Abstract

In this work, we present a computational study of the small strain mechanics of freestanding ultrathin carbon nanotube (CNT) films under in-plane loading. The numerical modeling of the mechanics of representatively large specimens with realistic micro- and nanostructure is presented. Our simulations utilize the scalable implementation of the mesoscopic distinct element method of the waLBerla multi-physics framework. Within our modeling approach, CNTs are represented as chains of interacting rigid segments. Neighboring segments in the chain are connected with elastic bonds, resolving tension, bending, shear, and torsional deformations. These bonds represent a covalent bonding within the CNT surface and utilize enhanced vector model (EVM) formalism. Segments of the neighboring CNTs interact with realistic coarse-grained anisotropic van der Waals potential, enabling a relative slip of CNTs in contact. The advanced simulation technique allowed us to gain useful insights on the behavior of CNT materials. It was established that the energy dissipation during CNT sliding leads to extended load transfer that conditions size-independent, material-like mechanical response of the weakly bonded assemblies of CNTs.

References

References
1.
Wu
,
Z.
,
Chen
,
Z.
,
Du
,
X.
,
Logan
,
J. M.
,
Sippel
,
J.
,
Nikolou
,
M.
,
Kamaras
,
K.
,
Reynolds
,
J. R.
,
Tanner
,
D. B.
,
Hebard
,
A. F.
, and
Rinzler
,
A. G.
,
2004
, “
Transparent, Conductive Carbon Nanotube Films
,”
Science
,
305
(
5688
), pp.
1273
1276
. 10.1126/science.1101243
2.
Park
,
S.
,
Vosguerichian
,
M.
, and
Bao
,
Z.
,
2013
, “
A Review of Fabrication and Applications of Carbon Nanotube Film-Based Flexible Electronics
,”
Nanoscale
,
5
(
5
), pp.
1727
1752
. 10.1039/c3nr33560g
3.
Timmermans
,
M. Y.arina
,
Mariano
,
M.
,
Pollentier
,
I.
,
Richard
,
O.
,
Huyghebaert
,
C.
, and
Gallagher
,
E. E.
,
2018
, “
Free-standing carbon nanotube films for extreme ultraviolet pellicle application
,”
J. Micro-Nanolith MEM.
,
17
(
4
), pp.
1
8
. DOI:10.1117/1.JMM.17.4.043504
4.
Wang
,
L.
, and
Loh
,
K. J.
,
2017
, “
Wearable Carbon Nanotube-Based Fabric Sensors for Monitoring Human Physiological Performance
,”
Smart Mater. Struct.
,
26
(
5
), p.
055018
. 10.1088/1361-665X/aa6849
5.
Nasibulin
,
A. G.
,
Kaskela
,
A.
,
Mustonen
,
K.
,
Anisimov
,
A. S.
,
Ruiz
,
V.
,
Kivistö
,
S.
,
Rackauskas
,
S.
,
Timmermans
,
M. Y.
,
Pudas
,
M.
,
Aitchison
,
B.
,
Kauppinen
,
M.
,
Brown
,
D. P.
,
Okhotnikov
,
O. G.
, and
Kauppinen
,
E. I.
,
2011
, “
Multifunctional Free-Standing Single-Walled Carbon Nanotube Films
,”
ACS Nano
,
5
(
4
), pp.
3214
3221
. 10.1021/nn200338r
6.
Kis
,
A.
,
Jensen
,
K.
,
Aloni
,
S.
,
Mickelson
,
W.
, and
Zettl
,
A.
,
2006
, “
Interlayer Forces and Ultralow Sliding Friction in Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
97
(
2
), p.
025501
. 10.1103/PhysRevLett.97.025501
7.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
(
14
), pp.
2511
2514
. 10.1103/PhysRevLett.76.2511
8.
Dumitrica
,
T.
,
Hua
,
M.
, and
Yakobson
,
B. I.
,
2006
, “
Symmetry-, Time-, and Temperature-Dependent Strength of Carbon Nanotubes
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
16
), pp.
6105
6109
. 10.1073/pnas.0600945103
9.
Zhang
,
D.-B.
, and
Dumitrică
,
T.
,
2008
, “
Elasticity of Ideal Single-Walled Carbon Nanotubes Via Symmetry-Adapted Tight-Binding Objective Modeling
,”
Appl. Phys. Lett.
,
93
(
3
), p.
031919
. 10.1063/1.2965465
10.
Nikiforov
,
I.
,
Zhang
,
D.-B.
,
James
,
R. D.
, and
Dumitrică
,
T.
,
2010
, “
Wavelike Rippling in Multiwalled Carbon Nanotubes Under Pure Bending
,”
Appl. Phys. Lett.
,
96
(
12
), p.
123107
. 10.1063/1.3368703
11.
Cornwell
,
C. F.
, and
Welch
,
C. R.
,
2011
, “
Very-High-Strength (60-GPa) Carbon Nanotube Fiber Design Based on Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
134
(
20
), p.
204708
. 10.1063/1.3594197
12.
Buehler
,
M. J.
,
2006
, “
Mesoscale Modeling of Mechanics of Carbon Nanotubes: Self-Assembly, Self-Folding, and Fracture
,”
J. Mater. Res.
,
21
(
11
), pp.
2855
2869
. 10.1557/jmr.2006.0347
13.
Cranford
,
S. W.
, and
Buehler
,
M. J.
,
2010
, “
In Silico Assembly and Nanomechanical Characterization of Carbon Nanotube Buckypaper
,”
Nanotechnology
,
21
(
26
), p.
265706
. 10.1088/0957-4484/21/26/265706
14.
Mirzaeifar
,
R.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2015
, “
Mesoscale Mechanics of Twisting Carbon Nanotube Yarns
,”
Nanoscale
,
7
(
12
), pp.
5435
5445
. 10.1039/C4NR06669C
15.
Volkov
,
A. N.
, and
Zhigilei
,
L. V.
,
2010
, “
Structural Stability of Carbon Nanotube Films: The Role of Bending Buckling
,”
ACS Nano
,
4
(
10
), pp.
6187
6195
. 10.1021/nn1015902
16.
Volkov
,
A. N.
, and
Zhigilei
,
L. V.
,
2010
, “
Mesoscopic Interaction Potential for Carbon Nanotubes of Arbitrary Length and Orientation
,”
J. Phys. Chem. C
,
114
(
12
), pp.
5513
5531
. 10.1021/jp906142h
17.
Volkov
,
A. N.
, and
Zhigilei
,
L. V.
,
2010
, “
Scaling Laws and Mesoscopic Modeling of Thermal Conductivity in Carbon Nanotube Materials
,”
Phys. Rev. Lett.
,
104
(
21
), p.
215902
. 10.1103/PhysRevLett.104.215902
18.
Wittmaack
,
B. K.
,
Volkov
,
A. N.
, and
Zhigilei
,
L. V.
,
2018
, “
Mesoscopic Modeling of the Uniaxial Compression and Recovery of Vertically Aligned Carbon Nanotube Forests
,”
Compos. Sci. Technol.
,
166
(
1
), pp.
66
85
. 10.1016/j.compscitech.2018.03.014
19.
Ostanin
,
I.
,
Ballarini
,
R.
,
Potyondy
,
D.
, and
Dumitrica
,
T.
,
2013
, “
A Distinct Element Method for Large Scale Simulations of Carbon Nanotube Assemblies
,”
J. Mech. Phys. Solids
,
61
(
3
), pp.
762
782
. 10.1016/j.jmps.2012.10.016
20.
Ostanin
,
I.
,
Ballarini
,
R.
, and
Dumitrica
,
T.
,
2014
, “
Distinct Element Method Modeling of Carbon Nanotube Bundles With Intertube Sliding and Dissipation
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061004
. 10.1115/1.4026484
21.
Ostanin
,
I.
,
Ballarini
,
R.
, and
Dumitrica
,
T.
,
2015
, “
Distinct Element Method for Multiscale Modeling of Cross-Linked Carbon Nanotube Bundles: From Soft to Strong Nanomaterials
,”
J. Mater. Res.
,
30
(
1
), pp.
19
25
. 10.1557/jmr.2014.279
22.
Cundall
,
P. A.
, and
Strack
,
O. D.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
. 10.1680/geot.1979.29.1.47
23.
Wang
,
Y.
,
Gaidau
,
C.
,
Ostanin
,
I.
, and
Dumitrica
,
T.
,
2013
, “
Ring Windings From Single-wall Carbon Nanotubes: A Distinct Element Method Study
,”
Appl. Phys. Lett.
,
103
(
18
), p.
183902
. 10.1063/1.4827337
24.
Wang
,
Y.
,
Semler
,
M. R.
,
Ostanin
,
I.
,
Hobbie
,
E. K.
, and
Dumitrica
,
T.
,
2014
, “
Rings and Rackets From Single-Wall Carbon Nanotubes: Manifestations of Mesoscale Mechanics
,”
Soft Matter
,
10
(
43
), pp.
8635
8640
. 10.1039/C4SM00865K
25.
Wang
,
Y.
,
Xu
,
H.
,
Drozdov
,
G.
, and
Dumitrică
,
T.
,
2018
, “
Mesoscopic Friction and Network Morphology Control the Mechanics and Processing of Carbon Nanotube Yarns
,”
Carbon
,
139
(
1
), pp.
94
104
. 10.1016/j.carbon.2018.06.043
26.
Ostanin
,
I.
,
Zhilyaev
,
P.
,
Petrov
,
V.
,
Dumitrica
,
T.
,
Eibl
,
S.
,
Ruede
,
U.
, and
Kuzkin
,
V.
,
2018
, “
Toward Large Scale Modeling of Carbon Nanotube Systems With the Mesoscopic Distinct Element Method
,”
Lett. Mater.
,
8
(
3
), pp.
240
245
. 10.22226/2410-3535
27.
Preclik
,
T.
, and
Rüde
,
U.
,
2015
, “
Ultrascale Simulations of Non-Smooth Granular Dynamics
,”
Comput. Part. Mech.
,
2
(
2
), pp.
173
196
. 10.1007/s40571-015-0047-6
28.
Itasca Consulting group Inc.
,
2008
,
PFC3D (Particle Flow Code in Three Dimensions). Version 4.0.
,
Itasca Consulting Group Inc.
,
Minneapolis, MN
.
29.
Brilliantov
,
N. V.
,
Budkov
,
Y. A.
, and
Seidel
,
C.
,
2017
, “
Theoretical and Numerical Analysis of Nano-Actuators Based on Grafted Polyelectrolytes in an Electric Field
,”
Faraday Discuss.
,
199
(
1
), pp.
487
510
. 10.1039/C6FD00240D
30.
Kuzkin
,
V. A.
, and
Asonov
,
I. E.
,
2012
, “
Vector-Based Model of Elastic Bonds for Simulation of Granular Solids
,”
Phys. Rev. E
,
86
(
5
), p.
051301
. 10.1103/PhysRevE.86.051301
31.
Potyondy
,
D. O.
, and
Cundall
,
P. A.
,
2004
, “
A Bonded-Particle Model for Rock
,”
Int. J. Rock Mech. Min. Sci.
,
41
(
8
), pp.
1329
1364
. 10.1016/j.ijrmms.2004.09.011
32.
Godenschwager
,
C.
,
Schornbaum
,
F.
,
Bauer
,
M.
,
Köstler
,
H.
, and
Rüde
,
U.
,
2013
, “
A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries
,”
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, ACM
,
Denver, CO
,
Nov. 17–22
,
ACM Press
, p.
35
.
33.
Schornbaum
,
F.
, and
Rüde
,
U.
,
2016
, “
Massively Parallel Algorithms for the Lattice Boltzmann Method on Non-Uniform Grids
,”
SIAM J. Sci. Comput.
,
38
(
2
), pp.
C96
C126
. 10.1137/15M1035240
34.
Eibl
,
S.
, and
Rüde
,
U.
,
2018
, “
A Local Parallel Communication Algorithm for Polydisperse Rigid Body Dynamics
,”
Parallel Comput.
,
80
(
1
), pp.
36
48
. 10.1016/j.parco.2018.10.002
35.
Ma
,
Y. J.
,
Yao
,
X. F.
,
Zheng
,
Q. S.
,
Yin
,
Y. J.
,
Jiang
,
D. J.
,
Xu
,
G. H.
,
Wei
,
F.
, and
Zhang
,
Q.
,
2010
, “
Carbon Nanotube Films Change Poisson’s Ratios From Negative to Positive
,”
Appl. Phys. Lett.
,
97
(
6
), p.
061909
. 10.1063/1.3479393
36.
Xie
,
B.
,
Liu
,
Y.
,
Ding
,
Y.
,
Zheng
,
Q.
, and
Xu
,
Z.
,
2011
, “
Mechanics of Carbon Nanotube Networks: Microstructural Evolution and Optimal Design
,”
Soft Matter
,
7
(
21
), pp.
10039
10047
. 10.1039/c1sm06034a
37.
Li
,
Y.
, and
Kröger
,
M.
,
2012
, “
Viscoelasticity of Carbon Nanotube Buckypaper: Zipping–Unzipping Mechanism and Entanglement Effects
,”
Soft Matter
,
8
(
30
), pp.
7822
7830
. 10.1039/c2sm25561h
38.
Sinclair
,
R. C.
,
Suter
,
J. L.
, and
Coveney
,
P. V.
,
2018
, “
Graphene–Graphene Interactions: Friction, Superlubricity, and Exfoliation
,”
Adv. Mater.
,
30
(
13
), p.
1705791
. 10.1002/adma.v30.13
39.
Chen
,
Y.
,
Pan
,
F.
,
Guo
,
Z.
,
Liu
,
B.
, and
Zhang
,
J.
,
2015
, “
Stiffness Threshold of Randomly Distributed Carbon Nanotube Networks
,”
J. Mech. Phys. Solids
,
84
(
1
), pp.
395
423
. 10.1016/j.jmps.2015.07.016
40.
Pan
,
F.
,
Chen
,
Y.
,
Liu
,
Y.
, and
Guo
,
Z.
,
2017
, “
Out-of-Plane Bending of Carbon Nanotube Films
,”
Int. J. Solids Struct.
,
106–107
(
1
), pp.
183
199
. 10.1016/j.ijsolstr.2016.11.020
You do not currently have access to this content.