Laboratory measurements of gravity wave, critical layer flows are presented. The measurements are obtained in a salt-stratified annular tank, with a vertical shear profile. Internal gravity waves are generated at the floor of the tank and propagate vertically upward into the fluid. At a depth where the phase speed of the wave equals the mean flow speed, defined as a critical level, the waves break down, under the right forcing conditions, generating small scale turbulence. Two cases are presented. In the first case, the wave forcing is a single, monochromatic wave. In this case, the early wave breaking is characterized as Kelvin-Helmholtz breaking at depths below the critical level. Later wave breaking is characterized by weak overturning in the upper part of the tank and regular, internal mixing regions in the lower part of the tank. In the second case, the wave forcing is two monochromatic waves, each propagating with a different phase speed. In this case, the early wave breaking is again Kelvin-Helmholtz in nature, but later wave breaking is characterized by sustained overturning in the upper part of the tank with internal mixing regions in the lower part of the tank. Mean velocity profiles are obtained both before and during the experiments.

This content is only available via PDF.
You do not currently have access to this content.