Abstract

Active metamaterials exhibit unique and tunable functionalities by altering their shape and material properties in response to external stimuli. While this enables the creation of material systems that can respond to dynamically changing environments, it also necessitates the development of innovative computational strategies for active metamaterial design. Recent advancements in computational algorithms, such as physics-based optimization techniques and artificial intelligence, have offered new opportunities and attracted significant interest in the field. In this perspective, we examine how these advancements are shaping the development of metamaterial systems. First, we discuss the different levels of complexity for metamaterial design, categorized by the material system (passive versus active) and design approach (forward prediction versus inverse design). We then provide an overview of recent efforts aimed at overcoming the challenges presented by design problems of increasing difficulty. Finally, current limitations and possible future directions for the field are discussed, emphasizing the importance of active property tuning and multifunctionality. This article is expected to provide a comprehensive overview of the current computational landscape, offer insights into emerging strategies for active metamaterial design, and guide future research toward more programmable, multifunctional material systems.

References

1.
Wei
,
Y.-L.
,
Yang
,
Q.-S.
, and
Tao
,
R.
,
2021
, “
SMP-Based Chiral Auxetic Mechanical Metamaterial With Tunable Bandgap Function
,”
Int. J. Mech. Sci.
,
195
, p.
106267
.
2.
Wu
,
J.
,
Yao
,
S.
,
Zhang
,
H.
,
Man
,
W.
,
Bai
,
Z.
,
Zhang
,
F.
,
Wang
,
X.
,
Fang
,
D.
, and
Zhang
,
Y.
,
2021
, “
Liquid Crystal Elastomer Metamaterials With Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration
,”
Adv. Mater.
,
33
(
45
), p.
2106175
.
3.
Wu
,
S.
,
Ze
,
Q.
,
Zhang
,
R.
,
Hu
,
N.
,
Cheng
,
Y.
,
Yang
,
F.
, and
Zhao
,
R.
,
2019
, “
Symmetry-Breaking Actuation Mechanism for Soft Robotics and Active Metamaterials
,”
ACS Appl. Mater. Interfaces
,
11
(
44
), pp.
41649
41658
.
4.
Chen
,
Y.
,
Li
,
X.
,
Hu
,
G.
,
Haberman
,
M. R.
, and
Huang
,
G.
,
2020
, “
An Active Mechanical Willis Meta-Layer With Asymmetric Polarizabilities
,”
Nat. Commun.
,
11
(
1
), p.
3681
.
5.
Wang
,
P.
,
Casadei
,
F.
,
Shan
,
S.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. Lett.
,
113
(
1
), p.
014301
.
6.
Shan
,
S.
,
Kang
,
S. H.
,
Wang
,
P.
,
Qu
,
C.
,
Shian
,
S.
,
Chen
,
E. R.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves
,”
Adv. Funct. Mater.
,
24
(
31
), pp.
4935
4942
.
7.
Haghpanah
,
B.
,
Ebrahimi
,
H.
,
Mousanezhad
,
D.
,
Hopkins
,
J.
, and
Vaziri
,
A.
,
2016
, “
Programmable Elastic Metamaterials
,”
Adv. Eng. Mater.
,
18
(
4
), pp.
643
649
.
8.
Wang
,
L.
,
Chang
,
Y.
,
Wu
,
S.
,
Zhao
,
R. R.
, and
Chen
,
W.
,
2023
, “
Physics-Aware Differentiable Design of Magnetically Actuated Kirigami for Shape Morphing
,”
Nat. Commun.
,
14
(
1
), p.
8516
.
9.
Pahlavani
,
H.
,
Amani
,
M.
,
Saldívar
,
M. C.
,
Zhou
,
J.
,
Mirzaali
,
M. J.
, and
Zadpoor
,
A. A.
,
2022
, “
Deep Learning for the Rare-Event Rational Design of 3D Printed Multi-material Mechanical Metamaterials
,”
Commun. Mater.
,
3
(
1
), p.
46
.
10.
Wilt
,
J. K.
,
Yang
,
C.
, and
Gu
,
G. X.
,
2020
, “
Accelerating Auxetic Metamaterial Design With Deep Learning
,”
Adv. Eng. Mater.
,
22
(
5
), p.
1901266
.
11.
Jin
,
P.
,
Xu
,
L.
,
Xu
,
G.
,
Li
,
J.
,
Qiu
,
C. W.
, and
Huang
,
J.
,
2024
, “
Deep Learning-Assisted Active Metamaterials With Heat-Enhanced Thermal Transport
,”
Adv. Mater.
,
36
(
5
), p.
2305791
.
12.
Tao
,
H.
,
Strikwerda
,
A. C.
,
Fan
,
K.
,
Padilla
,
W. J.
,
Zhang
,
X.
, and
Averitt
,
R. D.
,
2009
, “
Reconfigurable Terahertz Metamaterials
,”
Phys. Rev. Lett.
,
103
(
14
), p.
147401
.
13.
Wu
,
S.
,
Hamel
,
C. M.
,
Ze
,
Q.
,
Yang
,
F.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2020
, “
Evolutionary Algorithm-Guided Voxel-Encoding Printing of Functional Hard-Magnetic Soft Active Materials
,”
Adv. Intell. Syst.
,
2
(
8
), p.
2000060
.
14.
Sim
,
J.
,
Wu
,
S.
,
Hwang
,
S.
,
Lu
,
L.
, and
Zhao
,
R. R.
,
2024
, “
Selective Actuation Enabled Multifunctional Magneto-Mechanical Metamaterial for Programming Elastic Wave Propagation
,”
Adv. Funct. Mater.
,
35
(
16
), p.
2422325
.
15.
Hamel
,
C. M.
,
Roach
,
D. J.
,
Long
,
K. N.
,
Demoly
,
F.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2019
, “
Machine-Learning Based Design of Active Composite Structures for 4D Printing
,”
Smart Mater. Struct.
,
28
(
6
), p.
065005
.
16.
Ma
,
C.
,
Chang
,
Y.
,
Wu
,
S.
, and
Zhao
,
R. R.
,
2022
, “
Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials
,”
ACS Appl. Mater. Interfaces
,
14
(
29
), pp.
33892
33902
.
17.
Jiang
,
W.
,
Zhu
,
Y.
,
Yin
,
G.
,
Lu
,
H.
,
Xie
,
L.
, and
Yin
,
M.
,
2022
, “
Dispersion Relation Prediction and Structure Inverse Design of Elastic Metamaterials Via Deep Learning
,”
Mater. Today Phys.
,
22
, p.
100616
.
18.
Wang
,
Y.
,
Zeng
,
Q.
,
Wang
,
J.
,
Li
,
Y.
, and
Fang
,
D.
,
2022
, “
Inverse Design of Shell-Based Mechanical Metamaterial With Customized Loading Curves Based on Machine Learning and Genetic Algorithm
,”
Comput. Methods Appl. Mech. Eng.
,
401
, p.
115571
.
19.
Chen
,
J.
,
Chen
,
Y.
,
Xu
,
X.
,
Zhou
,
W.
, and
Huang
,
G.
,
2022
, “
A Physics-Guided Machine Learning for Multifunctional Wave Control in Active Metabeams
,”
Extreme Mech. Lett.
,
55
, p.
101827
.
20.
Sun
,
X.
,
Yue
,
L.
,
Yu
,
L.
,
Forte
,
C. T.
,
Armstrong
,
C. D.
,
Zhou
,
K.
,
Demoly
,
F.
,
Zhao
,
R. R.
, and
Qi
,
H. J.
,
2024
, “
Machine Learning-Enabled Forward Prediction and Inverse Design of 4D-Printed Active Plates
,”
Nat. Commun.
,
15
(
1
), p.
5509
.
21.
Sun
,
X.
,
Yu
,
L.
,
Yue
,
L.
,
Zhou
,
K.
,
Demoly
,
F.
,
Zhao
,
R. R.
, and
Qi
,
H. J.
,
2024
, “
Machine Learning and Sequential Subdomain Optimization for Ultrafast Inverse Design of 4D-Printed Active Composite Structures
,”
J. Mech. Phys. Solids
,
186
, p.
105561
.
22.
He
,
L.
,
Guo
,
H.
,
Jin
,
Y.
,
Zhuang
,
X.
,
Rabczuk
,
T.
, and
Li
,
Y.
,
2022
, “
Machine-Learning-Driven on-Demand Design of Phononic Beams
,”
Sci. China Phys. Mech. Astron.
,
65
(
1
), p.
214612
.
23.
Kumar
,
S.
,
Tan
,
S.
,
Zheng
,
L.
, and
Kochmann
,
D. M.
,
2020
, “
Inverse-Designed Spinodoid Metamaterials
,”
npj Comput. Mater.
,
6
(
1
), p.
73
.
24.
Alderete
,
N. A.
,
Pathak
,
N.
, and
Espinosa
,
H. D.
,
2022
, “
Machine Learning Assisted Design of Shape-Programmable 3D Kirigami Metamaterials
,”
npj Comput. Mater.
,
8
(
1
), p.
191
.
25.
Gu
,
G. X.
,
Chen
,
C.-T.
, and
Buehler
,
M. J.
,
2018
, “
De Novo Composite Design Based on Machine Learning Algorithm
,”
Extreme Mech. Lett.
,
18
, pp.
19
28
.
26.
Guseinov
,
R.
,
McMahan
,
C.
,
Pérez
,
J.
,
Daraio
,
C.
, and
Bickel
,
B.
,
2020
, “
Programming Temporal Morphing of Self-Actuated Shells
,”
Nat. Commun.
,
11
(
1
), p.
237
.
27.
Bessa
,
M. A.
,
Glowacki
,
P.
, and
Houlder
,
M.
,
2019
, “
Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible
,”
Adv. Mater.
,
31
(
48
), p.
1904845
.
28.
Zhang
,
J.
,
Li
,
Y.
,
Zhao
,
T.
,
Zhang
,
Q.
,
Zuo
,
L.
, and
Zhang
,
K.
,
2021
, “
Machine-Learning Based Design of Digital Materials for Elastic Wave Control
,”
Extreme Mech. Lett.
,
48
, p.
101372
.
29.
Donda
,
K.
,
Zhu
,
Y.
,
Merkel
,
A.
,
Fan
,
S.-W.
,
Cao
,
L.
,
Wan
,
S.
, and
Assouar
,
B.
,
2021
, “
Ultrathin Acoustic Absorbing Metasurface Based on Deep Learning Approach
,”
Smart Mater. Struct.
,
30
(
8
), p.
085003
.
30.
Bacigalupo
,
A.
,
Gnecco
,
G.
,
Lepidi
,
M.
, and
Gambarotta
,
L.
,
2020
, “
Machine-Learning Techniques for the Optimal Design of Acoustic Metamaterials
,”
J. Optim. Theory Appl.
,
187
(
3
), pp.
630
653
.
31.
Wu
,
L.
,
Liu
,
L.
,
Wang
,
Y.
,
Zhai
,
Z.
,
Zhuang
,
H.
,
Krishnaraju
,
D.
,
Wang
,
Q.
, and
Jiang
,
H.
,
2020
, “
A Machine Learning-Based Method to Design Modular Metamaterials
,”
Extreme Mech. Lett.
,
36
, p.
100657
.
32.
Wu
,
R.-T.
,
Liu
,
T.-W.
,
Jahanshahi
,
M. R.
, and
Semperlotti
,
F.
,
2021
, “
Design of One-Dimensional Acoustic Metamaterials Using Machine Learning and Cell Concatenation
,”
Struct. Multidiscipl. Optim.
,
63
(
5
), pp.
2399
2423
.
33.
Wang
,
L.
,
Boddapati
,
J.
,
Liu
,
K.
,
Zhu
,
P.
,
Daraio
,
C.
, and
Chen
,
W.
,
2022
, “
Mechanical Cloak Via Data-Driven Aperiodic Metamaterial Design
,”
Proc. Natl. Acad. Sci.
,
119
(
13
), p.
e2122185119
.
34.
Wang
,
L.
,
van Beek
,
A.
,
Da
,
D.
,
Chan
,
Y. C.
,
Zhu
,
P.
, and
Chen
,
W.
,
2022
, “
Data-Driven Multiscale Design of Cellular Composites With Multiclass Microstructures for Natural Frequency Maximization
,”
Compos. Struct.
,
280
, p.
114949
.
35.
Ha
,
C. S.
,
Yao
,
D.
,
Xu
,
Z.
,
Liu
,
C.
,
Liu
,
H.
,
Elkins
,
D.
,
Kile
,
M.
, et al
,
2023
, “
Rapid Inverse Design of Metamaterials Based on Prescribed Mechanical Behavior Through Machine Learning
,”
Nat. Commun.
,
14
(
1
), p.
5765
.
36.
Deng
,
B.
,
Zareei
,
A.
,
Ding
,
X.
,
Weaver
,
J. C.
,
Rycroft
,
C. H.
, and
Bertoldi
,
K.
,
2022
, “
Inverse Design of Mechanical Metamaterials With Target Nonlinear Response Via a Neural Accelerated Evolution Strategy
,”
Adv. Mater.
,
34
(
41
), p.
2206238
.
37.
Miniaci
,
M.
,
Krushynska
,
A.
,
Bosia
,
F.
, and
Pugno
,
N. M.
,
2016
, “
Large Scale Mechanical Metamaterials as Seismic Shields
,”
New J. Phys.
,
18
(
8
), p.
083041
.
38.
Tang
,
K.
,
Xiang
,
Y.
,
Tian
,
J.
,
Hou
,
J.
,
Chen
,
X.
,
Wang
,
X.
, and
Zhong
,
Z.
,
2024
, “
Machine Learning-Based Morphological and Mechanical Prediction of Kirigami-Inspired Active Composites
,”
Int. J. Mech. Sci.
,
266
, p.
108956
.
39.
Wang
,
C.
,
Zhao
,
Z.
, and
Zhang
,
X. S.
,
2023
, “
Inverse Design of Magneto-Active Metasurfaces and Robots: Theory, Computation, and Experimental Validation
,”
Comput. Methods Appl. Mech. Eng.
,
413
, p.
116065
.
40.
Sun
,
X.
,
Zhou
,
K.
,
Demoly
,
F.
,
Zhao
,
R. R.
, and
Qi
,
H. J.
,
2024
, “
Perspective: Machine Learning in Design for 3D/4D Printing
,”
ASME J. Appl. Mech.
,
91
(
3
), p.
030801
.
41.
Choi
,
G. P. T.
,
Dudte
,
L. H.
, and
Mahadevan
,
L.
,
2019
, “
Programming Shape Using Kirigami Tessellations
,”
Nat. Mater.
,
18
(
9
), pp.
999
1004
.
42.
Lum
,
G. Z.
,
Ye
,
Z.
,
Dong
,
X.
,
Marvi
,
H.
,
Erin
,
O.
,
Hu
,
W.
, and
Sitti
,
M.
,
2016
, “
Shape-Programmable Magnetic Soft Matter
,”
Proc. Natl. Acad. Sci.
,
113
(
41
), pp.
E6007
E6015
.
43.
Zhang
,
X.
,
Ye
,
H.
,
Wei
,
N.
,
Tao
,
R.
, and
Luo
,
Z.
,
2021
, “
Design Optimization of Multifunctional Metamaterials With Tunable Thermal Expansion and Phononic Bandgap
,”
Mater. Des.
,
209
, p.
109990
.
44.
Bao
,
Y.
,
Wei
,
Z.
,
Jia
,
Z.
,
Wang
,
D.
,
Zhang
,
X.
, and
Kang
,
Z.
,
2024
, “
Mechanical Metamaterial Design With the Customized Low-Frequency Bandgap and Negative Poisson's Ratio Via Topology Optimization
,”
Extreme Mech. Lett.
,
67
, p.
102124
.
45.
Fang
,
Z.
, and
Zhan
,
J.
,
2019
, “
Deep Physical Informed Neural Networks for Metamaterial Design
,”
IEEE Access
,
8
, pp.
24506
24513
.
46.
Chen
,
Y.
,
Lu
,
L.
,
Karniadakis
,
G. E.
, and
Dal Negro
,
L.
,
2020
, “
Physics-Informed Neural Networks for Inverse Problems in Nano-Optics and Metamaterials
,”
Opt. Expr.
,
28
(
8
), pp.
11618
11633
.
47.
Cuomo
,
S.
,
Di Cola
,
V. S.
,
Giampaolo
,
F.
,
Rozza
,
G.
,
Raissi
,
M.
, and
Piccialli
,
F.
,
2022
, “
Scientific Machine Learning Through Physics–Informed Neural Networks: Where We Are and What's Next
,”
J. Sci. Comput
,
92
(
3
), p.
88
.
48.
Cai
,
S.
,
Wang
,
Z.
,
Lu
,
L.
,
Zaki
,
T. A.
, and
Karniadakis
,
G. E.
,
2021
, “
DeepM&Mnet: Inferring the Electroconvection Multiphysics Fields Based on Operator Approximation by Neural Networks
,”
J. Comput. Phys.
,
436
, p.
110296
.
49.
Fujii
,
G.
, and
Akimoto
,
Y.
,
2022
, “
Electromagnetic-Acoustic Biphysical Cloak Designed Through Topology Optimization
,”
Opt. Expr.
,
30
(
4
), pp.
6090
6106
.
50.
Wang
,
Y.
,
Gao
,
J.
,
Luo
,
Z.
,
Brown
,
T.
, and
Zhang
,
N.
,
2017
, “
Level-Set Topology Optimization for Multimaterial and Multifunctional Mechanical Metamaterials
,”
Eng. Optim.
,
49
(
1
), pp.
22
42
.
You do not currently have access to this content.