This work surveys a broad range of related issues in quasistatic elastoplasticity, beginning with a development of an internal variable constitutive theory. The initial-boundary value problem is then considered, and the remainder of the work is concerned with the properties of the time-discrete problem. It is shown how this discrete problem has associated with it a holonomic constitutive law (that is, one relating stress to strain or strain increment), and this holonomic law in turn forms the basis of a solution algorithm. Conditions for the convergence of the algorithm are discussed. The entire treatment applies to the spatially continuous problem.

This content is only available via PDF.
You do not currently have access to this content.