We study the effective elastic moduli of two-dimensional composite materials containing polygonal holes. In the analysis we use a complex variable method of elasticity involving a conformal transformation. Then we take a far field result and derive the effective elastic constants of composites with a dilute concentration of polygonal holes. In the discussion we use the recently-stated Cherkaev-Lurie-Milton theorem, which gives general relations between the effective elastic constants of two-dimensional composites. We also discuss known results for elliptical holes in the context of the present work.

This content is only available via PDF.
You do not currently have access to this content.