Noor
AK
and
Nemeth
MP
(
1980
),
Micropolar beam models for lattice grids with rigid joints
,
Comput. Methods Appl. Mech. Eng.
21
,
249
263
.
5.
Triantafyllidis
N
and
Bardenhagen
S
(
1993
),
On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models
,
J. Elast.
33
,
259
293
.
6.
Stephen
NG
and
Wang
PJ
(
1996
),
On Saint-Venant’s principle in pinjointed frameworks
,
Int. J. Solids Struct.
33
(
1
)
79
97
.
7.
Noor
AK
(
1988
),
Continuum modeling for repetitive lattice structures
,
Appl. Mech. Rev.
41
(
7
)
285
296
.
8.
Costello GA (1997), Theory of Wire Rope, Springer-Verlag.
9.
Lakes
RS
and
Benedict
R
(
1982
),
Noncentrosymmetry in micropolar elasticity
,
Int. J. Eng. Sci.
29
(
10
)
1161
1167
.
10.
Nowacki W (1986), Theory of Asymmetric Elasticity, Oxford: Pergamon Press/Warsaw: PWN-Polish Scientific Publ.
11.
Blouin
F
and
Cardou
A
(
1974
),
A study of helically reinforced cylinders under axially symmetric loads and application to strand mathematical modeling
,
Int. J. Solids Struct.
25
(
2
)
189
200
.
12.
Samras
RK
,
Skop
RA
, and
Milburn
DA
(
1974
),
An analysis of coupled extensional-torsional oscillations in wire rope
,
ASME J. Eng. Ind.
96
,
1130
1135
.
13.
Love AEH (1934), The Mathematical Theory of Elasticity, Cambridge Univ Press.
14.
Grah
M
,
Alzebdeh
K
,
Sheng
PY
,
Vaudin
MD
,
Bowman
KJ
, and
Ostoja-Starzewski
M
(
1996
),
Brittle intergranular failure in 2D microstructures: experiments and computer simulations
,
Acta Mater.
44
(
10
)
4003
4018
.
15.
Kirkwood
JG
(
1939
),
The skeletal modes of vibration of long chain molecules
,
J. Chem. Phys.
7
,
506
509
.
16.
Thorpe
MF
and
Jasiuk
I
(
1992
),
New results in the theory of elasticity for two-dimensional composites
Proc. R. Soc. London, Ser. A
A438
,
531
544
.
17.
Day
AR
,
Snyder
KA
,
Garboczi
EJ
, and
Thorpe
MF
(
1992
),
The elastic moduli of a sheet containing circular holes
,
J. Mech. Phys. Solids
40
,
1031
1051
.
18.
Keating
PN
(
1966
),
Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure
,
Phys. Rev.
145
,
637
645
.
19.
Synder
KA
,
Garboczi
EJ
, and
Day
AR
(
1992
),
The elastic moduli of simple two-dimensional composites: computer simulation and effective medium theory
,
J. Mech. Phys. Solids
72
,
5948
5955
.
20.
Press WH, Teukolsky SA, Vetterling WT, and Flannery BP (1992), Numerical Recipes, Cambridge Univ Press.
21.
Chung
JW
,
Roos
A
,
De Hosson
JTh M
, and
van der Giessen
E
(
1996
),
Fracture of disordered three-dimensional spring networks: A computer simulation methodology
,
Phys. Rev. B
54
,
15094
15100
.
22.
Ostoja-Starzewski
M
and
Schulte
J
(
1996
),
Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions
,
Phys. Rev. B
54
,
278
285
.
23.
Ostoja-Starzewski
M
(
1998
),
Random field models of heterogeneous materials
,
Int. J. Solids Struct.
35
(
19
)
2429
2455
.
24.
Garboczi E (1998), Finite Element Programs and Finite Difference Programs for Computing the Linear Electric and Elastic Properties of Digital Images of Random Materials, NISTIR 6269, NIST, Gaithersburg MD.
25.
Torquato
S
(
1997
),
Effective stiffness tensor of composite media
,
J. Mech. Phys. Solids
45
,
1421
1448
.
26.
Keller
JB
(
1964
),
A theorem on the conductivity of a composite medium
,
J. Math. Phys.
5
,
548
549
.
27.
Mendelson
KS
(
1975
),
Effective conductivity of two-phase material with cylindrical phase boundaries
,
J. Appl. Phys.
46
,
917
918
.
28.
Cherkaev
AV
,
Lurie
KA
, and
Milton
GW
(
1992
),
Invariant properties of the stress in plane elasticity and equivalence classes of composites
,
Proc. R. Soc. London, Ser. A
A438
,
519
529
.
1.
Ostoja-Starzewski
M
and
Jasiuk
I
(
1995
),
Stress invariance in planar Cosserat elasticity
,
Proc. R. Soc. London, Ser. A
451
,
453
470
.
2.
errata:
452
,
1503
1503
(
1995
).
1.
Wozniak C (1970), Surface Lattice Structures (in Polish), Polish Sci Publ, Warsaw.
2.
Gulati in 32.
3.
Gibson LJ and Ashby MF (1988), Cellular Solids, Pergamon Press.
4.
Ostoja-Starzewski
M
,
Sheng
PY
, and
Alzebdeh
K
(
1996
),
Spring network models in elasticity and fracture of composites and polycrystals
,
Comput. Mater. Sci.
7
(
1,2
)
82
93
.
5.
Jasiuk
I
,
Chen
J
, and
Thorpe
MF
(
1994
),
Elastic moduli of two dimensional materials with polygonal holes
,
Appl. Mech. Rev.
47
(
1, Pt 2
)
S18–S28
S18–S28
.
6.
Jasiuk
I
(
1995
),
Polygonal cavities vis-a`-vis rigid inclusions: Effective elastic moduli of materials with polygonal inclusions
,
Int. J. Solids Struct.
32
,
407
422
.
7.
Stalne K and Gustafson PJ (2001), A three dimensional finite element fibre model for composite material stiffness and hygroexpansion analysis, Proc. 2nd Eur. Conf. Comp. Mech. ECCM-2001, Cracow, Poland.
8.
Wozniak
C
(
1997
),
Internal variables in dynamics of composite solids with periodic microstructure
,
Arch. Mech.
49
(
2
)
421
441
.
9.
Wozniak
C
(
1966
),
Load carrying structures of dense lattice type
,
Arch. Mech. Stos.
18
(
5
)
581
597
.
10.
Cielecka
I
,
Wozniak
C
, and
Wozniak
M
(
1998
),
Internal variables in macrodynamics of two-dimensional periodic cellular media
,
Arch. Mech.
50
(
1
)
3
19
.
11.
Pshenichnov GI (1993), A Theory of Latticed Plates and Shells, World Scientific, Singapore.
12.
Cioranescu D and Saint Jean Paulin J (1999), Homogenization of Reticulated Structures, Springer Verlag, New York.
13.
Holnicki-Szulc
J
and
Rogula
D
(
1979a
),
Non-local, continuum models of large engineering structures
,
Arch. Mech.
31
(
6
)
793
802
.
14.
Holnicki-Szulc
J
and
Rogula
D
(
1979b
),
Boundary problems in non-local, continuum models of large engineering structures
,
Arch. Mech.
31
(
6
)
803
811
.
15.
Bardenhagen
S
, and
Triantafyllidis
N
(
1994
),
Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models
,
J. Mech. Phys. Solids
42
,
111
139
.
16.
Wan
XL
and
Stronge
WJ
(
1999
),
Micropolar theory for two-dimensional stresses in elastic honeycomb
,
Proc. R. Soc. London, Ser. A
455
,
2091
2116
.
17.
Chen
JY
,
Huang
Y
, and
Ortiz
M
(
1998
),
Fracture analysis of cellular materials: A strain gradient model
,
J. Mech. Phys. Solids
46
,
789
828
.
18.
Crapo H and Whiteley W (1989), The geometry of rigid structures, in Encyclopedia of Mathematics and its Applications, Cambridge Univ Press.
19.
Laman
(
1970
),
On graphs and rigidity of plane skeletal structures
,
Eng. Math.
4
,
331
340
.
20.
Asimov
L
and
Roth
B
(
1978
),
The rigidity of graphs
,
Trans. Am. Math. Soc.
245
,
279
289
.
21.
Feng
S
,
Thorpe
MF
, and
Garboczi
E
(
1985
),
Effective-medium theory of percolation on central-force elastic networks
,
Phys. Rev. B
31
,
276
280
.
22.
Boal
DH
(
1993
),
Rigidity and connectivity percolation in heterogeneous polymer-fluid networks
,
Phys. Rev. E
47
,
4604
4606
.
23.
Hansen
JC
,
Chien
S
,
Skalak
R
, and
Hoger
A
(
1996
),
An elastic network model based on the structure of the red blood cell membrane skeleton
,
Biophys. J.
70
,
146
166
.
24.
Miles
RE
(
1964
),
Random polygons determined by random lines in a plane
,
Proc. Natl. Acad. Sci. U.S.A.
52
,
901
907
.
25.
Cox
HL
(
1952
),
The elasticity and strength of paper and other fibrous materials
,
Br. J. Appl. Phys.
3
,
72
79
.
26.
Page DH, Tydeman PA, and Hunt M (1961), A study of fibre-to-fibre bonding by direct observation, The Formation and Structure of Paper—Trans. Oxford Symp 1, 171–193.
27.
Ostoja-Starzewski
M
,
Quadrelli
MB
, and
Stahl
DC
(
1999
),
Kinematics and stress transfer in quasi-planar random fiber networks
,
C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron.
327
,
1223
1229
.
28.
Stahl
DC
and
Cramer
SM
(
1988
),
A three-dimensional network model for a low density fibrous composite
,
ASME J. Eng. Mater. Technol.
120
(
2
)
126
130
.
29.
Chung
JW
,
Roos
A
,
De Hosson
JThM
, and
van der Geissen
E
(
1996
),
Fracture of disordered three-dimensional spring networks: A computer simulation methodology
,
Phys. Rev. B
54
(
21
)
15094
15100
.
30.
Sastry
AM
,
Cheng
X
, and
Wang
CW
(
1998
),
Mechanics of stochastic fibrous networks
,
J. Thermoplast. Compos. Mater.
11
,
211
296
.
31.
Cheng
X
, and
Sastry
AM
(
1999
),
On transport in stochastic, heterogeneous fibrous domains
,
Mech. Mater.
31
,
765
786
.
32.
Cook RD, Malkus ME and Plesha ME (1989), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York.
33.
Stoyan D, Kendall WS, and Mecke J (1987), Stochastic Geometry and its Applications, John Wiley & Sons, New York.
34.
Kuznetsov EN (1991), Underconstrained Structural Systems, Springer-Verlag, New York.
35.
Kellomaki
M
,
A¨stro¨m
J
, and
Timonen
J
(
1996
),
Rigidity and dynamics of random spring networks
,
Phys. Rev. Lett.
77
(
13
)
2730
2733
.
36.
Raisanen
VI
,
Alava
MJ
, and
Nieminen
RM
(
1997
),
Failure of planar fiber networks
,
J. Appl. Phys.
82
(
8
)
3747
3753
.
37.
Ostoja-Starzewski
M
, and
Stahl
DC
(
2000
),
Random fiber networks and special elastic orthotropy of paper
,
J. Elast.
60
(
2
),
131
149
.
38.
Cundall
PA
, and
Strack
ODL
(
1979
),
A discrete numerical model for granular assemblies
,
Geotechnique
29
(
1
)
47
65
.
39.
Bathurst
RJ
, and
Rothenburg
L
(
1988
),
Micromechanical aspects of isotropic granular assemblies with linear contact interactions
,
ASME J. Appl. Mech.
55
,
17
23
.
40.
Bathurst
RJ
, and
Rothenburg
L
(
1989
),
Note on a random isotropic granular material with negative Poisson’s ratio
,
Int. J. Eng. Sci.
26
,
373
383
.
41.
Jagota A and Benison SJ (1994), Spring-network and finite-element models for elasticity and fracture, in Non-linearity and Breakdown in Soft Condensed Matter, KK Bardhan, BK Chakrabarti, and A Hansen (eds), Lecture Notes in Physics 437, Springer-Verlag, NY, 186–201.
42.
Satake M (1976), Constitution of mechanics of granular materials through graph representation, Proc. 26th Japan Natl. Congr. Theor. Appl. Mech., 257–266.
43.
Satake M (1978), Constitution of mechanics of granular materials through the graph theory, Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials, SC Cowin and M Satake (eds), 47–62.
44.
Ziman JM (1979), Models of Disorder, Cambridge University Press.
45.
Torquato
S
(
1991
),
Random heterogeneous media: microstructure and improved bounds on effective properties
,
Appl. Mech. Rev.
44
(
2
)
37
76
.
46.
Ostoja-Starzewski
M
,
Alzebdeh
K
, and
Jasiuk
I
(
1995
),
Linear elasticity of planar Delaunay networks-III: Self-consistent approximations
,
Acta Mech.
110
,
57
72
.
47.
Alzebdeh
K
and
Ostoja-Starzewski
M
(
1999
),
On a spring network model and effective elastic moduli of granular materials
,
ASME J. Appl. Mech.
66
,
172
180
.
48.
Kruyt
NP
and
Rothenburg
L
(
1996
),
Micromechanical definition of the strain tensor for granular materials
,
ASME J. Appl. Mech.
63
,
706
711
.
49.
Kruyt
NP
and
Bathurst
RJ
(
1998
),
Statistical theories for the elastic moduli of two-dimensional assemblies of granular materials
,
Int. J. Eng. Sci.
36
,
1127
1142
.
50.
Kruyt
NP
and
Rothenburg
L
(
2001
),
Statistics of the elastic behaviour of granular materials
,
Int. J. Solids Struct.
38
,
4879
4899
.
51.
Rothenburg
L
and
Bathurst
RJ
(
1996
),
Micromechanical features of granular assemblies with planar particles
,
Geotechnique
42
,
79
95
.
52.
Cherkaev A (2000), Variational Methods for Structural Optimization, Springer-Verlag.
You do not currently have access to this content.