Needed advances in various areas of energy resource recovery, underground construction, earthquake hazard reduction, and conventional and nuclear defense depend critically on the development of improved theories for mechanical and thermal behavior of geological materials. The areas include oil and gas (including off-shore and Arctic production), mining and in situ recovery, geothermal production, nuclear waste isolation, under-ocean tunneling, underground storage, nuclear test containment, and effects of surface explosions. The needed developments, some of which are detailed in earlier National Academy of Science reports, include constitutive theories for inelastic deformation, failure, and post-failure behavior, influence of microstructure and macrostructure, rock fracture (direct breakage, hydraulic fracture explosive fracture), frictional sliding, soil liquefaction, mechanics of ice, determination of in situ conditions, flow through porous media, and thermal effects. Advances in mechanics of geological materials will require adaptation of some established techniques in rheology, metal plasticity, composite materials, mixtures, etc., and also the development of some entirely new ideas and methods. The complicated nature of rocks and soils, the wide ranges of stress, temperature, strain rate, etc., the interactions encountered in geotechnical processes, and the vastly different dimensions and time scales involved, lead to a host of challenging problems in solid mechanics.

This content is only available via PDF.
You do not currently have access to this content.