Abstract

The effects of two different pitching frequencies (that is, Strouhal number, St) on the wake structure generated by two foils of aspect ratio 1.0 are examined numerically at a Reynolds number of 10,000. Strouhal numbers of 0.5 and 0.2 were studied, the first corresponding approximately to the peak in efficiency and the second corresponding to the point where the thrust is equal to the drag (the free-swimming condition). The two foils have either a square trailing edge or a convex trailing edge that mimics the shape of the caudal fin exhibited by certain species of fish. In previous works, the convex trailing edge panel was found to have higher thrust and efficiency compared with the square panel trailing edge. Here, these differences are related to their characteristic vortex formation and detachment processes leading to differences in wake coherence and extension. The wake of the square panel at St = 0.2 transitions slowly from a reverse von Kármán street (2S) pattern to a paired (2P) system as the wake develops downstream, whereas at St = 0.5, the wake almost immediately takes on a 2P form with an attendant split in the wake structure. For the convex panel, the transition from a 2S to a 2P structure at St = 0.2 is slower than that seen for the square panel, and for St = 0.5, the wake undergoes an abrupt transition leading to two distinct vortex streets that evolve at a considerably slower rate than seen for the square panel.

References

References
1.
Sambiley
,
V.
,
1990
, “
Interrelationships Between Swimming Speed, Caudal Fin Aspect Ratio and Body Length of Fishes
,”
Fishbyte
,
8
(
3
), pp.
16
20
.
2.
Sumich
,
J. L.
, and
Morrissey
,
J. F.
,
2004
,
Introduction to the Biology of Marine Life
,
Jones & Bartlett Learning
,
Burlington, MA
.
3.
Guglielmini
,
L.
, and
Blondeaux
,
P.
,
2004
, “
Propulsive Efficiency of Oscillating Foils
,”
Euro. J. Mech. B/Fluids
,
23
(
2
), pp.
255
278
. 10.1016/j.euromechflu.2003.10.002
4.
Blondeaux
,
P.
,
Fornarelli
,
F.
, and
Guglielmini
,
L.
,
2005
, “
Numerical Experiments on Flapping Foils Mimicking Fish-Like Locomotion
,”
Phys. Fluids
,
17
(
11
), p.
113601
. 10.1063/1.2131923
5.
Buchholz
,
J. H. J.
, and
Smits
,
A. J.
,
2006
, “
On the Evolution of the Wake Structure Produced by a Low-Aspect-Ratio Pitching Panel
,”
J. Fluid Mech.
,
546
, pp.
433
443
. 10.1017/S0022112005006865
6.
Jantzen
,
R. T.
,
Taira
,
K.
,
Granlund
,
K. O.
, and
Ol
,
M. V.
,
2014
, “
Vortex Dynamics Around Pitching Plates
,”
Phys. Fluids
,
26
(
5
), p.
053606
. 10.1063/1.4879035
7.
Hemmati
,
A.
,
2019
, “
Effects of Trailing Edge Shape on Vortex Formation by Pitching Panels of Small Aspect Ratio
,”
Phys. Rev. Fluids
,
4
(
3
), p.
033101
. 10.1103/PhysRevFluids.4.033101
8.
Smits
,
A. J.
,
2019
, “
Undulatory and Oscillatory Swimming
,”
J. Fluid Mech.
,
874
, p.
1
. 10.1017/jfm.2019.284
9.
VanBuren
,
T.
,
Floryan
,
D.
,
Brunner
,
D.
, and
Smits
,
A. J.
,
2017
, “
Impact of Trailing Edge Shape on the Wake and Propulsive Performance of Pitching Panels
,”
Phys. Rev. Fluids
,
2
(
1
), p.
014702
. 10.1103/PhysRevFluids.2.014702
10.
Floryan
,
D.
,
VanBuren
,
T.
, and
Smits
,
A. J.
,
2018
, “
Efficient Cruising for Swimming and Flying Animals is Dictated by Fluid Drag
,”
Proc. Nat. Acad. Sci.
,
115
(
32
), pp.
8116
8118
. 10.1073/pnas.1805941115
11.
Van Buren
,
T.
,
Floryan
,
D.
,
Smits
,
A. J.
,
Pan
,
H.
,
Bode-Oke
,
A. T.
, and
Dong
,
H.
,
2019
, “
Foil Shapes for Efficient Fish-Like Propulsion
.” AIAA Paper 2019-1379.
12.
Şentürk
,
U.
, and
Smits
,
A. J.
,
2019
, “
Reynolds Number Scaling of the Propulsive Performance of a Pitching Hydrofoil
,”
AIAA J.
,
57
(
7
), pp.
2663
2669
.
13.
Floryan
,
D.
,
Van Buren
,
T.
,
Rowley
,
C. W.
, and
Smits
,
A. J.
,
2017
, “
Scaling the Propulsive Performance of Heaving and Pitching Foils
,”
J. Fluid Mech.
,
822
, pp.
386
397
. 10.1017/jfm.2017.302
14.
Triantafyllou
,
M. S.
, and
Triantafyllou
,
G. S.
,
1995
, “
An Efficient Swimming Machine
,”
Sci. Am.
,
272
(
3
), pp.
64
71
. 10.1038/scientificamerican0395-64
15.
Gazzola
,
M.
,
Argentina
,
M.
, and
Mahadevan
,
L.
,
2014
, “
Scaling Macroscopic Aquatic Locomotion
,”
Nat. Phys.
,
10
(
10
), p.
758
. 10.1038/nphys3078
16.
Lauder
,
G. V.
,
2000
, “
Function of the Caudal Fin During Locomotion in Fishes: Kinematics, Flow Visualization, and Evolutionary Patterns
,”
Am. Zool.
,
40
(
1
), pp.
101
122
. https://doi.org/10.1093/icb/40.1.101
17.
Chopra
,
M. G.
,
1974
, “
Hydromechanics of Lunate-Tail Swimming Propulsion
,”
J. Fluid Mech.
,
64
(
2
), pp.
375
392
. 10.1017/S002211207400245X
18.
Karpouzian
,
G.
,
Spedding
,
G.
, and
Cheng
,
H. K.
,
1990
, “
Lunate-Tail Swimming Propulsion. Part 2. Performance Analysis
,”
J. Fluid Mech.
,
210
(
1
), pp.
329
351
. 10.1017/S0022112090001318
19.
Liu
,
G.
, and
Dong
,
H.
,
2016
, “
Effects of tail geometries on the performance and wake pattern in flapping propulsion
,”
ASME 2016 Fluids Engineering Division Summer Meeting
,
American Society of Mechanical Engineers
,
Washington, DC
, p.
V01BT30A002
.
20.
Buchholz
,
J. H. J.
, and
Smits
,
A. J.
,
2005
, “
Wake of a Low Aspect Ratio Pitching Plate
,”
Phys. Fluids.
,
17
(
9
), p.
091102
. 10.1063/1.1942512
21.
Buchholz
,
J. H. J.
, and
Smits
,
A. J.
,
2008
, “
The Wake Structure and Thrust Performance of a Rigid Low-Aspect-Ratio Pitching Panel
,”
J. Fluid Mech.
,
603
, pp.
331
365
. 10.1017/S0022112008000906
22.
Williamson
,
C. H. K.
, and
Roshko
,
A.
,
1988
, “
Vortex Formation in the Wake of An Oscillating Cylinder
,”
J. Fluids Struct.
,
2
(
4
), pp.
355
388
. 10.1016/S0889-9746(88)90058-8
23.
Green
,
M. A.
, and
Smits
,
A. J.
,
2008
, “
Effects of Three-Dimensionality on Thrust Production by a Pitching Panel
,”
J. Fluid Mech.
,
615
, pp.
211
220
. 10.1017/S0022112008003583
24.
Green
,
M. A.
,
Rowley
,
C. W.
, and
Smits
,
A. J.
,
2011
, “
The Unsteady Three-Dimensional Wake Produced by a Trapezoidal Pitching Panel
,”
J. Fluid Mech.
,
685
, pp.
117
145
. 10.1017/jfm.2011.286
25.
King
,
J. T.
,
Kumar
,
R.
, and
Green
,
M. A.
,
2018
, “
Experimental Observations of the Three-dimensional Wake Structures and Dynamics Generated by a Rigid, Bioinspired Pitching Panel
,”
Phys. Rev. Fluids
,
3
(
3
), p.
034701
. 10.1103/PhysRevFluids.3.034701
26.
Şentürk
,
U.
,
Brunner
,
D.
,
Jasak
,
H.
,
Herzog
,
N.
,
Rowley
,
C. W.
, and
Smits
,
A. J.
,
2018
, “
Benchmark Simulations of Flow Past Rigid Bodies Using An Open-source, Sharp Interface Immersed Boundary Method
,”
Prog. Comput. Fluid Dyn.
,
1
(
1
), p.
1
.
27.
Dong
,
S.
, and
Karniadakis
,
G. E.
,
2005
, “
DNS of Flow Past a Stationary and Oscillating Cylinder At Re = 10,000
,”
J. Fluids Struct.
,
20
(
4
), pp.
519
531
. 10.1016/j.jfluidstructs.2005.02.004
28.
Şentürk
,
U.
, and
Smits
,
A. J.
,
2018
, “
Numerical Simulations of the Flow Around a Square Pitching Panel
,”
J. Fluids Struct.
,
76
, pp.
454
468
. 10.1016/j.jfluidstructs.2017.11.001
You do not currently have access to this content.