Graphical Abstract Figure

The simplified model (SM-2) of the unit cell. The label “a” indicates the interlayer soft phase. Labels “b” and “c” denote the end soft phases and are assumed to be the virtual hard phases. Labels “1” and “2” are the real hard phases.

Graphical Abstract Figure

The simplified model (SM-2) of the unit cell. The label “a” indicates the interlayer soft phase. Labels “b” and “c” denote the end soft phases and are assumed to be the virtual hard phases. Labels “1” and “2” are the real hard phases.

Close modal

Abstract

Although the mechanical mechanisms of staggered biological composites are widely investigated, each existing model has its own application scope. In order to comprehensively characterize the mechanical properties of the staggered composite with arbitrary soft phase content, a generalized shear lag model is established, in which the soft phase may simultaneously bear the tension and shear loads. A novel approach of considering the soft phase as virtual layered composites composed of sub-soft and sub-hard phases is developed. The sub-hard phase has zero thickness and undergoes tensile load, while the sub-soft phase endures shear load. Accurate stress fields in the staggered composite can be well achieved with the new approach. Two simplified models are further proposed based on the generalized shear lag model. Comparison with the finite element results shows that the shear stress in the end soft phase has little effect on the mechanical performance of the staggered composite; while the normal stress in the interlayer soft phase and the variation of shear stress in the thickness direction of interlayer soft phase must be considered for the staggered composite with high interlayer soft phase content. Furthermore, the applicable scopes of the existing typical partition models are determined by comparing the effective Young's modulus predicted by the generalized model, the finite element calculation, and the partition models. The obtained results could be helpful for the precise design of composite materials with high mechanical properties.

References

1.
Clegg
,
W. J.
,
Kendall
,
K.
,
Alford
,
N. M.
,
Button
,
T. W.
, and
Birchall
,
J. D.
,
1990
, “
A Simple Way to Make Tough Ceramics
,”
Nature
,
347
(
6292
), pp.
455
457
.
2.
Espinosa
,
H. D.
,
Rim
,
J. E.
,
Barthelat
,
F.
, and
Buehler
,
M. J.
,
2009
, “
Merger of Structure and Material in Nacre and Bone—Perspectives on de Novo Biomimetic Materials
,”
Prog. Mater. Sci.
,
54
(
8
), pp.
1059
1100
.
3.
Akiva
,
U.
,
Wagner
,
H. D.
, and
Weiner
,
S.
,
1998
, “
Modelling the Three-Dimensional Elastic Constants of Parallel-Fibred and Lamellar Bone
,”
J. Mater. Sci.
,
33
(
6
), pp.
1497
1509
.
4.
Nepal
,
D.
,
Kang
,
S.
,
Adstedt
,
K. M.
,
Kanhaiya
,
K.
,
Bockstaller
,
M. R.
,
Brinson
,
L. C.
,
Buehler
,
M. J.
, et al
,
2023
, “
Hierarchically Structured Bioinspired Nanocomposites
,”
Nat. Mater.
,
22
(
1
), pp.
18
35
.
5.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1974
, “
The Mechanical Properties of Cortical Bone
,”
J. Bone Jt. Surg.
,
56
(
5
), pp.
1001
1022
.
6.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
1963
1990
.
7.
Barthelat
,
F.
,
2014
, “
Designing Nacre-Like Materials for Simultaneous Stiffness, Strength and Toughness: Optimum Materials, Composition, Microstructure and Size
,”
J. Mech. Phys. Solids
,
73
, pp.
22
37
.
8.
Jackson
,
A.
,
Vincent
,
J. F.
, and
Turner
,
R.
,
1988
, “
The Mechanical Design of Nacre
,”
Proc. R. Soc. Lond. B Biol. Sci.
,
234
(
1277
), pp.
415
440
.
9.
Corni
,
I.
,
Harvey
,
T.
,
Wharton
,
J.
,
Stokes
,
K.
,
Walsh
,
F.
, and
Wood
,
R.
,
2012
, “
A Review of Experimental Techniques to Produce a Nacre-Like Structure
,”
Bioinspir. Biomim.
,
7
(
3
), p.
031001
.
10.
Barthelat
,
F.
, and
Espinosa
,
H.
,
2007
, “
An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl
,”
Exp. Mech.
,
47
(
3
), pp.
311
324
.
11.
Cox
,
H. L.
,
1952
, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
Br. J. Appl. Phys.
,
3
(
3
), pp.
72
79
.
12.
Zhang
,
Z. Q.
,
Liu
,
B.
,
Huang
,
Y.
,
Hwang
,
K. C.
, and
Gao
,
H.
,
2010
, “
Mechanical Properties of Unidirectional Nanocomposites With Non-Uniformly or Randomly Staggered Platelet Distribution
,”
J. Mech. Phys. Solids
,
58
(
10
), pp.
1646
1660
.
13.
Zuo
,
S.
, and
Wei
,
Y.
,
2007
, “
Effective Elastic Modulus of Bone-Like Hierarchical Materials
,”
Acta Mech. Solida Sin.
,
20
(
3
), pp.
198
205
.
14.
Yao
,
Y.
, and
Chen
,
S.
,
2013
, “
The Effects of Fiber's Surface Roughness on the Mechanical Properties of Fiber-Reinforced Polymer Composites
,”
J. Compos. Mater.
,
47
(
23
), pp.
2909
2923
.
15.
Ni
,
Y.
,
Song
,
Z.
,
Jiang
,
H.
,
Yu
,
S.-H.
, and
He
,
L.
,
2015
, “
Optimization Design of Strong and Tough Nacreous Nanocomposites Through Tuning Characteristic Lengths
,”
J. Mech. Phys. Solids
,
81
, pp.
41
57
.
16.
Liu
,
J.
,
Zhu
,
W.
,
Yu
,
Z.
, and
Wei
,
X.
,
2018
, “
Dynamic Shear-Lag Model for Understanding the Role of Matrix in Energy Dissipation in Fiber-Reinforced Composites
,”
Acta Biomater.
,
74
, pp.
270
279
.
17.
Cui
,
C.
,
Ma
,
J.
, and
Liu
,
B.
,
2019
, “
Optimized Composites With the Largest Material Usage Efficiency
,”
Int. J. Solids Struct.
,
161
, pp.
193
202
.
18.
Cui
,
S.
,
Yang
,
Z.
, and
Lu
,
Z.
,
2020
, “
An Analytical Model for the Bio-Inspired Nacreous Composites With Interlocked “Brick-and-Mortar” Structures
,”
Compos. Sci. Technol.
,
193
, p.
108131
.
19.
Chen
,
Y.
,
Qin
,
H.
,
Liu
,
H.
,
Shui
,
L.
,
Liu
,
Y.
, and
Chen
,
X.
,
2022
, “
Extended Deformable Tension-Shear Model for Graphene Layered Materials With Non-Uniform Staggering
,”
J. Mech. Phys. Solids
,
159
, p.
104728
.
20.
Yu
,
Z.
,
Li
,
P.
,
Peng
,
Z.
,
Yao
,
Y.
, and
Chen
,
S.
,
2024
, “
How to Select Discrete or Continuous Interfaces in Biological Materials to Achieve a Strength-Toughness Tradeoff
,”
J. Mech. Phys. Solids
,
183
, p.
105502
.
21.
Yu
,
Z.
,
Li
,
P.
,
Yao
,
Y.
, and
Chen
,
S.
,
2023
, “
An Alternative Shear Lag Model for Composites With Discrete Interfaces
,”
Mech. Mater.
,
176
, p.
104530
.
22.
Yu
,
Z.
,
Yan
,
Y.
,
Peng
,
Z.
,
Yao
,
Y.
, and
Chen
,
S.
,
2024
, “
The Selection Mechanism of Mineral Bridges at the Interface of Stacked Biological Materials for a Strength-Toughness Tradeoff
,”
J. Mech. Phys. Solids
,
191
, p.
105785
.
23.
Cong
,
C.
,
Liu
,
J.
,
Yu
,
Z.
,
Wei
,
Y.
, and
Wei
,
X.
,
2024
, “
Trans-Scale Dynamic Shear-Lag Model for the Impact Performance of Fiber-Reinforced Composites
,”
Compos. Struct.
,
327
, p.
117688
.
24.
Dutta
,
A.
,
Tekalur
,
S. A.
, and
Miklavcic
,
M.
,
2013
, “
Optimal Overlap Length in Staggered Architecture Composites Under Dynamic Loading Conditions
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
145
160
.
25.
Shao
,
Y.
,
Zhao
,
H.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2012
, “
Discontinuous Crack-Bridging Model for Fracture Toughness Analysis of Nacre
,”
J. Mech. Phys. Solids
,
60
(
8
), pp.
1400
1419
.
26.
Meng
,
Q.
,
Gao
,
Y.
,
Shi
,
X.
, and
Feng
,
X.-Q.
,
2022
, “
Three-Dimensional Crack Bridging Model of Biological Materials With Twisted Bouligand Structures
,”
J. Mech. Phys. Solids
,
159
, p.
104729
.
27.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
A Study of Fracture Mechanisms in Biological Nano-Composites via the Virtual Internal Bond Model
,”
Mat. Sci. Eng. A
,
366
(
1
), pp.
96
103
.
28.
Liu
,
Y.
,
Xie
,
B.
,
Zhang
,
Z.
,
Zheng
,
Q.
, and
Xu
,
Z.
,
2012
, “
Mechanical Properties of Graphene Papers
,”
J. Mech. Phys. Solids
,
60
(
4
), pp.
591
605
.
29.
Feng
,
S.
, and
Xu
,
Z.
,
2021
, “
Pattern Development and Control of Strained Solitons in Graphene Bilayers
,”
Nano Lett.
,
21
(
4
), pp.
1772
1777
.
30.
Sakhavand
,
N.
, and
Shahsavari
,
R.
,
2015
, “
Universal Composition–Structure–Property Maps for Natural and Biomimetic Platelet–Matrix Composites and Stacked Heterostructures
,”
Nat. Commun.
,
6
(
1
), p.
6523
.
31.
Nairn
,
J. A.
,
1997
, “
On the use of Shear-Lag Methods for Analysis of Stress Transfer in Unidirectional Composites
,”
Mech. Mater.
,
26
(
2
), pp.
63
80
.
32.
Meyers
,
M. A.
,
Chen
,
P.-Y.
,
Lin
,
A. Y.-M.
, and
Seki
,
Y.
,
2008
, “
Biological Materials: Structure and Mechanical Properties
,”
Prog. Mater. Sci.
,
53
(
1
), pp.
1
206
.
33.
Wang
,
J.
,
Cheng
,
Q.
, and
Tang
,
Z.
,
2012
, “
Layered Nanocomposites Inspired by the Structure and Mechanical Properties of Nacre
,”
Chem. Soc. Rev.
,
41
(
3
), pp.
1111
1129
.
34.
Barthelat
,
F.
,
Tang
,
H.
,
Zavattieri
,
P.
,
Li
,
C.-M.
, and
Espinosa
,
H.
,
2007
, “
On the Mechanics of Mother-of-Pearl: A Key Feature in the Material Hierarchical Structure
,”
J. Mech. Phys. Solids
,
55
(
2
), pp.
306
337
.
35.
Cowin
,
S. C.
,
2000
, “
How Is a Tissue Built?
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
553
569
.
36.
Fratzl
,
P.
,
Gupta
,
H. S.
,
Paschalis
,
E. P.
, and
Roschger
,
P.
,
2004
, “
Structure and Mechanical Quality of the Collagen–Mineral Nano-Composite in Bone
,”
J. Mater. Chem.
,
14
(
14
), pp.
2115
2123
.
37.
Fornes
,
T.
, and
Paul
,
D.
,
2003
, “
Modeling Properties of Nylon 6/Clay Nanocomposites Using Composite Theories
,”
Polymer
,
44
(
17
), pp.
4993
5013
.
38.
Munch
,
E.
,
Launey
,
M. E.
,
Alsem
,
D. H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2008
, “
Tough, Bio-Inspired Hybrid Materials
,”
Science
,
322
(
5907
), pp.
1516
1520
.
39.
Jäger
,
I.
, and
Fratzl
,
P.
,
2000
, “
Mineralized Collagen Fibrils: A Mechanical Model With a Staggered Arrangement of Mineral Particles
,”
Biophys. J.
,
79
(
4
), pp.
1737
1746
.
40.
Dai
,
Y.
,
Mai
,
Y. W.
, and
Ji
,
X.
,
2008
, “
Predictions of Stiffness and Strength of Nylon 6/MMT Nanocomposites With an Improved Staggered Model
,”
Composites, Part B
,
39
(
6
), pp.
1062
1068
.
41.
Begley
,
M. R.
,
Philips
,
N. R.
,
Compton
,
B. G.
,
Wilbrink
,
D. V.
,
Ritchie
,
R. O.
, and
Utz
,
M.
,
2012
, “
Micromechanical Models to Guide the Development of Synthetic ‘Brick and Mortar’composites
,”
J. Mech. Phys. Solids
,
60
(
8
), pp.
1545
1560
.
42.
Bar-On
,
B.
, and
Wagner
,
H. D.
,
2011
, “
Mechanical Model for Staggered Bio-Structure
,”
J. Mech. Phys. Solids
,
59
(
9
), pp.
1685
1701
.
43.
Xia
,
H.
,
Geng
,
K.
,
Pan
,
H.
,
Wang
,
Z.
,
Zhang
,
Z.
, and
Wang
,
B.
,
2023
, “
A Micromechanical Model for Bioinspired Nanocomposites With Interphase
,”
Compos. Struct.
,
321
, p.
117316
.
44.
Kotha
,
S. P.
,
Kotha
,
S.
, and
Guzelsu
,
N.
,
2000
, “
A Shear-Lag Model to Account for Interaction Effects Between Inclusions in Composites Reinforced With Rectangular Platelets
,”
Compos. Sci. Technol.
,
60
(
11
), pp.
2147
2158
.
45.
Kotha
,
S. P.
,
Li
,
Y.
, and
Guzelsu
,
N.
,
2001
, “
Micromechanical Model of Nacre Tested in Tension
,”
J. Mater. Sci.
,
36
(
8
), pp.
2001
2007
.
46.
Butcher
,
J. C.
,
1996
, “
A History of Runge-Kutta Methods
,”
Appl. Numer. Math.
,
20
(
3
), pp.
247
260
.
47.
Buehler
,
M. J.
,
2006
, “
Atomistic and Continuum Modeling of Mechanical Properties of Collagen: Elasticity, Fracture, and Self-Assembly
,”
J. Mater. Res.
,
21
(
8
), pp.
1947
1961
.
48.
Ottani
,
V.
,
Martini
,
D.
,
Franchi
,
M.
,
Ruggeri
,
A.
, and
Raspanti
,
M.
,
2002
, “
Hierarchical Structures in Fibrillar Collagens
,”
Micron
,
33
(
7–8
), pp.
587
596
.
49.
Jalammanavar
,
K.
,
Pujar
,
N.
, and
Raj
,
R. V.
, “
Finite Element Study on Mesh Discretization Error Estimation for Ansys Workbench
,”
Proceedings of the 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS)
,
Belagavi, India
,
Dec. 21–23
, IEEE, pp.
344
350
.
50.
Schmidt
,
H.
,
Alber
,
T.
,
Wehner
,
T.
,
Blakytny
,
R.
, and
Wilke
,
H.-J.
,
2009
, “
Discretization Error When Using Finite Element Models: Analysis and Evaluation of an Underestimated Problem
,”
J. Biomech.
,
42
(
12
), pp.
1926
1934
.
You do not currently have access to this content.