Abstract

The nanoscale contact behavior of an elastic layer with a finite thickness is significantly influenced by the effects of not only surface but also layer thickness. Using the elasticity theory based on the surface energy density as well as the Fourier transformation technique, the two-dimensional frictionless contact problem of a rigid nanoindenter with a flat or cylindrical shape on a finite elastic layer is investigated. Integral solutions of stresses and displacements in the finite elastic layer are obtained, which take into account the effects of both surface and layer thickness. It is found that the surface effect results in a hardening of the finite elastic layer, which is basically due to the opposite action of the surface-induced normal traction to the externally applied compression. The decrease of layer thickness induces an increase of the normal stress and a decrease of the normal displacement in the contact region because of the constraint of the rigid substrate to the layer deformation. An interesting finding is also unveiled that the surface effect could effectively eliminate the bulging behavior in a very thin layer. Furthermore, an indentation hardness including the coupling effects of surface and thickness in the finite elastic layer is predicted, which increases with either an enhancing surface effect or a decrease of the layer thickness. The present research should be helpful for designs and performance evaluations of layer-substrate structures in practical engineering, such as coatings and microelectronic devices.

References

1.
Feynman
,
R.
,
1992
, “
There's Plenty of Room at the Bottom [Data Storage]
,”
J. Microelectromech. Syst.
,
1
(
1
), pp.
60
66
.
2.
Bhushan
,
B.
,
2007
, “
Nanotribology and Nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices
,”
Microelectron. Eng.
,
84
(
3
), pp.
387
412
.
3.
Zhu
,
J.
,
Liu
,
X.
,
Shi
,
Q.
,
He
,
T.
,
Sun
,
Z.
,
Guo
,
X.
,
Liu
,
W.
,
Sulaiman
,
O. B.
,
Dong
,
B.
, and
Lee
,
C.
,
2019
, “
Development Trends and Perspectives of Future Sensors and MEMS/NEMS
,”
Micromachines
,
11
(
1
), p.
7
.
4.
Liang
,
Z. Y.
, and
Pharr
,
G. M.
,
2022
, “
Decoupling Indentation Size and Strain Rate Effects During Nanoindentation: A Case Study in Tungsten
,”
J. Mech. Phys. Solids
,
165
, p.
104935
.
5.
Shen
,
Z. Y.
,
Liang
,
Z. Y.
, and
Xu
,
L.
,
2024
, “
Review of Indentation Size Effect in Crystalline Materials: Progress, Challenges and Opportunities
,”
J. Mater. Res. Technol.
,
31
, pp.
117
132
.
6.
Duan
,
Z. C.
, and
Hodge
,
A. M.
,
2009
, “
High-Temperature Nanoindentation: New Developments and Ongoing Challenges
,”
JOM
,
61
(
12
), pp.
32
36
.
7.
Wheeler
,
J. M.
,
Armstrong
,
D. E. J.
,
Heinz
,
W.
, and
Schwaiger
,
R.
,
2015
, “
High Temperature Nanoindentation: The State of the Art and Future Challenges
,”
Curr. Opin. Solid State Mater. Sci.
,
19
(
6
), pp.
354
366
.
8.
Tymiak
,
N. I.
,
Kramer
,
D. E.
,
Bahr
,
D. F.
,
Wyrobek
,
T. J.
, and
Gerberich
,
W. W.
,
2001
, “
Plastic Strain and Strain Gradients at Very Small Indentation Depths
,”
Acta Mater.
,
49
(
6
), pp.
1021
1034
.
9.
Voyiadjis
,
G. Z.
, and
Yaghoobi
,
M.
,
2017
, “
Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation
,”
Crystal
,
7
(
10
), p.
321
.
10.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Stresses on Contact Problems at Nanoscale
,”
J. Appl. Phys.
,
101
(
1
), p.
013510
.
11.
Zhou
,
W. X.
, and
Yang
,
F. Q.
,
2022
, “
Effects of Surface Stress on the Indentation Response of an Elastic Half-Space
,”
Int. J. Mech. Sci.
,
229
, p.
107512
.
12.
Gerberich
,
W.
,
Tymiak
,
N.
,
Grunlan
,
J.
,
Horstemeyer
,
M. F.
, and
Baskes
,
M. I.
,
2002
, “
Interpretations of Indentation Size Effects
,”
ASME J. Appl. Mech.
,
69
(
4
), pp.
433
442
.
13.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
14.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.
15.
Xiao
,
Y.
,
Shang
,
J.
,
Kou
,
L. Z.
, and
Li
,
C.
,
2022
, “
Surface Deformation-Dependent Mechanical Properties of Bending Nanowires: An Ab Initio Core-Shell Model
,”
Appl. Math. Mech. Engl. Ed.
,
43
(
2
), pp.
219
232
.
16.
Lei
,
D.
,
Wang
,
L.
, and
Ou
,
Z.
,
2012
, “
Elastic Analysis for Nanocontact Problem With Surface Stress Effects Under Shear Load
,”
J. Nanomater.
,
2012
, pp.
1
7
. doi:10.1155/2012/505034
17.
Ou
,
Z. Y.
, and
Pang
,
S. D.
,
2013
, “
Fundamental Solutions to Hertzian Contact Problems at Nanoscale
,”
Acta Mech.
,
224
(
1
), pp.
109
121
.
18.
Long
,
J.
,
Wang
,
G.
,
Feng
,
X. Q.
, and
Yu
,
S.W.
,
2012
, “
Two-Dimensional Hertzian Contact Problem With Surface Tension
,”
Int. J. Solid Struct.
,
49
(
13
), pp.
1588
1594
.
19.
Long
,
J.
,
Wang
,
G.
,
Feng
,
X. Q.
, and
Yu
,
S.
,
2016
, “
Effects of Surface Tension on the Adhesive Contact Between a Hard Sphere and a Soft Substrate
,”
Int. J. Solids Struct.
,
84
, pp.
133
138
.
20.
Fathabadi
,
S. A. A.
, and
Alinia
,
Y.
,
2020
, “
A Nano-Scale Frictional Contact Problem Incorporating the Size Dependency and the Surface Effects
,”
Appl. Math. Model.
,
83
, pp.
107
121
.
21.
Zemlyanova
,
A. Y.
, and
White
,
L. M.
,
2022
, “
Axisymmetric Frictionless Indentation of a Rigid Stamp Into a Semi-Space With a Surface Energetic Boundary
,”
Math. Mech. Solids
,
27
(
2
), pp.
334
347
.
22.
Xiao
,
S.
,
Peng
,
Z. L.
,
Wu
,
H.
,
Yao
,
Y.
, and
Chen
,
S. H.
,
2023
, “
Surface Effect in Nano-Scale Fretting Contact Problems
,”
ASME J. Appl. Mech.
,
90
(
11
), p.
111005
.
23.
Xiao
,
S.
,
Wu
,
H.
,
Peng
,
Z. L.
,
Yao
,
Y.
, and
Chen
,
S. H.
,
2024
, “
Surface Effect on the Partial-Slip Contact of a Nano-Sized Flat Indenter
,”
Mech. Mater.
,
195
, p.
105057
.
24.
Chen
,
S. H.
, and
Yao
,
Y.
,
2014
, “
Elastic Theory of Nanomaterials Based on Surface-Energy Density
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121002
.
25.
Jia
,
N.
,
Yao
,
Y.
, and
Chen
,
S. H.
,
2017
, “
Analysis of Two-Dimensional Contact Problems Considering Surface Effect
,”
Int. J. Solids Struct.
,
125
, pp.
172
183
.
26.
Jia
,
N.
,
Yao
,
Y.
,
Peng
,
Z. L.
, and
Chen
,
S. H.
,
2018
, “
Surface Effect in Axisymmetric Hertzian Contact Problems
,”
Int. J. Solids Struct.
,
150
, pp.
241
254
.
27.
Jia
,
N.
,
Yao
,
Y.
,
Peng
,
Z. L.
, and
Chen
,
S. H.
,
2021
, “
Surface Effect in Nanoscale Adhesive Contact
,”
J. Adhes.
,
97
(
4
), pp.
380
398
.
28.
Wang
,
L. Y.
,
2020
, “
Boussinesq Problem With the Surface Effect Based on Surface Energy Density
,”
Int. J. Mech. Mater. Des.
,
16
(
3
), pp.
633
645
.
29.
Wang
,
L. H.
,
Wang
,
L. Y.
, and
Han
,
H. J.
,
2021
, “
Surface Effects on Nano-Contact Based on Surface Energy Density
,”
Arch. Appl. Mech.
,
91
(
10
), pp.
4179
4190
.
30.
Wang
,
L. Y.
,
Wu
,
H. M.
, and
Qu
,
Z. Y.
,
2023
, “
Contact Behaviors Involving a Nanobeam With Surface Effect by a Rigid Indenter
,”
Math. Mech. Solids
,
29
(
2
), pp.
401
417
.
31.
Wang
,
Y. X.
,
Zhang
,
B.
,
Zhang
,
X.
,
Liu
,
J.
, and
Shen
,
H.
,
2019
, “
Two-Dimensional Fretting Contact Analysis Considering Surface Effects
,”
Int. J. Solids Struct.
,
170
, pp.
68
81
.
32.
Mayer
,
T. M.
,
Elam
,
J. W.
,
George
,
S. M.
,
Kotula
,
P. G.
, and
Goeke
,
R. S.
,
2003
, “
Atomic-Layer Deposition of Wear-Resistant Coatings for Microelectromechanical Devices
,”
Appl. Phys. Lett.
,
82
(
17
), pp.
2883
2885
.
33.
Wood
,
R. J. K.
,
2007
, “
Tribo-Corrosion of Coatings: A Review
,”
J. Phys. D Appl. Phys.
,
40
(
18
), pp.
5502
5521
.
34.
Huang
,
Y. A.
,
Liu
,
H. M.
,
Xu
,
Z. L.
,
Chen
,
J.
, and
Yin
,
Z.
,
2018
, “
Conformal Peeling of Device-on-Substrate System in Flexible Electronic Assembly
,”
IEEE T Comp. Pack. Man. Technol.
,
8
(
8
), pp.
1496
1506
.
35.
Chen
,
S. H.
,
Liu
,
L.
, and
Wang
,
T. C.
,
2005
, “
Investigation of the Mechanical Properties of Thin Films by Nano-Indentation Considering the Effect of Thickness and Different Coating-Substrate Combination
,”
Surf. Coat. Tech.
,
191
(
1
), pp.
25
32
.
36.
Cao
,
Y. F.
,
Allameh
,
S.
,
Nankivil
,
D.
,
Sethiaraj
,
O. S.
, and
Soboyejo
,
T. W.
,
2006
, “
Nanoindentation Measurements of the Mechanical Properties of Polycrystalline Au and Ag Thin Films on Silicon Substrates: Effects of Grain Size and Film Thickness
,”
Mater. Sci. Eng. A
,
427
(
1–2
), pp.
232
240
.
37.
Lofaj
,
F.
, and
Németh
,
D.
,
2017
, “
The Effects of Tip Sharpness and Coating Thickness on Nanoindentation Measurements in Hard Coatings on Softer Substrates by FEM
,”
Thin Solid Films
,
644
, pp.
173
181
.
38.
Luu
,
H. T.
,
Dang
,
S. L.
,
Hoang
,
T. V.
, and
Gunkelmann
,
N.
,
2021
, “
Molecular Dynamics Simulation of Nanoindentation in Al and Fe: On the Influence of System Characteristics
,”
Appl. Surf. Sci.
,
551
, p.
149221
.
39.
Matthewson
,
M. J.
,
1981
, “
Axi-Symmetric Contact on Thin Compliant Coatings
,”
J. Mech. Phys. Solids
,
29
(
2
), pp.
89
113
.
40.
Li
,
J.
, and
Chou
,
T. W.
,
1997
, “
Elastic Field of a Thin-Film/Substrate System Under an Axisymmetric Loading
,”
Int. J. Solids Struct.
,
34
(
35–36
), pp.
4463
4478
.
41.
Rungamornrat
,
J.
,
Tuttipongsawat
,
P.
, and
Senjuntichai
,
T.
,
2016
, “
Elastic Layer Under Axisymmetric Surface Loads and Influence of Surface Stresses
,”
Appl. Math. Modell.
,
40
(
2
), pp.
1532
1553
.
42.
Zhang
,
X.
,
Wang
,
Z. J.
,
Shen
,
H. M.
, and
Wang
,
Q. J.
,
2017
, “
Frictional Contact Involving a Multiferroic Thin Film Subjected to Surface Magnetoelectroelastic Effects
,”
Int. J. Mech. Sci.
,
131–132
, pp.
633
648
.
43.
Zhang
,
X.
,
Wang
,
Q. J.
,
Wang
,
Y. X.
,
Wang
,
Z. J.
,
Shen
,
H. M.
, and
Liu
,
J.
,
2018
, “
Contact Involving a Functionally Graded Elastic Thin Film and Considering Surface Effects
,”
Int. J. Solids Struct.
,
150
, pp.
184
196
.
44.
Intarit
,
P. I.
,
Senjuntichai
,
T.
,
Rungamornrat
,
J.
, and
Limkatanyu
,
S.
,
2020
, “
Influence of Frictional Contact on Indentation of Elastic Layer Under Surface Energy Effects
,”
Mech. Res. Commun.
,
110
, p.
103622
.
45.
Li
,
M.
,
Zhang
,
H. X.
,
Zhao
,
Z. L.
, and
Feng
,
X. Q.
,
2020
, “
Surface Effects on Cylindrical Indentation of a Soft Layer on a Rigid Substrate
,”
Acta Mech. Sin.
,
36
(
2
), pp.
422
429
.
46.
Wu
,
H.
,
Xiao
,
S.
,
Peng
,
Z. L.
,
Jia
,
N.
, and
Chen
,
S. S.
,
2024
, “
Boussinesq Problem of a Finite Elastic Layer with the Surface Effect
,”
Acta Mech. Sin.
,
41
(
9
), p.
424352
.
47.
Sun
,
C. Q.
,
Tay
,
B. K.
,
Zeng
,
X. T.
,
Li
,
S.
,
Chen
,
T. P.
,
Zhou
,
J.
,
Bai
,
H. L.
, and
Jiang
,
E. Y.
,
2002
, “
Bond-Order–Bond-Length–Bond-Strength (Bond-OLS) Correlation Mechanism for the Shape-and-Size Dependence of a Nanosolid
,”
J. Phys.: Condens. Matter
,
14
(
34
), pp.
7781
7795
.
48.
Sun
,
C. Q.
,
2003
, “
Oxidation Electronics: Bond–Band–Barrier Correlation and Its Applications
,”
Prog. Mater. Sci.
,
48
(
6
), pp.
521
685
.
49.
Yao
,
Y.
, and
Chen
,
S. H.
,
2015
, “
Surface Effect on Resonant Properties of Nanowires Predicted by an Elastic Theory for Nanomaterials
,”
J. Appl. Phys.
,
118
(
4
), p.
044303
.
50.
Meijers
,
P.
,
1968
, “
The Contact Problem of a Rigid Cylinder on an Elastic Layer
,”
Appl. Sci. Res.
,
18
(
1
), pp.
353
383
.
51.
Ke
,
L. L.
, and
Wang
,
Y. S.
,
2006
, “
Two-Dimensional Contact Mechanics of Functionally Graded Materials With Arbitrary Spatial Variations of Material Properties
,”
Int. J. Solids Struct.
,
43
(
18–19
), pp.
5779
5798
.
52.
Selvadurai
,
A. P.
,
2000
,
Partial Differential Equations in Mechanics 2: The Biharmonic Equation, Poisson's Equation
,
Springer Science & Business Media
,
New York
.
53.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
54.
Gent
,
A. N.
, and
Yeoh
,
O. H.
,
2006
, “
Small Indentations of Rubber Blocks: Effect of Size and Shape of Block and of Lateral Compression
,”
Rubber Chem. Technol.
,
79
(
4
), pp.
674
693
.
55.
Deuschle
,
J. K.
,
Buerki
,
G.
,
Deuschle
,
H. M.
,
Enders
,
S.
,
Michler
,
J.
, and
Arzt
,
E.
,
2008
, “
In Situ Indentation Testing of Elastomers
,”
Acta Mater.
,
56
(
16
), pp.
4390
4401
.
56.
Giannakopoulos
,
A. E.
, and
Panagiotopoulos
,
D. I.
,
2009
, “
Conical Indentation of Incompressible Rubber-Like Materials
,”
Int. J. Solids Struct.
,
46
(
6
), pp.
1436
1447
.
You do not currently have access to this content.