This article concerns infinitesimal free vibrations of undamped elastic systems of finite extent. A review is made of the literature relating to the unique reconstruction of a vibrating system from natural frequency data. The literature is divided into two groups—those papers concerning discrete systems, for which the inverse problems are closely related to matrix inverse eigenvalue problems, and those concerning continuous systems governed either by one or the other of the Sturm–Liouville equations or by the Euler–Bernoulli equation for flexural vibrations of a thin beam.

This content is only available via PDF.
You do not currently have access to this content.