It is of great importance for the development of new products to find the best possible topology or layout for given design objectives and constraints at a very early stage of the design process (the conceptual and project definition phase). Thus, over the last decade, substantial efforts of fundamental research have been devoted to the development of efficient and reliable procedures for solution of such problems. During this period, the researchers have been mainly occupied with two different kinds of topology design processes; the Material or Microstructure Technique and the Geometrical or Macrostructure Technique. It is the objective of this review paper to present an overview of the developments within these two types of techniques with special emphasis on optimum topology and layout design of linearly elastic 2D and 3D continuum structures. Starting from the mathematical-physical concepts of topology and layout optimization, several methods are presented and the applicability is illustrated by a number of examples. New areas of application of topology optimization are discussed at the end of the article. This review article includes 425 references.

Books, reports, lecture notes, theses
1.
Alexandroff PS (1960), Combinatorial Topology I-III, Graylock Publ, Rochester NY.
2.
Alt W, Ben-Tal A, Kocvara M, Nemirovski A, and Zowe J (1997), Free Material Design via Semidefinite Programming: The Multiload Case with Contact Conditions, Report No 219, Institute for Applied Mathematics, Univ of Erlangen-Nuremberg, Germany.
3.
Anger G (ed) (1993), Inverse Problems: Principles and Applications in Geophysics, Technology and Medicine.
4.
Atrek E (1991), SHAPE User’s Manual, Engineering Mechanics Research Corp, Troy, Michigan.
5.
Bagge M (1999), Remodeling of bone structure, DCAMM Report S 84, PhD-Thesis, Dept of Solid Mech, Technical Univ of Denmark.
6.
Beckers M (1996), Optimisation topologique de structure en variables Discre`te, Tech Report, Universite´ de Lie`ge.
7.
Beckers M (1997), Optimisation de structures en variable discrete, These de Doctorat No 181, Universite de Liege, Belgium.
8.
Belegundu A, Mistree F (eds) (1998), Optimization in industry-1997, ASME, New York.
9.
Bendsøe MP (1995), Optimization of Structural Topology, Shape and Material, Springer, Heidelberg.
10.
Bendsøe MP and Mota Soares CA (eds) (1993), Topology Design of Structures, NATO ASI, Kluwer Academic Publishers, Dordrecht.
11.
Bennet JA, Botkin ME (eds) (1986), The Optimum Shape: Automated Structural Design, Plenum Press, New York.
12.
Bensoussan A, Lions J-L, and Papanicolaou G (1978), Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam.
13.
Bergmann HW (ed) (1989), Optimization: Methods and Applications, Possibilities and Limitations, Springer, Berlin, Heiderlberg, New York.
14.
Bestle D and Schiehlen W (eds) (1995/1996), Optimization of Mechanical Systems, Stuttgart, Germany (1995), Kluwer Academic Publishers, Dordrecht, The Netherlands (1996).
15.
Blachut J and Eschenauer H (eds) (2001), Emerging Methods for Multidisciplinary Optimization, Lecture Notes CISM Course, Udine, Italy 2000, Springer, Wien/New York.
16.
Bloebaum CL (2000), WCSMO 3—Third World Congress of Structural and Multidisciplinary Optimization, 1999, Proceedings, Buffalo NY.
17.
Borrwall T and Petersson J (2000a), Topology optimization using regularized intermediate control, Report LiTH-IKP-R-1086, Division of Mechanics, Mechanical Engineering Systems, Linko¨ping Univ, Sweden, 24 pp.
18.
Borrwall T and Petersson J (2000b), Large scale topology optimization in 3D using parallel computing, Report LiTH-IKP-R-1130, Division of Mechanics, Mechanical Engineering Systems, Linko¨ping Univ, Sweden, 42 pp.
19.
Bourbaki N (1955), E´le´ments des Mathe´matique, Hermann, Paris.
20.
Bourdin B (1999), Filters in topology optimization, DCAMM Report No 627, Dept of Mathematics, Technical Univ of Denmark.
21.
Cherkaev A (2000), Variational Methods for Structural Optimization, Applied Mathematical Sciences 140, Springer-Verlag, New York.
22.
Cherkaev AV and Kohn RV (eds) (1997), Topics in the Mathematical Modelling of Composite Materials, Vol 31 of Progress in Nonlinear Differential Equations and Their Applications, Birkha¨user, Boston.
23.
Courant R and Hilbert D (1968), Methods of Mathematical Physics I, Interscience Pub, New York.
24.
Duysinx P (1995), Optimization topologique: Du milieu a la structure elastique, PhD Thesis, Faculty of Applied Sciences, Univ of Liege, Belgium.
25.
Duysinx P (1997), Layout optimization: A mathematical programming approach, DCAMM Report 540, Dept of Solid Mechanics, Technical Univ of Denmark.
26.
Eschenauer H (1968), Thermo-elastic plate equations: Buckling of a cantilever plate (in German), Doctoral Thesis, TH Darmstadt.
27.
Eschenauer H, Becker, W and Schumacher A (1998), Multidisciplinary structural optimization in aircraft design (in German), Final Report, BMBF-Bundesvorhaben DYNAFLEX.
28.
Eschenauer H and Olhoff N (eds) (1982), Optimization Methods in Structural Design, EUROMECH-Colloquium 164, B.I.-Wissenschaftsverlag, Wien.
29.
Eschenauer H, Olhoff N, and Schnell W (1996/97), Applied Structural Mechanics: Fundamentals of Elasticity, Load-Bearing Structures, Structural Optimization, Springer, Berlin, Heidelberg, New York, 398 p, 179 Figs.
30.
Eschenauer HA, Koski J, and Osyczka A (eds) (1990), Multicriteria Design Optimization, Springer, Berlin.
31.
Eschenauer HA, Mattheck C, and Olhoff N (1991), Engineering Optimization in Design Processes, Lecture Notes in Engineering, Springer, Berlin, Heidelberg, New York.
32.
Eschenauer HA and Schnell W (1993), Elastizita¨tstheorie-Grundlagen, Fla¨chentragwerke, Strukturoptimierung, 3, Aufl, BI Wissenschaftsverlag, Mannheim.
33.
Evans LC and Gariepy RF (1992), Measure Theory and Fine Properties of Functions, CRC Press, Boca Ratan.
34.
Fernandes PR, Rodrigues H, Guedes JM (1996), Topology Optimization of 3d Linear Elastic Structures with a Constraint on “Perimeter,” IDMEC/CPM ’96/004, Instituto Superior Technico, IDMEC, Lisboa/Portugal.
35.
Foldager J (1999), Design of composite structures, PhD Thesis, Institute of Mechanical Engineering, Aalborg Univ.
36.
Franz W (1960/64), Topology I (General Topology), Topology II (Algebraic Topology) (in German), De Gruyter (Samml, Go¨schen), Berlin.
37.
Galilei G (1638), Discorsi e Dimonstrazioni Mathematiche, a Due Nuove Scienze Attenenti alla Mecanica; Movimenti Locali, Leida.
38.
Gallagher RH and Zienkiewicz OC (eds) (1973), Optimum Structural Design—Theory and Applications, John Wiley and Sons, London.
39.
Gibianski LV and Cherkaev AV (1984), Design of Composite Plates of External Rigidity, Tech Report No 914, Ioffe Physico-Technical Institute, Acad. Sci. USSR, Leningrad, USSR (in Russian), English translation in: Cherkaev AV, Kohn RV (eds) (1997), Topics in the Mathematical Modelling of Composite Materials, Vol 31 of Progress in Nonlinear Differential Equations and Their Applications, Birkha¨user, Boston MA.
40.
Gibianski LV and Cherkaev AV (1987), Microstructures of composites of exremal rigidity and exact estimates of provided energy density (in Russian), Tech Report 1155, A. F. Ioffe Physical-Technical Institute, Academy of Sciences of the USSR, Leningrad, English Translation in: Cherkaev A. V and Kohn R. V. (eds) (1997), Topics in the Mathematical Modelling of Composite Materials, Birkha¨user: New York.
41.
Gilmore B, Hoeltzel DA, Azarm S, and Eschenauer HA (1993), Advances in design automation, Proc of the 1993 ASME DETC, Albuquerque, New Mexico/USA, Vol 1/2, ASME, New York.
42.
Goldberg DE (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley.
43.
Green AE and Zerna W (1968), Theoretical Elasticity, Clarendon Press, Oxford, 2nd Ed.
44.
Gutkowski W and Mro´z Z (eds) (1997), Second World Congress of Structural and Multidisciplinary Optimization, WCSMO-2, Institute of Fundamental Technological Research, Warsaw, Poland, Vol 182.
45.
Hammer VB (1994), Design of composite laminates with optimized stiffness, strength and damage properties, Ph.D.-thesis, DCAMM Report S 72, Dept for Solid Mechanics, Technical Univ of Denmark.
46.
Haug EJ, Choi KK, and Komkow V (1985), Design Sensitivity Analysis of Structural Systems, Academic Press, Orlando FL.
47.
Henschen S (2001), Topologieoptimierungen von Bauteilen mittels lokaler Verfahren unter Beru¨cksichtigung der globalen Konfigurationsentropie, Doctoral Thesis, RWTH Aachen, Faculty of Applied Sciences.
48.
Hilton PJ and Wylie S (1960), Homology Theory, an Introduction to Algebraic Topology, Cambridge.
49.
Hocking JG and Young GS (1961), Topology, Addison-Wesley Publ. Co, Massachussetts.
50.
Ho¨rnlein H and Schittkowski K (eds) (1993), Software Systems for Structural Optimization, Vol 110 International Series of Numerical Mathematics, Birkha¨user, Basel.
51.
Ja¨ger J (1980), Fundamental Topology (in German), Scho¨ningh-Verlag, Paderborn.
52.
Ja¨nich K (1996), Topology (in German), 3rd Ed, Springer-Verlag, Berlin, Heidelberg.
53.
Kelley JL (1955), General Topology, Van Nostrand, Toronto, New York, London.
54.
Kneppe G (1986), Direct solution strategies for the shape optimization of plate and shell structures (in German), Doctoral Thesis, Univ of Siegen, Fortschrittsberichte VDI-Reihe I, Nr. 135, Du¨sseldorf: VDI-Verlag.
55.
Koethe G (1960), Topologically Linear Domains 1 (in German), Springer-Verlag, Berlin, Go¨ttingen, Heidelberg.
56.
Krawietz A (1986), Material Theory (in German), Springer, Berlin, Heidelberg, New York, Tokyo.
57.
Krein MG and Nudelman AA (1977), The Markov Moment Problem and Extrenal Problems, Translation of Mathematical Monographs, 50, American Mathematical Society.
58.
Krog LA (1996), Layout optimization of disk, plate, and shell structures, Ph.D. thesis, Special Report No 27, Inst. of Mech. Eng., Aalborg Univ, Denmark.
59.
Kull, Ramm, Reiner (eds) (1995), Evolution and Optimization (in German), S Hirzel, Stuttgart.
60.
Lagrange JL (1770–1773), Sur la Figure des Colonnes, Miscellania Taurinensia.
61.
Langhaar HL (1962), Energy Methods in Applied Mechanics, John Wiley and Sons, New York.
62.
Lanzcos C (1962), The Variational Principles of Mechanics, Univ of Toronto Press, Toronto.
63.
Larsen UD, Sigmund O, and Bouwstra S (1995), Fabrication of compliant micromechanisms and materials with negative Poisson’s ratio (manuscript).
64.
Le´vy M (1873), La Statique Graphique et ses Applications aux Constructiones, Acade´mie des Sciences, Paris.
65.
Lewinski T and Sokolowski J (1999), Topological derivative for nucleation of non-circircular voids, Research Report No 3798, INRIA Lorraine, Nancy, France, 37 pp.
66.
Lurie KA (1993), Applied Optimal Control Theory of Distributed Systems, Plenum Press, New York/USA.
67.
Lurie KA and Cherkaev AV (1982), Exact estimates of conductivity of mixtures composed of two isotropic media taken in prescribed proportion, Report No 783, Ioffe Physico-Technical Institute, Acad. Sci. USSR, Leningrad, USSR (in Russian), English translation in: Cherkaev AV, Kohn RV (eds) (1997), Topics in the Mathematical Modelling of Composite Materials, Vol 31 of Progress in Nonlinear Differential Equations and Their Applications, Birkha¨user, Boston, MA, USA.
68.
Mattheck C (1991), Trees-the Mechanical Design, Heidelberg.
69.
Mattheck C (1992), Design in Nature (in German), Freiburg.
70.
Maute K (1998), Topology and shape optimization of thin-walled structures (in German), Ph.D.-Thesis, Report No 25, Institut fu¨r Baustatik, Universita¨t Stuttgart.
71.
Metzger K (1893), Wind as a Decisive Factor for the Growth of Trees (in German), Mu¨ndener Forstliche Hefte, Drittes Heft, Berlin.
72.
Michlin SG (1962), Variational Methods in Mathematical Physics (in German), Akademie-Verlag.
73.
Mota Soares CA (ed) (1986), Computer aided optimal design: Structural and mechanical systems, NATO/NASA/NSF/USAF Advanced Study Institute, Troia/PORTUGAL, June 29–July 11, 1986, Vol 2, Center for Mechanics and Materials of the Technical Univ of Lisbon.
74.
Neuber (1985), Theory of Notch Stresses (in German), Springer, Berlin, Heidelberg.
75.
Olhoff N and Rozvany GIN (eds) (1995), Structural and Multidisciplinary Optimization, Proc of WCSMO-1, Elsevier Science, Oxford/UK.
76.
Pedersen P (ed) (1993), Optimal Design with Advanced Materials, Proceedings IUTAM-Symposium Lyngby/DENMARK, Elsevier Science Publ, Amsterdam/The Netherlands.
77.
Pedersen P (1998), Elasticity—Anisotropy—Laminates, Solid Mechanics, Technical Univ of Denmark DTU.
78.
Pedersen P and Bendsøe MP (eds) (1999), IUTAM Symposium Synthesis in Bio Solid Mechanics, Copenhagen/Denmark, May 24–27, 1998, Kluwer, Dordrecht.
79.
Petersson J (1996), A finite element analysis of optimal variable thickness sheets, Mat. Report No 1996-44, Dept of Math., Technical Univ of Denmark.
80.
Petersson J (1998), Some convergence results in perimeter-controlled topology optimization, Tech Report LiTH-IKP-R-995, Institute of Technology, Dept of Mech Eng, Linko¨ping Univ.
81.
Pontrjagin LS (1957/58), Topological Classes I, II (in German), Leipzig.
82.
Prager W (1961), Introduction to Continuum Mechanics (in German), Birkha¨user Verlag, Basel.
83.
Prager W (1969), Optimality criteria derived from classical extremum principles, SM Studies Series, Solid Mechanics Division, Univ of Waterloo, Ontario/CANADA.
84.
Prasad B (ed) (1989), CAD/CAM Robotics and Factories of the Future, Vol 2 (Proc of 3rd Int Conf CARS and FOF ’88), Springer, Berlin.
85.
Querin OM (1997), Evolutionary structural optimization: Stress based formulation and implementation, PhD Dissertation, Dept of Aeronaut Eng, Univ of Sydney, Australia.
86.
Querin OM, Steven GP, and Xie YM (1996), EVOLVE User Guide, Dept of Aeronaut Eng, Univ of Sydney, Australia.
87.
Reiter TJ (1996), Functional adaption of bone and application in optimal structural design, Report, VDI Reihe 17, Nr. 145, VDI Verlag, Du¨sseldorf, Germany, 146 pp.
88.
Rozvany GIN (ed) (1991), Optimization of large structural systems, NATO-ASI Lecture Notes.
89.
Rozvany GIN (ed) (1997), Topology optimization in structural mechanics, Vol 374 of CISM Course and Lectures, Springer, Vienna/Austria.
90.
Rozvany
GIN
,
Bendsøe
MP
, and
Kirsch
U
, (
1995
),
Layout optimization of structures
,
Applied Mechanics Reviews
,
48
,
41
119
.
91.
Rozvany GIN, Olhoff N (eds) (2001), Topology Optimization of Structures and Composite Continua, NATO ARW, Budapest, Hungary, May 8–12, 2000, Kluwer Academic Publishers, Dordrecht, The Netherlands.
92.
Rozvany GIN, Zhou M, and Sigmund O (1992), Topology optimization in structural design, Research Report in Civil Engineering, 59, Univ of Essen/Germany.
93.
Sanchez-Palencia E (1980), Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics 127, Springer, Berlin.
94.
Schubert H (1960), Topology (in German), Teubner, Stuttgart.
95.
Schumacher A (1996), Topology optimization of component structures using hole positioning criteria (in German), Doctoral Thesis, FOMAAS-Report Nr T09-01.96, Univ of Siegen.
96.
Sedov LI (1966), Foundations of the Non-Linear Mechanics of Continua, London: Pergamon Press.
97.
Sigmund O (1994a), Design of material structures using topology optimization, PhD thesis, DCAMM report S 69, Dept of Solid Mechanics, Technical Univ of Denmark.
98.
Sokolnikoff IS (1964), Tensor-Analysis—Theory and Applications to Geometry and Mechanics of Continua, New York: John Wiley & Sons, 2nd ed.
99.
Sokolowski J and Zochowski A (1997), On topological derivative in shape optimization, Research Report No 3170, INRIA Lorraine, Nancy, France.
100.
Sokolowski J and Zochowski A (2000), Topological derivatives of shape functionals for elasticity systems, Research Report, INRIA Lorraine, Nancy, France, 16 pp.
101.
Soto CA (1993), Shape optimization of plate structures using plate homogenization with applications in mechanical design, PhD thesis, Dept of Mechanical Engineering, Michigan State Univ.
102.
Stadler W (ed) (1988), Multicriteria Optimization in Engineering and in the Sciences, Plenum Press, New York.
103.
Steven GP, Querin OM, and Li Q (1999a), Publications Collection Volume 2, 1996–1997, Structural Optimization Research Group of Australasia (SORGA), Dept Aeronaut Eng, Univ of Sydney, Australia, 247 pp.
104.
Steven GP, Querin OM, and Li Q (1999b), Publications Collection Volume 3, 1998, Structural Optimization Research Group of Australasia (SORGA), Dept Aeronaut Eng, Univ of Sydney, Australia, 278 pp.
105.
Steven GP and Xie YM (1997), Evolutionary Structural Optimization, Springer-Verlag, London, 188 pp.
106.
Szabo I (1977), History of Mechanical Principles (in German), Birkha¨user-Verlag, Basel, Stuttgart.
107.
Taylor JE and Bendsøe MP (2000), A mutual energy formulation for optimal structural design, MAT-Report No 2000-20, Inst of Math, Technical Univ of Denmark.
108.
Thomsen J (1992), Optimization of properties of anisotropic materials and topologies of structures (in Danish), PhD-thesis, Inst of Mech Eng, Aalborg Univ, Denmark.
109.
Topping BHV and Papadrakis M (eds) (1994), Advances in Structural Optimization, CIVIL-COMP Ltd, Edinburgh/UK.
110.
Truesdell C (1965), Continuum Mechanics IV-Problems of Nonlinear Elasticity, Gordon and Breach, New York.
111.
Truesdell C (1965), The Elements of Continuum Mechanics, Springer, Berlin, Heidelberg, New York.
112.
Tsai SW, Halpin JC, and Pagano NJ (eds) (1968), Composite Materials Workshop, Technomic Pub, Stamford CT.
113.
Van Gemert RJ (1996), Additive evolutionary structural optimization, Undergraduate Honours Thesis, Dept of Aeronaut Eng, Univ of Sydney, Australia.
114.
Vinson JR and Sierakowski RL (1987), The Behavior of Structures Composed of Composite Materials, Martinus Nijhoff Publ, Dordrecht, The Netherlands.
115.
Washizu K (1982), Variational Methods in Elasticity and Plasticity, 3rd Ed, Pergamon Press, New York.
116.
Weinert M (1994), Sequential and parallel strategies for finding optimal layouts of complex shell structures (in German), PhD-Dissertation, Uni-GH Siegen, FOMAAS, TIM-Bericht Nr T05-05.94.
117.
Wheedon RL and Zygmund A (1977), Measure and Integral: an Introduction to Real Analysis, Monographs in Pure and Applied Math, 43, Marcel Dekker, New York.
118.
Wolfersdorf Lv (1994), Inverse and Ill-posed Problems (in German), Berlin: Akademie-Verlag.
119.
Wolff J. (1892): On the transformation of bones (in German) Berlin.
120.
Young V (1997), Bi-directional Evolutionary Structural Optimization (BESO), 2-D and 3-D, Undergraduate Honours Thesis, Dept of Aeronaut Eng, Univ of Sydney, Australia.Papers
Papers
1.
Akgu¨n MA (2001), Damage tolerant topology optimization under multiple damage configurations, In: Rozvany GIN, Olhoff N (eds): Topology Optimization of Structures and Composite Continua, NATO ARW, Budapest, Hungary, May 8–12, 2000, Kluwer Academic Publishers, Dordrecht, The Netherlands (to appear).
2.
Allaire
G
(
1994
),
Explicit lamination parameters for three-dimensional shape optimization
,
J Control and Cybernetics
23
,
311
326
.
3.
Allaire G (2001), Shape optimization with general objective functions using partial relaxation, In: Rozvany G I N, Olhoff N (eds): Topology Optimization of Structures and Composite Continua, NATO ARW, Budapest, Hungary, May 8–12, 2000, Kluwer Academic Publishers, Dordrecht, The Netherlands (to appear).
4.
Allaire
G
and
Aubry
S
(
1999
),
On optimal microstructures for a plane shape optimization problem
,
Struct. Optim.
17
,
86
94
.
5.
Allaire G, Bonnetier E, Francfort G, and Jouve F (1995), Shape optimization by the homogenization method, Report, Lab d’Analyze Numerique, Universite Paris 6.
6.
Allaire
G
and
Kohn
R V
(
1993
),
Optimal design for minimum weight and compliance in plane stress using extremal microstructures
,
Eur. J. Mech, A/Solids
12
(
6
),
839
878
.
7.
Almgren
,
RF
(
1985
),
An isotropic three-dimensional structure with Poisson’s ratio=−1
,
J. Elasticity
15
,
427
430
.
8.
Ambrosio
L
and
Buttazzo
G
(
1993
),
An optimal design problem with perimeter penalization
,
Calc. Var.
1
,
55
69
.
9.
Atkin
RJ
and
Craine
RE
(
1976
),
Continuum theory of mixtures: Applications
,
J. Inst. Math. Applics
17
(
2
),
153
207
.
10.
Atrek E (1989), SHAPE: A program for shape optimization of continuum structures, Proc First Int Conf.: Opti’89, Comp. Mechanics Publications, Berlin: Springer Verlag, 135–144.
11.
Atrek E (1993), SHAPE: A structural shape optimization program, In: Ho¨rnlein H, Schittkowski K (eds): Software Systems for Structural Optimization, Vol 110 International Series of Numerical Mathematics, Basel: Birkha¨user Verlag, 229–249.
12.
Atrek E and Agarwal B (1992), Shape optimization of structural design, In: Billingsley K R, Brown III, H U Derohanes E (eds): Scientific Excellence in Supercomputing-The IBM 1990 Contest Prize Papers, Univ of Georgia, Athens/GA: Baldwin Press.
13.
Atrek E and Kodali R (1989), Optimum design of continuum structures with SHAPE, In: Prasad B. (ed): CAD/CAM Robotics and Factories of the Future, Vol 2 (Proc of 3rd Int Conf CARS and FOF-’88), Berlin: Springer, 11–15.
14.
Avellaneda
,
M
(
1987
),
Optimal bounds and microgeometrics for elastic two-phase composites
,
SIAM, J. Appl. Math.
47
(
6
), pp.
1216
1228
.
15.
Avellaneda M, and Milton GW (1989), Bounds on the effective elasticity tensor composites based on two-point correlation, In: Hui D, Kozik T J (eds): Composite Material Technology, ASME, 89–93.
16.
Banichuk
,
NV
(
1993
),
Shape design sensitivity analysis for optimization problems with local and global functionals
,
Mech. Struct. and Mach.
21
(
3
),
375
397
.
17.
Banichuk
NV
,
Barthold
F-J
,
Falk
A
, and
Stein
E
(
1995
),
Mesh refinement for shape optimization
,
Struct. Optim.
9
,
46
51
.
18.
Baumgartner
A
,
Harzheim
L
, and
Mattheck
C
(
1992
),
SKO: Soft Kill Option: The biological way to find an optimum structure topology
,
Int. J. Fatigue
14
(
6
),
387
393
.
19.
Beckers
,
M
(
1999
),
Topology optimization using a dual method with discrete variables
,
Struct. Optim.
17
,
14
24
.
20.
Beckers M and Fleury C (1997), Topology optimization involving discrete variables, In: Gutkowski W, Mro´z Z (eds): Second World Congress of Structural and Multidisciplinary Optimization, WCSMO-2, Institute of Fundamental Technological Research, Warsaw, Poland, Vol 2, 533–538.
21.
Bendsøe MP (1982), G-closure and homogenization problems arising in plate optimization, In: Eschenauer H, Olhoff N (eds): Optimization Methods in Structural Design, EUROMECH-Colloquium 164, Wien: B.1.-Wissenschaftsverlag, 270–275.
22.
Bendsøe
MP
(
1989
),
Optimal shape design as a material distribution problem
,
Struct. Optim.
,
1
,
193
202
.
23.
Bendsøe MP (1997), Variable-topology optimization: Status and challenges, In: Wunderlich W (ed): Proc ICTAM, Kyoto, August 25–31, 1996, Elsevier Science BV, Amsterdam, The Netherlands.
24.
Bendsøe MP (1999), Variable-topology optimization: Status and challenges, In: Wunderlich W. (ed): Proc European Conf on Computational Mechanics—ECCM ’99, Aug 31–Sept 3, 1999, Munich, Germany, CD-Rom, Tech Univ of Munich, Germany, 21 pp.
25.
Bendsøe
MP
and
Diaz
A
(
1998
),
A method for treating damage related criteria in optimal topology design of continuum structures
,
Struct. Optim.
16
(
2/3
),
108
115
.
26.
Bendsøe MP, Diaz A, and Kikuchi N (1993), Topology and generalized layout optimization of elastic structures, In: Bendsøe MP, Mota Soares CA (eds): Topology Design of Structures, Dordrecht: Kluwer Academic Publishers, 159–205.
27.
Bendsøe
MP
,
Diaz
A
,
Lipton
R
, and
Taylor
JE
(
1994a
),
Optimal design of material properties and material distribution for multiple loading conditions
,
Int. J. of Num. Meth. Engng
38
,
1149
1170
.
28.
Bendsøe
MP
,
Guedes
JM
,
Haber
RB
,
Pedersen
P
, and
Taylor
JE
(
1994b
),
An analytical model to predict optimal material properties in the context of optimal structural design
,
J. Appl. Mech.
61
(
),
930
937
.
29.
Bendsøe
MP
,
Guedes
JM
,
Plaxton
S
, and
Taylor
JE
(
1996
),
Optimization of structure and material properties for solids composed of softening material
,
Int. J. Solids Struct
33
,
1799
1813
.
30.
Bendsøe
MP
and
Kikuchi
N
(
1988
),
Generating optimal topologies in structural design using a homogenization method
,
Comp. Meths. Appl. Mech. Engrg
71
,
197
224
.
31.
Bendsøe
MP
and
Sigmund
O
(
1999
),
Material interpolations in topology optimization
,
Arch. Appl. Mech.
69
,
635
654
.
32.
Bennet JA and Botkin ME (1983), Shape optimization of two-dimensional structures with geometric problem description and adaptive mesh refinement, AIAA/ASME/ASCE/AHS 24th Structures, Sturctural Dynamics and Materials Conf (Part I), Lake Tahoe, Nevada/USA, 422–431.
33.
Bennet
JA
, and
Botkin
ME
(
1985
),
Structural shape optimization with geometric description and adaptive mesh refinement
,
AIAA J.
23
,
458
464
.
34.
Ben-Tal A and Taylor JE (1991), A unified model for elastoplatic structural analysis via dual variational principles, In: Komkov V (ed): Proc SIAM-Dayton Conf on Design Theory.
35.
Bletzinger
K-U
and
Kimmich
S
,
Ramm
,
E
(
1991
),
Effecient modeling in shape optimal design
,
Computing Systems in Engineering
2
,
483
495
.
36.
Botkin ME (1981), Shape optimization of plate and shell structures, AIAA/ASME/ASCE/AHS 22nd Structural Dynamics and Materials Conf (Part I), Atlanta, GA, 242–249.
37.
Bourgat JF (1977), Numerical experiments of the homogenization method for operators with periodic coefficients, Lecture Notes in Mathematics 740, Springer-Verlag, Berlin, 330–356.
38.
Bremicker
M
,
Kikuchi
N
,
Chirehdast
M
, and
Papalambros
PY
(
1991
),
Integrated topology and shape optimization in structural design
,
Mech. Struct. and Mach
19
(
4
),
551
587
.
39.
Bruns TE and Tortorelli DA (2000a), Topology optimization of nonlinear elastic structures and compliant mechanisms, Comp. Meth. Appl. Mech. Engrg. (to appear).
40.
Bruns TE and Tortorelli DA (2000b), Topology optimization of geometrically nonlinear structures and complaint mechanisms, In: Bloebaum CL (ed): WCSMO-3-Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
41.
Buhl
T
,
Pedersen
CBW
, and
Sigmund
O
(
2000
),
Stiffness design of geometrically nonlinear structures using topology optimization
,
Struct. Multidisc. Optim
19
,
93
104
.
42.
Bulman S and Hinton E (2000), Constrained adaptive topology optimization of engineering structures, In: Bloebaum CL (ed): WCSMO-3-Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
43.
Burns RH and Crossley FRE (1964), Kinetostatic synthesis of flexible link mechanisms, ASME-Paper, 68(36).
44.
Burns
T
and
Cherkaev
A
(
1997
),
Optimal distribution of multimaterial composites for torsional beams
,
Struct. Optim.
13
,
4
11
.
45.
Buttazzo
G
and
Dal Maso
G
(
1993
),
An existence result for a class of shape optimization problems
,
Arch. Rational Mech. Anal.
122
,
183
195
.
46.
Canfield S and Frecker M (2000), Topology optimization of compliant mechanisms for displacement amplifcation, In: Bloebaum CL (ed): WCSMO-3-Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
47.
Carter
DR
and
Fyhrie
DP
(
1990
),
Femoral head apparent density distribution predicted from bone stresses
,
J. Biomech.
23
,
1
10
.
48.
Carter
DR
,
Fyhrie
DP
, and
Whalen
RT
(
1987
),
Trabecular bone density and loading history: Regulation of connective tissue biology by mechanical energy
,
J. Biomech.
20
,
785
794
.
49.
Carter
DR
, and
Hayes
WC
(
1977
),
The compressive behavior of bone as a two-phase porous structure
,
J. Bone and Joint Surg.
59-A
,
954
962
.
50.
Carter
DR
,
Orr
TE
, and
Fyhrie
DP
(
1989
),
Relationship between loading history and femoral cancellous bone architecture
,
J. Biomech.
22
,
231
244
.
51.
Ce´a
,
J
(
1986
),
Conception optimale ou identification de forme, calcule rapide de la de´rive´e directionelle de la fonction cou^t
,
MAAN
30
(
3
),
371
402
.
52.
Ce´a J, Gioan A, and Michel J (1973), Quelques re´sultats sur I’identification de domains, CALCOLO.
53.
Ce´a
J
and
Malanowski
K
(
1970
),
An example of a max-min problem in partial differential equations
,
SIAM J. Control
8
,
305
316
.
54.
Chang
K-H
and
Choi
KK
(
1992
),
A geometry-based parameterization method for shape design of elastic solids
,
Mech. Struct. Mach.
20
(
2
),
215
252
.
55.
Chang KH and Tang PS (2000), Integration of topology and shape design optimizations for structural components, In: Bloebaum CL (ed): WCSMO-3-Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
56.
Cheng
G
(
1981
),
On non-smoothness in optimal design of solid, elastic plates
,
Int. J. Solids Struct.
17
,
795
810
.
57.
Cheng G (1997), Some development of structural topology optimization, In: Tatsumi T, Watanabe E, and Kambe T (eds): Theoretical and Applied Mechanics 1996, Elsevier Sciences BV, Amsterdam, 379–394.
58.
Cheng
G
and
Guo
X
(
1997
),
ε-related approach in structural topology optimization
,
Struct. Optim.
13
(
4
),
258
266
.
59.
Cheng
G
and
Jiang
Z
(
1992
),
Study on topology optimization with stress constraints
,
J. Eng. Optim.
20
,
129
148
.
60.
Cheng
G
and
Olhoff
N
(
1981
),
An investigation concerning optimal design of solid elastic plates
,
Int. J. Solids Struct.
17
,
305
323
.
61.
Cheng
G
and
Olhoff
N
(
1982
),
Regularized formulation for optimal design of axisymmetric plates
,
Int. J. Solids Struct.
18
(
2
),
153
169
.
62.
Cherkaev
AV
and
Gibiansky
LV
(
1993
),
Coupled estimates for the bulk and shear moduli of a two-dimensional isotropic elastic composite
,
J. Mech. Phys. Solids
41
(
5
),
937
980
.
63.
Cherkaev
AV
and
Gibiansky
LV
(
1994
),
Variational principles for complex conductivity, viscoelasticity and similar problems with complex moduli
,
J. Math. Physics
35
(
1
),
127
145
.
64.
Cherkaev
AV
and
Gibiansky
LV
(
1996
),
External structures of multiphase heat conducting composites
,
Int. J. Solids Struct
33
(
18
),
2609
2618
.
65.
Cherkaev
AV
and
Palais
R
(
1996
),
Optimal design of three-dimensional axisymmetric elastic structures
,
Struct. Optim.
12
,
35
45
.
66.
Clausen T (1851), U¨ber die Form architektonischer Sa¨ulen, Bull. Phys-Math de l’Acade´my St. Petersburg, 9, 368.
67.
Cowin
SC
(
1987
),
Bone remodeling of diaphyseal surfaces by torsional loads: Theoretical predictions
,
J. Biomech.
20
,
1111
1120
.
68.
Cowin
SC
,
Hart
RT
,
Balser
JR
, and
Kohn
DH
(
1985
),
Functional adaptation in long bones: Establishing in vivo values for surface remodeling rate coefficients
,
J. Biomech.
18
,
665
684
.
69.
Cristescu M and El-Yafi F (1986), Interactive shape optimization, In: Mota Soares CA (ed): Computer Aided Optimal Design: Structural and Mechanical Systems, NATO/NASA/NSF/USAF Advanced Study Institute, froia/PORTUGAL, June 29–July 11, 1986, Vol 2, Center for Mechanics and Materials, Tech Univ of Lisbon, 262–271.
70.
Dems
K
and
Mroz
Z
(
1983
),
Variational approach by means of adjoint systems to structural optimization and sensitivity analysis Part I
,
Int. J. Solids Struct.
19
,
677
692
.
71.
Dems
K
and
Mroz
Z
(
1984
),
Variational approach by means of adjoint systems to structural optimization and sensitivity analysis Part II
,
Int. J. Solids Struct.
20
,
527
552
.
72.
DeRose
Jr
GCA
and
Diaz
AR
(
1999
),
Single scale wavelet approximations in layout optimization
,
Struct. Optim.
18
,
1
11
.
73.
DeRose
Jr
GCA
and
Diaz
AR
(
2000
),
Solving three-dimensional layout optimization problems using fixed scale wavelets
,
Comput. Mech.
25
(
2
),
274
285
.
74.
Diaz
A
and
Bendsøe
MP
(
1992
),
Shape optimization of structures for multiple loading situations using a homogenization method
,
Struct. Optim.
4
,
17
22
.
75.
Diaz
A
and
Lipton
R
(
1997
),
Optimal material layout for 3D elastic structures
,
Struct. Optim.
13
,
60
64
.
76.
Diaz
A
,
Lipton
R
, and
Soto
CA
(
1994
),
A new formulation of the problem of optimum reinforcement of Reissner-Midlin plates
,
Comp. Meth. Appl. Mechs. Eng
123
,
121
139
.
77.
Diaz
A
, and
Sigmund
O
(
1995
),
Checkerboard patterns in layout optimization
,
Struct. Optim.
10
,
40
45
.
78.
Diaz
AR
and
Kikuchi
N
(
1992
),
Solutions to shape and topology eigenvalue optimization problems using a homogenization method
,
Int. J. Num. Math. Eng
35
,
1487
1502
.
79.
Diaz AR and Lipton R (2000), Optimal material layout in three-dimensional elastic structures subjected to multiple loads, Mech. Struct. Mach. 28(2/3).
80.
Duysinx P (2000), Topology optimization with different stress limits in tension and compression, In: Bloebaum CL (ed): WCSMO-3-Proc 3d World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
81.
Duysinx
P
and
Bendsøe
MP
(
1998
),
Topology optimization of continuum structures with local stress constraints
,
Int. J. Num. Meths. Eng.
43
(
18
),
1453
1478
.
82.
Duysinx P and Sigmund O (1998), New developments in handling stress constraints in optimal material distribution, Proc of the 7th AIAA/USAF/NASAISSMO Symp on Multidisciplinary Analysis and Optimization, Vol 1, AIAA, 1501–1509.
83.
Eschenauer HA (1988), Multicriteria optimization techniques for highly accurate focussing systems, In: Stadler W (ed): Multicriteria Optimization in Engineering and in the Sciences, Plenum Press, New York, 309–354.
84.
Eschenauer
HA
(
1992
),
Multidisciplinary modeling and optimization in design processes
,
ZAMM
72
,
6
,
T437–T447
T437–T447
.
85.
Eschenauer HA (1998), Development of highly precise radio telescopes: A typical multidisciplinary problem, In: Belegundu A and Mistree F (eds): Optimization in Industry-1997, ASME, 13–30.
86.
Eschenauer HA (1999), Multidisciplinary engineering strategies for product and process development—modeling, simulation, optimization, applications, In: Toropov VV (ed): Engineering Design Optimization, Product and Process Development, Proc 1st ASMO UK/ISSMO Conf on Engineering Design Optimization, MCB Univ Press, Bradford, 1–17.
87.
Eschenauer
HA
,
Gatzlaff
H
, and
Kiedrowski
HW
(
1980
),
Entwicklung und Optimierung hochgenauer Panelstrukturen
,
Technische Mitteilungen Krupp, Forsch-Berichte
38
,
43
57
.
88.
Eschenauer HA, Geilen J, and Wahl H J (1993), SAPOP: An optimization procedure for multicriteria structural design, In: Ho¨rnlein H and Schittkowski K (eds): Software Systems for Structural Optimization, Vol 110 International Series of Numerical Mathematics, Basel: Birkha¨user Verlag, 207–227.
89.
Eschenauer
HA
,
Kobelev
VV
, and
Schumacher
A
(
1994
),
Bubble method for topology and shape optimization of structures
,
Struct. Optim.
8
,
42
51
.
90.
Eschenauer HA and Schumacher A (1993a), Bubble Method: A special strategy for finding best possible initial designs, Proc of 1993 ASME Design Tech Conf-19th Design Automation Conf, Albuquerque, New Mexico, Sept. 19–22, Vol 65-2, 437–443.
91.
Eschenauer
HA
and
Schumacher
A
(
1993b
),
Possibilities of applying various procedures of topology optimisation to components subject to mechanical loads
,
ZAMM
73
,
T392–T394
T392–T394
.
92.
Eschenauer HA and Schumacher A (1997), Topology and shape optimization procedures using hole positioning criteria-theory and applications, In: Rozvany GIN (ed): Topology Optimization in Structural Mechanics, Vol 374 of CISM Courses and Lectures, Wien: Springer, 135–196.
93.
Eschenauer HA, Schumacher A, and Vietor T (1993), Decision makings for initial designs made of advanced materials, In: Bendsøe MP and Mota Soares CA (eds): Topology Design of Structures, Dordrecht: Kluwer Academic Publ, 469–480.
94.
Eschenauer
HA
and
Wahl
HJ
(
1993
),
A decomposition strategy for optimization of structures using the FE-submodel-technique
,
ZAMM
73
,
T395–T397
T395–T397
.
95.
Farin G (1991), Splines in CAD/CAM, In: Surveys on Mathematics for Industry, Springer-Verlag, Austria, 1991, pp. 39–73.
96.
Fernandes
P
,
Guedes
JM
, and
Rodrigues
H
(
1999a
),
Topology optimization of three-dimensional linear elastic structures with a constraint on “perimeter
,”
Comput. Struct.
73
,
583
594
.
97.
Fernandes
P
,
Rodrigues
H
, and
Jocobs
C
(
1999b
),
A model of bone adaptation using a global optimization criterion based on the trajectorial theory of Wolff
,
Comp. Meth. Biomech. Biomed. Eng.
2
,
125
138
.
98.
Fleury C (1986), Shape optimal design by the convex linearization method, In: Bennet JA and Botkin ME. (eds): The Optimum Shape: Automated Structural Design, New York: Plenum Press, 297–320.
99.
Foldager J (1997), Design optimization of laminated composite plates divided into rectangular patches with use of lamination parameters, In: Gutkowski W and Mroz Z (eds): Proc WCSMO 2-Second World Congress of Structural and Multidisciplinary Optimization, Inst of Fundamental Technological Research, Warsaw, Vol 2, 669–675.
100.
Foldager
J
,
Olhoff
N
, and
Hansen
JS
(
1998
),
A general procedure forcing convexity in ply angle optimization in composite laminates
,
Struct. Optim.
16
(
2/3
),
201
211
.
101.
Foldager JP, Hansen JS, and Olhoff N (2000), A convex formulation in ply-angle optimization, In: Bloebaum CL (ed): WCSMO-3-Proc 3rd World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY. CD-Rom, Univ of Buffalo.
102.
Folgado J and Rodrigues H (1997), Topology optimization methods applied to the design of orthopaedics implants, In: Gutkowski W and Mro´z Z (eds): WCSMO-2: Second World Congress of Structural and Multidisciplinary Optimization, Inst of Fundamental Technological Research, Warsaw, Poland, Vol 2, 563–568.
103.
Folgado
J
and
Rodrigues
H
(
1998
),
Structural optimization with a nonsmooth buckling load criterion
,
Control Cybernetics
27
(
2
),
235
253
.
104.
Folgado J, Rodrigues H, and Guedes JM (1995), Layout design of plate reinforcements with a buckling load criterion, In: Olhoff N and Rozvany GIN (eds): Structural and Multidisciplinary Optimization, ISSMO, Goslar, Germany, Oxford: Pergamon, 659–666.
105.
Francfort
GA
and
Murat
F
(
1986
),
Homogenization and optimal bounds in linear elasticity
,
Arch. Rat. Mech. Anal
94
,
307
334
.
106.
Frecker M, Kikuchi N, and Kota S (1997), Optimal design of compliant mechanisms, In: Gutkowski W and Mroz Z (eds): Proc WCSMO 2-Second World Congress of Structural and Multidisciplinary Optimization, Inst. of Fundamental Technological Research, Warsaw, Vol 1, 345–350.
107.
Frecker
M
,
Kikuchi
N
, and
Kota
S
(
1999
),
Topology optimization of compliant mechanisms with multiple outputs
,
Struct. Optim.
17
,
269
278
.
108.
Freudenthal AM and Geiringer H (1958), The mathematical theories of the inelastic continuum, In: Flu¨gge S, Handbuch der Physik VI, Berlin, Go¨ttingen, Heidelberg: Springer, 229–269.
109.
Fukunaga
H
and
Vanderplaats
GN
(
1991
),
Stiffness optimization of orthotropic laminates composites using lamination parameters
,
AIAA J
29
,
641
646
.
110.
Garreau S, Masmoudi M, and Guillaume P (1999), The topological sensitivity for linear isotropic elasticity, ECCM’99, Munich/Germany.
111.
Grauer M and Boden H (1993), On the solution of nonlinear engineering optimization problems on parallel computers, FOMAAS Research Report, TIM01-03.94, 96–105.
112.
Grenestedt JL and Gudmundsson P (1993), Layup optimization of composite material structures, In: Pedersen P (ed): Optimal Design with Advanced Materials, Proc IUTAM Symp, 311–336.
113.
Guedes
JM
and
Kikuchi
N
(
1990
),
Pre- and postprocessing for materials based on the homogenization method with adaptive element methods
,
Comput. Meth. Appl. Mech. Eng.
83
,
143
198
.
114.
Guedes
JM
and
Taylor
JE
(
1997
),
On the prediction of material properties and topology for optimal continuum structures
,
Struct. Optim.
14
,
193
199
.
115.
Guillaume
P
and
Masmoudi
M
(
1994
),
Computation of high order derivatives in optimal shape design
,
Numerische Mathematik.
67
,
231
250
.
116.
Haber RB and Bendsøe MP (1998), Problem formulation, solution procedures and geometric modeling: Key issues in variable-topology optimization, In: Proc 7th AIAA/USAF/NASA/ISSMO Symp on Multidisciplinary Analysis and Optimization, Vol I, AIAA, 1864–1837.
117.
Haber RB, Jog CS, and Bendsøe MP (1994), Variable-topology shape optimization with a control on perimeter, In: Advances in Design Automation, Vol 69, ASME, 261–272.
118.
Haber RB, Jog CS, and Bendsøe MP (1995), The perimeter method—a new approach to variable-topology shape optimization, In: Olhoff N, Rozvany GIN (eds): Structural and Multidisciplinary Optimization, Proc of WCSMO-1, Elsevier Science, Oxford/UK, 153–160.
119.
Haber
RB
,
Jog
CS
, and
Bendsøe
MP
(
1996
),
A new approach to variable-topology design using a constraint on the perimeter
,
Struct. Optim.
11
,
1
12
.
120.
Haftka
RT
(
1984
),
An improved computational approach for multilevel optimum design
,
J. Struct. Mech.
12
,
245
261
.
121.
Hajela
P
(
1990
),
Genetic Search—An approach to the nonconvex optimization problem
,
AIAA J
28
,
1205
1210
.
122.
Hajela P, Lee E, and Lin C-Y (1993), Genetic algorithms in structural topology optimization, In: Bendsøe MP, Mota Soares CA (eds): Topology Design of Structures, Kluwer Academic Publ, Dordrecht, 117–134.
123.
Hajela P and Vittal S (2000), Evolutionary computing and structural topology optimization-A state of the art assessment, In: Olhoff N and Rozvany G (eds): Lecture Notes, NATO Advanced Research Workshop, Kluwer Academic Publ (to appear).
124.
Hammer
VB
(
1999
),
Optimal laminate design subject to single membrane loads
,
Struct. Optim.
17
,
65
74
.
125.
Hammer
VB
,
Bendsøe
MP
,
Lipton
R
, and
Pedersen
P
(
1997
),
Parametrization in laminate design for optimal compliance
,
Int. J. Solids Struct.
34
(
4
),
415
434
.
126.
Hammer
VB
and
Olhoff
N
(
2000a
),
Topology optimization of continuum structures subjected to pressure loading
,
Struct. Multidisc. Optim
19
,
85
92
.
127.
Hammer VB and Olhoff N (2000b), Topology optimization with design dependent loads, In: Bloebaum CL (ed): WCSMO 3-Third World Congress of Structural and Multidisciplinary Optimization, Buffalo NY 1999.
128.
Hartzheim L and Graf G (1995), Optimization of engineering components with the SKO method, Proc of 9th Int Conf on Vehicle Structural Mechanics and CAE, April 4–6, 1995, Troy MI, 235–243.
129.
Hartzheim L and Graf G (1997), Shape and topology optimization in automotive industry, High Performance Computing in Automotive Design, Engineering and Manufacturing, Proc of 3rd Int Conf on High Performance Computing in Automotive Industry, Oct. 7–10, 1996, Paris, France, 167–182.
130.
Hartzheim
L
,
Graf
G
,
Klug
S
, and
Liebers
J
(
1999
),
Topology optimisation in practice
,
ATZ, Automobiltechnische Zeitschrift
101
,
7/8
,
11
16
.
131.
Hashin
Z
and
Shtrikman
,
S
(
1963
),
A variational approach to the theory of the elastic behavior of multiphase materials
,
J. Mech. Phys. Solids.
11
,
127
140
.
1.
Hassani
B
and
Hinton
E
(
1998
),
A review of homogenization and topology optimization. Part I: Homogenization theory for media with periodic structure
,
Comput Struct
71
(
6
),
707
718
,
2.
Part II: Analytical and numerical solution of homogenization equations
,
71
(
6
),
719
738
,
3.
Part III: Topology optimization using optimality criteria
,
71
(
6
),
739
756
.
1.
Henkel F-O, Schumann-Luck A, and Atrek E (1991), Formoptimierung mit NISA-SHAPE, XX, Int Finite Element Congress (FEM ’91), Baden-Baden/Germany.
2.
Hinton E, Sienz J, Bulman S, and Hassani B (1997), Fully integrated design optimization of engineering structures using adaptive finite element models, In: Gutkowski W and Mroz Z (eds.): Proceedings WCSMO 2-Second World Congress of Structural and Multidisciplinary Optimization, Inst of Fundamental Technological Research, Warsaw, Vol 1, 73–78.
3.
Huiskes
R
,
Weinans
H
,
Grooteboer
HJ
,
Dalstra
M
,
Fudala
B
, and
Slooff
TJ
(
1987
),
Adaptive bone-remodeling theory applied to prosthetic-design analysis
,
J. Biomech.
22
,
1135
1150
.
4.
Imam
MH
(
1982
),
Three-dimensional shape optimization
,
Int J Numer Methods Eng
18
,
661
673
.
5.
Jacobsen
JB
,
Olhoff
N
, and
Ro̸nholt
E
(
1997
),
Generalized shape optimization of three-dimensional structures using materials with optimum microstructures
,
Mech. Mat.
28
,
207
225
.
6.
Jog
C
and
Haber
RB
(
1996
),
Stability of finite element models for distributed-parameter optimization and topology design
,
Comp. Meth. Appl. Mech. Eng.
130
,
203
226
.
7.
Jog CS and Haber RB (1995), Checkerboard and other spurious modes in solutions to distributed-parameter and topology design problems, In, Olhoff N and Rozvany GIN (eds): WCSMO-1-First World Congress of Structural and Multidisciplinary Optimization, Pergamon Press, Oxford, UK, 237–242.
8.
Jog
CS
,
Haber
RB
, and
Bendsøe
MP
(
1994
),
Topology design with optimized adaptive materials
,
Int. J. Num. Meths. Eng.
37
,
1323
1350
.
9.
Kemmler R, Schwartz S, and Ramm E (2000), Topology optimization including geometrically nonlinear response, In: Bloebaum CL (ed): WCSMO-3-Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
10.
Kikuchi
N
,
Chung
KY
,
Torigaki
T
, and
Taylor
JE
(
1986
),
Adaptive finite element methods for shape optimization of linearly elastic structures
,
Comp. Meth. Appl. Mech. Eng.
57
,
67
89
.
11.
Kim
CJ
,
Pisano
AP
, and
Muller
RS
(
1992
),
Silicon-processed overhanging microgripper
,
J. Microelectromech. Systems
,
1
,
31
36
.
12.
Kirsch
U
(
1990
),
On the relationship between optimum structural topologies and geometries
,
Struct Optim
2
,
39
45
.
13.
Kita
E
and
Tanie
H
(
1999
),
Topology and shape optimization of continuum structures using GA and BEM
,
Struct Optim
17
,
130
139
.
14.
Kohn
RV
and
Strang
G
(
1986a
),
Optimal design in elasticity and plasticity
,
Num. Meths. Eng.
22
,
183
188
.
1.
Kohn
RV
and
Strang
G
(
1986b
),
Optimal design and relaxation of variational problems. Part I:
,
Comm. Pure Appl. Math.
39
,
1
25
,
2.
Part II:
39
,
139
182
;
3.
Part III:
39
,
353
357
.
1.
Korycki R, Eschenauer HA, and Schumacher A (1993), Incorporation of adjoint method sensitivity analysis within the optimization procedure SAPOP, In: Proc of 11th Polish Conf. on Computer Methods in Mechanics, May 11–15.
2.
Krog LA and Olhoff N (1995/96), Topology optimization of integral rib reinforcement of plate and shell structures with weighted-sum and max-min objectives, In: Bestle D and Schiehlen W (eds): Optimization of Mechanical Systems, Stuttgart, Germany (1995), Kluwer Academic Publ, Dordrecht, The Netherlands (1996), 171–179.
3.
Krog LA and Olhoff N (1997), Topology and Reinforcement layout optimization of disk, plate, and shell structures, In: Rozvany GIN (ed): Topology Optimization in Structural Mechanics, Vol 374 of CISM Course and Lectures, Springer, Vienna, Austria, 237–322.
4.
Krog
LA
and
Olhoff
N
(
1999
),
Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives
,
Comput Struct
72
,
535
563
.
5.
Kutylowski
R
(
2000
),
On an effective topology procedure
,
Struct. Multidisc. Optim
20
49
56
.
6.
Lakes
R
(
1993
),
Design considerations for materials with negative Poisson’s ratio
,
J. Mech. Design
,
115
,
696
700
.
7.
Lekszycki T (2000), Application of optimally conditions in modeling of the adaptation phenomenon of bones, In: Bloebaus C. L. (ed), WCSMO-3-Proc Third World Congress of Structural and Multidisciplinary Optimzation, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
8.
Leon (1908), U¨ber die Sto¨rungen der Spannungsverteilung, die in elastischen Ko¨rpern durch Bohrungen und Bla¨schen entstehen, O¨sterr, Wochenzeitschrift fu¨r den o¨ffentlichen Baudienst, Nr 9, 163–168.
9.
Levinson
M
(
1965
),
The complementary energy theorem in finite elasticity
,
J. Appl. Mech
32
,
Dec
,
826
828
.
10.
Lewinski T, Sokolowski J, and Zochowski A (2000), Justification of the bubble method for the compliance minimization problems of plates and spherical shells, In: Bloebaum CL (ed): WCSMO-3-Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
11.
Lin
C-Y
and
Hajela
P
(
1992
),
Genetic search strategies in multicriterion optimal design
,
Struct Optim
4
,
144
156
.
12.
Lipton
R
(
1994
),
Optimal bounds on effective elastic tensors for orthotropic composites
,
Proc R. Soc. Lond. A
,
443
,
399
410
.
13.
Lipton
R
(
1994a
),
On optimal reinforcement of plates and choice of design parameters
,
J. Control Cybernetics
23
(
3
),
481
493
.
14.
Lipton
R
(
1994b
),
Optimal design and relaxation for reinforced plates subject to random transverse loads
,
J. Probabilistic Eng. Mech.
9
,
167
177
.
15.
Lipton R and Diaz A (1995), Moment formulations for optimum layout in 3D elasticity, In: Olhoff N and Rozvany GIN (eds): Structural and Multidisciplinary Optimization, Pergamon Press, Oxford, UK, 161–168.
16.
Lipton
R
and
Diaz
A
(
1997a
),
Optimal material layout for 3-D elastic structures
,
Struct Optim
13
,
60
64
.
17.
Lipton
R
and
Diaz
A
(
1997b
),
Reinforced Mindlin plates with extremal stiffness
,
Int. J. Solids Struct
34
(
28
),
3691
3704
.
18.
Liu J-S, Parks GT, and Clarkson PJ (1999a), Topology optimization of both trusses and continuum structures using a unified metamorphic development method, Proc of 1st ASMO UK/ISSMO Conf on Engineering Design Optimization, llkley, West Yorkshire, UK, 257–264.
19.
Liu J-S, Parks GT, and Clarkson PJ (1999b), Metamorphic Development: A new topology optimization method for truss structures, Proc of 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf, St Louis MO, April 12–15, 1999, AIAA-99-1387, 1578–1588.
20.
Liu J-S, Parks GT, and Clarkson PJ (1999c), Can a structure grow towards an optimum topology layout?-Metamorphic Development: a new topology optimization method, Proc 3rd World Congress of Structural and Multidisciplinary Optimization (WCSMO-3), Buffalo NY, May 17–21, 1999.
21.
Liu
JS
,
Parks
GT
, and
Clarkson
PJ
(
2000
),
Metamorphic development: A new topology optimization method for continuum structures
,
Struct. Multidisc. Optim
20
,
288
300
.
1.
Lurie
KA
and
Cherkaev
AV
(
1986
),
Effective characteristics of composite materials and the optimal design of structural elements
,
Uspekhi Mekhaniki
9
,
3
81
.
2.
English translation in : Cherkaev AV, Kohn RV (eds): Topics in the Mathematical Modelling of Composite Materials, Vol 31 of Progress in Nonlinear Differential Equations and Their Applications, Birkha¨user, Boston MA, 1997, 175–258.
1.
Lurie
KA
,
Cherkaev
AV
, and
Fedorov
A
(
1982
),
Regularization of optimal design problems for bars and plates, Part I:
JOTA
37
,
499
522
.
2.
Part II:
JOTA
37
,
523
543
;
3.
Part III:
JOTA
42
,
247
284
.
1.
Ma
ZD
,
Cheng
HC
, and
Kikuchi
N
(
1994
),
Structural design for obtaining desired eigenfrequencies by using the topology and shape optimization method
,
Comput. Syst. Eng.
5
,
77
89
.
2.
Ma
ZD
,
Kikuchi
N
, and
Cheng
HC
(
1995a
),
Topological design for vibrating structures
,
Comp. Meth. Appl. Mech. Eng.
121
,
259
280
.
3.
Ma ZD, Kikuchi N, Cheng HC, and Hagiwara I (1995b), Topological optimization technique for free vibration problems, J. Appl. Mech. (March ’95).
4.
Magister R and Post PU (1995), Use of structural optimization in the development of pneumatic components, In: Olhoff N and Rozvany GIN (eds): Proc WCSMO 1-First World Congress of Structural and Multidisciplinary Optimization, Goslar, Pergamon Press, Oxford, 445–452.
5.
Maier G (1973), Limit design in the absence of a given layout: A finite element zero-one programming problem, In: Gallagher RH and Zienkiewicz OC (eds): Optimum Structural Design-Theory and Applications, London: John Wiley and Sons, 223–239.
6.
Martin
RB
(
1972
),
The effects of geometric feedback in the development of osteoporosis
,
J. Biomech
5
,
447
455
.
7.
Martin
RB
and
Burr
DB
(
1982
),
A hypothetical mechanism for the stimulation of Osteonal remodeling by fatigue damage
,
J. Biomech
15
,
137
139
.
8.
Mattheck C, Baumgartner A, and Walther F (1995), Bauteiloptimierung durch die Simulation biologischen Wachstums, In: Kull, Ramm, Reiner (eds): Evolution und Optimierung, Stuttgart: S. Hirzel, 107–120.
9.
Maute K and Ramm E (1994a), Adaptive techniques in topology optimization, 5th AIAA/USAF/NASA/ISSMO Symp on Multidisciplinary Analysis and Optimization, Vol 1, AIAA, 121–131.
10.
Maute
K
and
Ramm
E
(
1994b
),
Adaptive topology optimization
,
Struct Optim
10
,
100
112
.
11.
Maute K and Ramm E (1995), General shape optimization—an integrated model for topology and shape optimization, In: Olhoff N and Rozvany GIN (eds): WCSMO-1-First World Congress of Structural and Multidisciplinary Optimization, Pergamon Press, Oxford, UK, 299–306.
12.
Maute
K
,
Schwarz
S
, and
Ramm
E
(
1998
),
Adaptive topology optimization of elastoplastic structures
,
Struct. Optim.
15
,
81
91
.
13.
Maute
K
,
Schwarz
S
, and
Ramm
E
(
1999
),
Structural optimization, The interaction between form and mechanics
,
ZAMM
79
(
10
),
651
673
.
14.
Maxwell
JC
(
1989
),
On Reciprocal Figures, frames and diagrams of forces
,
Scientific Papers
2
,
160
207
.
15.
Michell
AGM
(
1904
),
The limits of economy of materials in frame structures
,
Philosophical Magazine
, Series 6, Vol ,
8
(
47
),
589
597
.
16.
Miki M (1982), Material design of composite laminates with required in-plane elastic properties, In: Hayashi T, Kawata K, Umekawa M (eds): Proc Progress in Science and Engineering of Composites, ICCM IV, Tokyo.
17.
Miki
M
and
Sugiama
Y
(
1991
),
Optimal design of laminated composite plates using lamination parameters
,
AIAA J
29
,
275
283
.
18.
Milton
GV
(
1992
),
Composite material with Poisson’s ration close to-I
,
J. Mech. Phys. Solids
40
(
5
),
1105
1137
.
19.
Milton GV and Cherkaev AV (1993), Materials with elastic tensors that range over the entire set compatible with thermodynamics, Paper presented at the joint ASCE-ASME-SES MettN, Univ of Virginia, Charlottesville VA.
20.
Min S, Kikuchi N, Park YC, Kim S, and Chang S (1997), Optimal reinforcement design of structures under impact loads, In: Gutkowski W and Mro´z Z (eds): ECSMO-2: Second World Congress of Structural and Multidisciplinary Optimization, Inst of Fundamental Technological Research, Warsaw, Poland, Vol 2, 583–588.
21.
Min
S
,
Kikuchi
N
,
Park
YC
,
Kim
S
, and
Chang
,
S
(
1999
),
Optimal topology design of structures under dynamic loads
,
Struct. Optim.
17
,
208
218
.
22.
Mlejnek HP (1991), Some aspects in the genesis of structures, In: Rozvany GIN (ed): Optimization of Large Structural Systems, NATO-ASI Lecture Notes.
23.
Mlejnek HP (1995), Some recent extensions in the distribution of isotropic material, In: Olhoff N and Rozvany GIN (eds): WCSMO-1-First World Congress of Structural and Multidisciplinary Optimization, Pergamon Press, Oxford/UK, 225–230.
24.
Mlejnek
HP
and
Schirrmacher
R
(
1993
),
An engineers approach to optimal material distribution and shape finding
,
Comp. Meth. Appl. Mech. Eng
106
,
1
26
.
25.
Mroz Z and Bojczuk D (2000), Topological derivative concept in optimal design of structures, In: Bloebaum CL (ed): WCSMO-3-Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
26.
Mullender
MG
,
Huiskes
R
, and
Weihnans
H
(
1994
),
A physiological approach to the simulation of bone remodelling as a self-organizational control process
,
J. Biomech
11
,
1389
1394
.
27.
Naghdi P M (1964), Non-linear thermoplastic theory of shells, In: Olszak W and Sawczuk A, Non Classical Shell Problems, Amsterdam: North-Holland Publ, 1–268.
28.
Neves
MM
,
Rodrigues
H
, and
Guedes
JM
(
1995
),
Generalized topology design of structures with a buckling load criterion
,
Struct. Optim.
10
,
71
78
.
29.
Neves
MM
,
Rodrigues
H
, and
Guedes
JM
(
2000
),
Optimal design of periodic linear elastic microstructures
,
Comput. Struct.
76
,
421
429
.
30.
Niordson F (1982), Some new results regarding optimal design of elastic plates, In: Eschenauer H and Olhoff N. (eds): Optimization Methods in Structural Design, EUROMECH-Colloquium 164, Wien: B. I.-Wissenchaftsverlag, 380–386.
31.
Niordson
FI
(
1983
),
Optimal design of plates with a constraint on the slope of the thickness function
,
Int. J. Solids Struct
19
,
141
151
.
32.
Nishiwaski
S
,
Saitou
K
,
Min
S
, and
Kikuchi
,
N
(
2000a
),
Topological design considering flexibility under periodic loads
,
Struct. Multidisc. Optim.
19
,
4
16
.
33.
Nishiwaki S, Silva ECN, Saitou K, and Kikuchi N (2000b), Topology optimization of actuators using structural flexibility, In: Bloebaum CL (ed): WCSMO-3—Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
34.
Noll
W
(
1958
),
A mathematical theory of the mechanical behavior of continuous media
,
Arch. Rational Mech. Anal.
2
,
197
226
.
35.
Olhoff
N
(
1996
),
On optimum design of structures and materials
,
Meccanica
31
,
143
161
.
36.
Olhoff N (2001), Comparative study of optimizing the topology of plate-like structures via plate theory and 3-D theory of elasticity, In: Rozvany GIN and Olhoff N (eds): Topology Optimization of Structures and Composite Continua, NATO ARW, Budapest, Hungary, May 8–12, 2000, Kluwer Academic Publ, Dordrecht, The Netherlands (to appear).
37.
Olhoff
N
,
Bendsøe
MP
, and
Rasmussen
J
(
1991
),
On CAD-integrated structural topology and design optimization
,
Comp. Meths. Appl. Mech. Eng.
89
,
259
279
.
38.
Olhoff N and Eschenauer H (1999), On optimal topology design in mechanics, In: Wunderlich W. (ed): Proc European Conf on Computational Mechanics-ECCM ’99, August 31–September 3, 1999, Munich, Germany, CD-Rom, Technical Univ of Munich, Germany, 71 pp.
39.
Olhoff
N
,
Lurie
KA
,
Cherkaev
AV
, and
Fedorov
A
(
1981
),
Sliding regimes of anisotropy in optimal design of vibrating plates
,
Int. J. Solids Struct.
17
(
10
),
931
948
.
40.
Olhoff
N
,
Røholt
,
E
, and
Scheel
J
(
1998a
),
Topology optimization of three-dimensional structures using optimum microstructures
,
Struct. Optim.
16
,
1
18
.
41.
Olhoff N, Rønholt E, and Scheel, J (1998b), Topology optimization of plate-like structures using 3-D elasticity and optimum 3-D microstructures, In: Proc 7th AIAA/USAF/NASA/ISSMO Symp on Multidisciplinary Analysis and Optimization, Vol 1, AIAA, 1853–1863.
42.
Olhoff
N
and
Taylor
J
(
1983
),
On structural optimization
,
J. Appl. Mech.
50
,
1134
1151
.
43.
Olhoff N, Thomsen J, and Rasmussen J (1993), Topology optimization of bi-material structures, In: Pedersen P (ed): Optimal Design with Advanced Materials, Lyngby, Denmark, Amsterdam: Elsevier, 191–206.
44.
Ou
JS
and
Kikuchi
N
(
1996a
),
Optimal design of controlled structures
,
Struct Optim
11
,
19
28
.
45.
Ou
JS
and
Kikuchi
N
(
1996b
),
Integrated optimal structural and vibration control design
,
Struct. Optim.
12
,
209
216
.
46.
Pedersen CBW, Buhl T, and Sigmund O (2000), Topology synthesis of large-displacement complaint mechanisms, Int. J. Num. Meth. Engrg. (to appear).
47.
Pedersen CWB, Buhl T, and Sigmund O (1999), Topology synthesis of large-displacement compliant mechanisms, 1999 ASME Design Engineering Tech Conf, Paper No DETC/DAC-8554, Las Vegas, Nov.’99 (to appear).
48.
Pedersen
NL
(
2000a
),
Maximization of eigenvalues using topology optimization
,
Struct. Multidisc. Optim.
20
,
2
11
.
49.
Pedersen NL (2000b), Topology optimization of AFM probes with constraints on eigenvalues, In: Bloebaum CL (ed): WCSMO-3-Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
50.
Pedersen NL (2001), On topology optimization of plates with prestress, Int. J. Num. Meth. Engrg. (to appear).
51.
Pedersen
P
(
1989
),
On optimal orientation of orthotropic materials
,
Struct. Optim.
1
,
101
106
.
52.
Pedersen
P
(
1990
),
Bounds on elastic energy in solids of orthotropic materials
,
Struct. Optim.
2
,
55
63
.
53.
Pedersen
P
(
1991
),
On thickness and orientational design with orthotropic materials
,
Struct Optim
,
3
,
69
78
.
54.
Petersson J, Beckers M, and Duysinx P (2000), Almost isotropic perimeters in topology optimization: Theoretical and numerical aspects, In: Bloebaum CL (ed): WCSMO-3-Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo, NY.
55.
Petersson
J
, and
Sigmund
O
(
1998
),
Slope constrained topology optimization
,
Int. J. Num. Meths. Eng.
41
,
1417
1434
.
56.
Pettermann
H E
,
Reiter
T J
, and
Rammerstorfer
F G
(
1997
),
Computational simulation of Internal bone remodeling
,
Arch. Computat. Methods Eng.
4, 4
,
295
323
.
57.
Poulsen TA (2000), Multi-scale representations in design optimization, In: Bloebaum CL (ed): WCSMO-3—Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
58.
Prager
W
(
1974
),
A note on discretized Michell structures
,
Comput. Meth. Appl. Mech. Eng.
3
,
349
355
.
59.
Prager W (1976), Transmission optimale des charges par flexion, Anales de l’Institute Technique du Batiment et de Travaux Publics, Serie: Theories et Methodes de Calcul, No 193, 82–91.
60.
Querin OM, Steven, GP, and Xie YM (1997a), Improved computational efficiency using bi-directional evolutionary structural optimization (BESO), Abstract for 4th World Congress on Computational Mechanics (held in Argentina).
61.
Querin OM, Steven GP, and Xie YM (1997b), Evolutionary structural optimization in 3D elasticity, Proc WCSMO-2, 2nd World Congress on Structural and Multidisciplinary Optimization, Zakopane, Poland, Vol 1, 143–148.
62.
Querin
OM
,
Steven
GP
, and
Xie
YM
(
1998
),
Evolutionary structural optimization (ESO) using a bidirectional algorithm
,
J. Eng. Comput.
15
(
8
),
1031
1048
.
63.
Querin OM, Steven GP, and Xie YM (2001), Advances in evolutionary structural optimization: 1992–2000, In: Rozvany GIN, Olhoff N (eds): Topology Optimization of Structures and Composite Continua, NATO ARW, Budapest, Hungary, May 8–12, 2000, Kluwer Academic Publishers, Dordrecht, The Netherlands (to appear).
64.
Ramm E, Bletzinger K-U, Reitinger R, and Maute K (1994), The challenge of structural optimization, In: Topping, BHV, Papadrakis M (eds): Advances in Structural Optimization, CIVIL-COMP Ltd, Edinburgh/UK, 27–57.
65.
Reinhardt HJ, Seiffarth F, and Ha´o DN (1993), Approximate solutions of III-posed Cauchy problems for parabolic differential equations, In: Anger G (ed): Inverse Problems: Principles and Applications in Geophysics, Technology and Medicine, 284–298.
66.
Reissner E (1965), On a variational theorem for finite elastic deformations, In: Truesdell C, Continuum Mechanics IV-Problems of Non-Linear Elasticity, New York: Gordon and Breach, 103–109.
67.
Reiter
TJ
(
1993
),
Topologieoptimierung mittels eines bilogischen Wachstumsalgorithmus
,
ZAMM
73(7/8).
68.
Reiter TJ (1995), Knochen-eine selbstoptimierende Struktur? In: Kull U, Ramm E, and Reiner R, Evolution und Optimierung, Stuttgart, S Hirzel, 121–135.
69.
Reiter TJ and Rammerstorfer FG (1993), Simulation of natural adaptation of bone material and application in optimum composite design, In: Pedersen P. (ed): Optimal Design with Advanced Materials, Amsterdam, London: Elesevier, 25–36.
70.
Rodrigues H, Guedes JM, and Bendsøe MP (2000), Hierarchical optimization of material and structure, In: Bloebaum CL (ed), WCSMO-3—Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
71.
Rodrigues H, Miranda PS, and Guedes JM (2001), Optimization of porous coating distribution of noncemented hip prothesis, In: Rozvany GIN and Olhoff N (eds.), Topology Optimization of Structures and Composite Continua, NATO ARW, Budapest, Hungary, May 8–12, 2000, Kluwer Academic Publ, Dordrecht, The Netherlands (to appear).
72.
Rodrigues
H
,
Soto
CA
, and
Taylor
JE
(
1999
),
A design model to predict optimal two-material composite structures
,
Struct Optim
177
,
186
198
.
73.
Rodriguez(-Velasquez) J and Seireg A (1988), A geometric rule-based methodology for shape synthesis: 2-D cases, In: Proc 1988 ASME Int Computers in Engineering Conf and Exposition, San Francisco, CA, Vol 2, 35–41.
74.
Rosen
DW
and
Grosse
IR
(
1992
),
A feature based shape optimization technique for the configuration and parametric design of flat plates
,
Eng. Comp.
8
,
81
91
.
75.
Rossow
HP
and
Taylor
JE
(
1973
),
A finite element method for the optimal design of variable thickness sheets
,
AIAA J
,
11
,
1566
1569
.
76.
Rovati M and Taliercio A (1991), Optimal orientation of the symmetry axes of orthotropic 3D-materials, In: Eschenauer HA, Mattheck C, and Olhoff N (eds): Engineering Optimization in Design Processes, Berlin, Heidelberg, New York: Springer, 127–134.
77.
Rozvany
GIN
,
Bendsøe
MP
, and
Kirsch
U
(
1995
),
Layout Optimization of Structures
,
Appl. Mech. Rev.
48
,
41
119
.
78.
Rozvany
GIN
and
Prager
W
(
1976
),
Optimal design of partially discretized grillages
,
J. Mech. Phys. Solids
24
,
125
136
.
79.
Rozvany
GIN
,
Zhou
M
, and
Birker
T
(
1992
),
Generalized shape optimization without homogenization
,
Struct. Optim.
4
,
250
252
.
80.
Rozvany GIN, Zhou M, Birker T, and Sigmund O (1993), Topology optimization using interactive continuum-type optimality criteria (COC) methods for discretized systems, In: Bendsøe MP and Mota Soares CA (eds): Topology Design of Structures, Dordrecht: Kluwer Academic Publishers.
81.
Rozvany
GIN
,
Zhou
M
,
Rotthaus
M
,
Gollub
W
, and
Spengemann
F
(
1989
),
Continuum-type optimality criteria methods for large finite element systems with displacement constraints, Parts I and II
,
Struct. Optim.
1
,
47
72
.
82.
Sankaranaryanan S, Haftka RT, and Kampania RK (1993), Truss topology optimization with stress and displacement constraints, In: Bendsøe MP, and Mota Soares CA (eds): Topology Design of Structures, Dordrecht: Kluwer Academic Publ, 71–78.
83.
Schmit
LA
and
Mallet
RH
(
1963
),
Structural syntheses and design parameters
, In: Hierarchy Journal of the Structural Division,
Proc of ASCE
, Vol
89
, No
4
269
299
.
84.
Schwarz S, Maute K, Menrath H, and Ramm E (1997), Adaptive topology optimization including elastoplasticity. In: Gutkowski W, Mroz Z (eds): Proc WCSMO 2—Second World Congress of Structural and Multidisciplinary Optimization, Inst of Fundamental Technological Research, Warsaw, Vol 2, 569–576.
85.
Shonauer
M
,
Kallel
L
, and
Jouve
F
(
1996
),
Mechanical inclusions identification by evolutionary computation
,
Revue europe´enne des e´le´ment finis
5
(
5–6
),
619
648
.
86.
Sienz
J
and
Hinton
E
(
1997
),
Reliable structural optimization with error estimation, adaptivity and robust sensitivity analysis
,
J. Comp. Struct.
64
,
31
63
.
87.
Sigmund
O
(
1994b
),
Materials with prescribed constitutive parameters: An inverse homogenization problem
,
Int. J. Solids Struct.
31
,
2313
2329
.
88.
Sigmund O (1995), Design of material structures using topology optimization, In: Olhoff N and Rozvany GIN (eds): WCSMO-1—First World Congress of Structural and Multidisciplinary Optimization, Pergamon Press, Oxford/UK.
89.
Sigmund
O
(
1997
),
On the design of compliant mechanisms using topology optimization
,
J. Mech. Struct. Mach.
25
,
493
524
.
90.
Sigmund O (1998a), Systematic design of electrothermomechanical microactuators using topology optimization, In: Modelling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, MSM98, Santa Clara, CA/USA, 1492–1500.
91.
Sigmund O (1998b), Topology optimization in multiphysics problems, In: Proc of 7th AIAA/USAF/NASA/ISSMO Symp on Multidisciplinary Analysis and Optimization, Vol 1, AIAA, 1492–1500.
92.
Sigmund O (1999), Topology optimization: A tool for the tailoring of structures and materials, Philosophical Transactions of the Royal Society: Science into the Next Millennium (Issue 2, Mathematics, Physics and Engineering), 211–228.
93.
Sigmund O (2000a), Topology optimization of multi-material, multiphysics structures, In: structures using topology optimization, In: Bloebaum CL (ed): WCSMO-3-Proc. Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
94.
Sigmund O (2000b), Design of multiphysics actuators using topology optimization, Part I: One-material structures, Part II: Two-material structures, In. J. Num. Meth. Engrg. (to appear).
95.
Sigmund O (2000c), A 99 line topology optimization code written in, Matlab. Struct. Multidisc. Optim. (to appear).
96.
Sigmund
O
and
Petersson
J
(
1998
),
Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima
,
Struct. Optim.
,
16
(
1
),
68
75
.
97.
Sigmund
O
and
Torquato
S
(
1997
),
Design of materials with extreme thermal expansion using a three-phase topology optimization method
,
J. Mech. Phys. Solids
45
,
1037
1067
.
98.
Sigmund
O
,
Torquato
S
, and
Aksay
IA
(
1998
),
On the design of 1–3 piezocomposites using topology optimization
,
J. Mat. Res
,
13
,
1038
1048
.
99.
Sobieszczanski-Sobieski J (1988), Optimization by decomposition: a step from hierarchic to non-hierarchic systems, Proc 2nd NASA/Air Force Symp on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton VA, Sept. 28–30, 1988.
100.
Sobieszczanski-Sobieski J (1989), Multidisciplinary optimization for engineering systems, In: Bergmann HW (ed): Optimization: Methods and Applications, Possibilities and Limitations, Springer, Berlin, Heidelberg, New York, 42–62.
101.
Sobieszczanski-Sobieski J, Bloebaum CL, and Hajela P (1988), Sensitivity of control-augmented structure obtained by a system decomposition method, Proc of the IAA/ASME/ASCE/AHS 29th Structures, Structural Dynamics, and Materials Conf, Williamsburg VA, April 18–20, 1988, Paper-No 88–2205.
102.
Soto CA and Diaz A (1993a), Layout of plate structures for improved dynamic response using a homogenization method, In: Gilmore B, et al. (eds): Advances in Design Automation, Proc of the 1993 ASME DETC, Albuquerque NM, 667–674.
103.
Soto
CA
and
Diaz
A
(
1993b
),
On the modelling of ribbed plates for shape optimization
,
Struct. Optim.
6
,
175
188
.
104.
Soto CA and Diaz AR (1993c), A model for layout optimization of plate structures. In: Pedersen P (ed): Optimal Design with Advanced Materials, Lyngby, Denmark, Amsterdam: Elsevier, 337–350.
105.
Soto CA and Diaz AR (1993d), Optimum layout of plate structures using homogenization, In: Bendsøe MP, Mota Soares CA (eds): Topology Design of Structures, Sesimbra/PORTUGAL, Nato-ASI, Dordrecht: Kluwer Academic Publ, 407–420.
106.
Suryatama
D
and
Bernitsas
MM
(
2000
),
Topology and performance redesign of complex structures by large admissible perturbations
,
Struct. Multidisc. Optim
20
,
138
153
.
107.
Suzuki K and Kikuchi N (1991), Optimization using the homogenization method: Generalized layout design of three-dimensional shells for car bodies, In: Rozvany GIN (ed): Optimization of Large Structural Systems, NATO-ASI Lecture Notes, 110–126.
108.
Swan
CC
, and
Arora
JS
(
1997
),
Topology design of material layout in structured composites of high stiffness and strength
,
Struct. Optim.
13
,
45
59
.
109.
Tanaka M, Adachi T, and Tomita Y (1995), Optimum design of lattice continuum material suggested by mechanical adaptation of cancellous bone, In: Olhoff N and Rozvany GIN (eds): WCSMO- I—First World Congress of Structural and Multidisciplinary Optimization, Pergamon Press, Oxford, UK, 185–192.
110.
Taylor
JE
(
1993
),
A global extremum principle for the analysis of solids composed of softening material
,
Int. J. Solids. Struct
30
(
15
),
2057
2069
.
111.
Taylor
JE
(
1998
),
An energy model for the optimal design of linear continuum structures
,
Struct. Optim.
16
,
116
127
.
112.
Taylor
JE
(
2000
),
Addendum to: An energy model for the optimal design of linear continuum structures
,
Struct. Multidisc. Optim
19
,
317
320
.
113.
Theocaris
PS
and
Stavroulakis
GE
(
1998
),
Multilevel optimal design of composite structures including materials with negative Poisson’s ratio
,
Struct. Optim.
15
,
8
15
.
114.
Thierauf G (1996), Optimal topologies of structures: homogenization, pseudo-elastic approximation and the bubble-method, Engineering Computations, Vol 13, No 1, MCB Univ Press, Bradford/UK.
115.
Topping BHV and Khan AI (1991), Parallel computations for structural analysis, re-analysis and optimization, Proc of NATO: DFG Advances Study Institute “Optimization of Large Structural Systems,” Berchtesgaden, Germany, Sept. 23-Oct. 4, 1991.
116.
Truesdell C and Noll W (1965), The non-linear field theories of mechanics, In: Fluegge W (ed): Handbuch der Physik III/3, Berlin, Heidelberg, New York: Springer.
117.
Truesdell C and Toupin R (1960), The classical field theories, In: Flu¨gge S, Handbuch der Phasik III/I, Berlin-Go¨ttingen-Heidelberg: Springer.
118.
Tsai SW and Pagano NJ (1968), Invariant properties of composite materials, In: Tsai SW, Halpin JC, and Pagano MJ (eds.), Composite Materials Workshop, Technomic Publ Stamford CT, 233–255.
119.
Wolff
J
(
1870
),
U¨ber eine innere Architektur der Knochen und ihre Bedeutung fu¨r die Frage vom Knochenwachstum
,
Archiv fu¨r die pathologische Anatomie und Physiologie und fu¨r klinische Medizin (Virchovs Archiv)
50
,
389
453
.
120.
Wolfram
S
(
1983
),
Statistical mechanics of cellular automata
,
Rev. Modern Phys.
55
,
601
644
.
121.
Wu
CC
and
Arora
JS
(
1988
),
Design sensitivity analysis of nonlinear buckling load
,
J. Computational Mech.
3
,
129
140
.
122.
Xie
YM
and
Steven
GP
(
1993
),
A simple evolutionary procedure for structural optimization
,
J. Comput Struct
49
(
5
),
885
896
.
123.
Yamakawa H, Asakawa Y, and Ukida K (1995), Simultaneous optimization of topology of structural system and control system by using genetic algorithms, In: Olhoff N and Rozvany GIN (eds): WCSMO-1-First World Congress of Structural and Multidisciplinary Optimization, Pergamon Press, Oxford, UK, 623–628.
124.
Yamakawa H and Takagi Y (2000), Some examinations of optimization for topology, shape of structural systems and design of control systems using genetic algorithms, In, Bloebaum CL (ed), WCSMO3—Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
125.
Yang
RJ
and
Chen
CJ
(
1998
),
Stress-based topology optimization
,
Struct. Optim.
12
,
98
105
.
126.
Yang and
RJ
and
Chuang
CH
(
1994
),
Optimal topology design using linear programming
,
J. Comput Struct.
52
(
2
),
265
275
.
127.
Young V (1998), 3-D bi-directional evolutionary structural optimization (BESO), Proc Australasian Conf on Structural Optimization (held in Sydney), 275–282.
128.
Young
V
,
Querin
OM
,
Steven
GP
, and
Xie
YM
(
1999
),
3D and multiple load case bi-directional evolutionary structural optimization (BESO
),
Struct. Optim.
18
,
183
192
.
129.
Yuge
K
and
Kikuchi
N
(
1995
),
Optimization of a frame structure subjected to a plastic deformation
,
Struct. Optim.
10
,
197
208
.
130.
Zhao
C
,
Hornby
P
,
Steven
GP
, and
Xie
YM
(
1998
),
A generalized evolutionary method for numerical topology optimization of structures under static loading conditions
,
Struct. Optim.
15
(
3–4
),
251
260
.
131.
Zhao
CB
,
Steven
GP
, and
Xie
YM
(
1996
),
Evolutionary natural frequency optimization of thin plate bending vibration problems
,
Struct. Optim.
11
,
244
251
.
132.
Zhao
CB
,
Steven
GP
, and
Xie
YM
(
1997
),
Evolutionary optimization of maximizing the difference between two natural frequencies of a vibrating structure
,
Struct. Optim.
13
,
148
154
.
133.
Zhou
M
and
Rozvany
GIN
(
1991
),
The COC algorithm, Part II: Topological, geometrical and generalized shape optimization
,
Comut. Meth. Appl. Mechs. Eng.
89
,
309
336
.
134.
Zhou M and Rozvany GIN (2001), On the validity of ESO type methods in topology optimization, Struct. Multidisc. Optim. (to appear).
135.
Zhou M, Shyy YK, and Thomas HL (2000), Checkerboard and minimum member size control in topology optimization, In: Bloebaum CL (ed): WCSMO-3—Proc Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo NY, CD-Rom, Univ of Buffalo.
You do not currently have access to this content.