Abstract

An experimental technique is reported, which can image the deformation fields associated with dynamic failure events at high spatial and temporal resolutions simultaneously. The technique is demonstrated at a spatial resolution of ~1 μm and a temporal resolution of 250 ns, while maintaining a relatively large field of view (≈ 1.11 mm × 0.63 mm). As a demonstration, the technique is used to image the deformation field near a notch tip during initiation of a shear instability in polycarbonate. An ordered array of 10 μm diameter speckles with 20 μm pitch, and deposited on the specimen surface near the notch tip helps track evolution of the deformation field. Experimental results show that the width of the shear band in polycarbonate is approximately 75 μm near the notch-tip within resolution limits of the experiments. The measurements also reveal formation of two incipient localization bands near the crack tip, one of which subsequently becomes the dominant band while the other is suppressed. Computational simulation of the experiment was conducted using a thermo-mechanically coupled rate-dependent constitutive model of polycarbonate to gain further insight into the experimental observations enabled by the combination of high spatial and temporal resolutions. The simulation results show reasonable agreement with the experimentally observed kinematic field and features near the notch-tip, while also pointing to the need for further refinement of constitutive models that are calibrated at high strain rates (~105/s) and also account for damage evolution.

This content is only available via PDF.
You do not currently have access to this content.