Abstract

Experimental, theoretical, and numerical studies of adiabatic shear in ductile metals suggest initial defects such as pores or material imperfections increase shear-band susceptibility. Conversely, viscous effects manifesting macroscopically as strain-rate sensitivity inhibit localization. The analytical shear-band process zone model by Grady, in turn based on a rigid-plastic solution for stress release by Mott, is advanced to account for these phenomena. The material contains an average defect measure (e.g., porosity) and a concentrated defect measure at a location where shear banding is most likely to initiate after an instability threshold. Shearing resistance and certain physical properties are reduced commensurately with local defect concentration. Non-Newtonian viscosity increases dissipative resistance. Viscous dissipation, if strong enough, prevents an infinitesimal-width shear band even in a nonconductor. Here, a pseudo-quadratic viscosity widens the band similar to heat conduction and akin to quadratic shock viscosity often used to resolve widths of planar shock waves. The model captures simulation data showing reduced localization strain with increasing maximum initial pore size in additively manufactured titanium and HY-100 steel. Predictions for shear-band width, local strain, and temperature are more accurate versus data than prior analytical modeling.

References

1.
Wright
,
T.
,
2002
,
The Physics and Mathematics of Adiabatic Shear Bands
,
Cambridge University Press
,
Cambridge
.
2.
Yan
,
N.
,
Li
,
Z.
,
Xu
,
Y.
, and
Meyers
,
M.
,
2021
, “
Shear Localization in Metallic Materials at High Strain Rates
,”
Prog. Mater. Sci.
,
119
, p.
100755
.
3.
Molinari
,
A.
, and
Clifton
,
R.
,
1987
, “
Analytical Characterization of Shear Localization in Thermoviscoplastic Materials
,”
ASME J. Appl. Mech.
,
54
(
4
), pp.
806
812
.
4.
Wright
,
T.
, and
Ockendon
,
H.
,
1996
, “
A Scaling Law for the Effect of Inertia on the Formation of Adiabatic Shear Bands
,”
Int. J. Plast.
,
12
(
7
), pp.
927
934
.
5.
Grady
,
D.
,
1992
, “
Properties of an Adiabatic Shear-Band Process Zone
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1197
1215
.
6.
Molinari
,
A.
,
1988
, “
Shear Band Analysis
,”
Solid State Phenom.
,
3–4
, pp.
447
467
.
7.
Clayton
,
J.
,
2024
, “
Analysis of Shear Localization in Viscoplastic Solids With Pressure-Sensitive Structural Transformations
,”
J. Mech. Phys. Solids
,
193
, p.
105880
.
8.
Arriaga
,
M.
, and
Waisman
,
H.
,
2017
, “
Combined Stability Analysis of Phase-Field Dynamic Fracture and Shear Band Localization
,”
Int. J. Plast.
,
96
, pp.
81
119
.
9.
Clayton
,
J.
,
2025
, “
Analysis of Adiabatic Shear Coupled to Ductile Fracture and Melting in Viscoplastic Metals
,”
arXiv preprint, arXiv:2502.10625
. https://arxiv.org/abs/2502.10625
10.
Needleman
,
A.
,
1988
, “
Material Rate Dependence and Mesh Sensitivity in Localization Problems
,”
Comput. Methods Appl. Mech. Eng.
,
67
(
1
), pp.
69
85
.
11.
Wright
,
T.
, and
Ockendon
,
H.
,
1992
, “
A Model for Fully Formed Shear Bands
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1217
1226
.
12.
Shawki
,
T.
,
1988
, “Necessary and Sufficient Conditions for the Onset of Shear Strain Localization in Thermal Viscoplastic Materials,”
University. Illinois
,
Urbana, IL
, Report No. TAM-R-489, Technical Report.
13.
Cherukuri
,
H.
, and
Shawki
,
T.
,
1995
, “
An Energy-Based Localization Theory: I. Basic Framework
,”
Int. J. Plast.
,
11
(
1
), pp.
15
40
.
14.
Zhou
,
F.
,
Wright
,
T.
, and
Ramesh
,
K.
,
2006
, “
The Formation of Multiple Adiabatic Shear Bands
,”
J. Mech. Phys. Solids
,
54
(
7
), pp.
1376
1400
.
15.
Kubair
,
D.
,
Ramesh
,
K.
, and
Swaminathan
,
P.
,
2015
, “
Effect of Shear-Void-Growth Softening on Adiabatic Shear-Band-Spacing in Ductile Metals
,”
Acta Mech.
,
226
(
12
), pp.
4189
4206
.
16.
Vishnu
,
A.
,
Nieto-Fuentes
,
J.
, and
Rodriguez-Martinez
,
J.
,
2022
, “
Shear Band Formation in Porous Thin-Walled Tubes Subjected to Dynamic Torsion
,”
Int. J. Solids Struct.
,
252
, p.
111837
.
17.
Vishnu
,
A.
,
Marvi-Mashhadi
,
M.
,
Nieto-Fuentes
,
J.
, and
Rodriguez-Martinez
,
J.
,
2022
, “
New Insights Into the Role of Porous Microstructure on Dynamic Shear Localization
,”
Int. J. Plast.
,
148
, p.
103150
.
18.
Cho
,
K.
,
Chi
,
Y.
, and
Duffy
,
J.
,
1990
, “
Microscopic Observations of Adiabatic Shear Bands in Three Different Steels
,”
Metall. Trans. A
,
21
(
5
), pp.
1161
1175
.
19.
Duffy
,
J.
, and
Chi
,
Y.
,
1992
, “
On the Measurement of Local Strain and Temperature During the Formation of Adiabatic Shear Bands
,”
Mater. Sci. Eng. A
,
157
(
2
), pp.
195
210
.
20.
Fellows
,
N.
, and
Harding
,
J.
,
2001
, “
Localization of Plastic Deformation During High Strain Rate Torsion Testing of Rolled Homogeneous Armour
,”
J. Strain Anal. Eng. Des.
,
36
(
2
), pp.
197
210
.
21.
Xu
,
Y.
,
Zhang
,
J.
,
Bai
,
Y.
, and
Meyers
,
M.
,
2008
, “
Shear Localization in Dynamic Deformation: Microstructural Evolution
,”
Metall. Mater. Trans. A
,
39
(
4
), pp.
811
843
.
22.
Grady
,
D.
, and
Kipp
,
M.
,
1987
, “
The Growth of Unstable Thermoplastic Shear With Application to Steady-Wave Shock Compression in Solids
,”
J. Mech. Phys. Solids
,
35
(
1
), pp.
95
119
.
23.
Slotwinski
,
J.
,
Garboczi
,
E.
, and
Hebenstreit
,
K.
,
2014
, “
Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, pp.
494
528
.
24.
Ning
,
J.
,
Sievers
,
D.
,
Garmestani
,
H.
, and
Liang
,
S.
,
2020
, “
Analytical Modeling of Part Porosity in Metal Additive Manufacturing
,”
Int. J. Mech. Sci.
,
172
, p.
105428
.
25.
Marvi-Mashhadi
,
M.
,
Vaz-Romero
,
A.
,
Sket
,
F.
, and
Rodriguez-Martinez
,
J.
,
2021
, “
Finite Element Analysis to Determine the Role of Porosity in Dynamic Localization and Fragmentation: Application to Porous Microstructures Obtained From Additively Manufactured Materials
,”
Int. J. Plast.
,
143
, p.
102999
.
26.
Dodd
,
B.
, and
Atkins
,
A.
,
1983
, “
Flow Localization in Shear Deformation of Void-Containing and Void-Free Solids
,”
Acta Metall.
,
31
(
1
), pp.
9
15
.
27.
Batra
,
R.
, and
Jin
,
X.
,
1994
, “
Analysis of Dynamic Shear Bands in Porous Thermally Softening Viscoplastic Materials
,”
Arch. Mech.
,
46
(
1–2
), pp.
13
36
.
28.
Nahshon
,
K.
, and
Hutchinson
,
J.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech. A. Solids
,
27
(
1
), pp.
1
17
.
29.
da Silva
,
M.
, and
Ramesh
,
K.
,
1997
, “
The Rate-Dependent Deformation and Localization of Fully Dense and Porous Ti-6Al-4V
,”
Mater. Sci. Eng. A
,
232
(
1–2
), pp.
11
22
.
30.
Giovanola
,
J.
,
1988
, “
Adiabatic Shear Banding Under Pure Shear Loading I. Direct Observation of Strain Localization and Energy Dissipation Measurements
,”
Mech. Mater.
,
7
(
1
), pp.
59
71
.
31.
Gurson
,
A.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
32.
Dodd
,
B.
, and
Bai
,
Y.
,
1989
, “
Width of Adiabatic Shear Bands Formed Under Combined Stresses
,”
Mater. Sci. Technol.
,
5
(
6
), pp.
557
559
.
33.
Dinzart
,
F.
, and
Molinari
,
A.
,
1998
, “
Structure of Adiabatic Shear Bands in Thermo-Viscoplastic Materials
,”
Eur. J. Mech. A. Solids
,
17
(
6
), pp.
923
938
.
34.
Grady
,
D.
,
1991
, “
Dynamics of Adiabatic Shear
,”
J. Phys. IV
,
1
(
C3
), pp.
653
660
. http:dx.doi.org/10.1051/jp4:1991391
35.
Grady
,
D.
,
1994
, “
Dissipation in Adiabatic Shear Bands
,”
Mech. Mater.
,
17
(
2–3
), pp.
289
293
.
36.
Mott
,
N.
,
1947
, “
Fragmentation of Shell Cases
,”
Proc. R. Soc. London, Ser. A
,
189
, pp.
300
308
.
37.
Kipp
,
M. E.
, and
Grady
,
D. E.
,
1985
, “
Dynamic Fracture Growth and Interaction in One Dimension
,”
J. Mech. Phys. Solids
,
33
(
4
), pp.
399
415
.
38.
Grady
,
D.
, and
Kipp
,
M.
,
1985
, “
The Growth of Inhomogeneous Thermoplastic Shear
,”
J. Phys. Colloq.
,
46
(
C5
), pp.
291
298
.
39.
Sheng
,
D.-L.
,
Chen
,
Y.
,
Zhou
,
F.-H.
, and
Dai
,
L.-H.
,
2024
, “
Growth of Thermoplastic Shear Band
,”
J. Mater. Res. Technol.
,
33
, pp.
4783
4795
.
40.
Chen
,
H.-S.
,
Qi
,
W.
,
Chen
,
M.
,
Yang
,
H.
,
Zhu
,
S.
, and
Zeng
,
Q.
,
2025
, “
Estimation of Energy Dissipation During Dynamic Shear Band Evolution
,”
Int. J. Solids Struct.
,
309
, p.
113202
.
41.
Rittel
,
D.
,
Landau
,
P.
, and
Venkert
,
A.
,
2008
, “
Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure
,”
Phys. Rev. Lett.
,
101
(
16
), p.
165501
.
42.
Chiou
,
S.
,
Tsai
,
H.
, and
Lee
,
W.
,
2007
, “
Effects of Strain Rate and Temperature on the Deformation and Fracture Behaviour of Titanium Alloy
,”
Mater. Trans.
,
48
(
9
), pp.
2525
2533
.
43.
Sadjadpour
,
A.
,
Rittel
,
D.
,
Ravichandran
,
G.
, and
Bhattacharya
,
K.
,
2015
, “
A Model Coupling Plasticity and Phase Transformation With Application to Dynamic Shear Deformation of Iron
,”
Mech. Mater.
,
80
(
Part B
), pp.
255
263
.
44.
Benson
,
D.
,
2007
, “Explicit Finite Element Methods for Large Deformation Problems in Solid Mechanics,”
Encyclopedia of Computational Mechanics
, Vol.
2
,
E.
Stein
,
R.
de Borst
,
T.
Hughes
, eds., Vol.
John Wiley and Sons
,
New York
, pp.
1
43
, Chap. 25.
45.
Mattsson
,
A.
, and
Rider
,
W.
,
2015
, “
Artificial Viscosity: Back to the Basics
,”
Int. J. Numer. Methods Fluids
,
77
(
7
), pp.
400
417
.
46.
Anand
,
L.
,
Kim
,
K.
, and
Shawki
,
T.
,
1987
, “
Onset of Shear Localization in Viscoplastic Solids
,”
J. Mech. Phys. Solids
,
35
(
4
), pp.
407
429
.
47.
Zhu
,
Z.
, and
Batra
,
R.
,
1992
, “
Consideration of Phase Transformations in the Study of Shear Bands in a Dynamically Loaded Steel Block
,”
ASME J. Eng. Mater. Technol.
,
114
(
4
), pp.
368
377
.
48.
Clayton
,
J.
,
2011
,
Nonlinear Mechanics of Crystals
,
Springer
,
Dordrecht
.
49.
Clayton
,
J.
,
2005
, “
Dynamic Plasticity and Fracture in High Density Polycrystals: Constitutive Modeling and Numerical Simulation
,”
J. Mech. Phys. Solids
,
53
(
2
), pp.
261
301
.
50.
Rittel
,
D.
,
Wang
,
Z.
, and
Merzer
,
M.
,
2006
, “
Adiabatic Shear Failure and Dynamic Stored Energy of Cold Work
,”
Phys. Rev. Lett.
,
96
(
7
), p.
075502
.
51.
Longere
,
P.
,
2018
, “
Respective/Combined Roles of Thermal Softening and Dynamic Recrystallization in Adiabatic Shear Band Initiation
,”
Mech. Mater.
,
117
(
9
), pp.
81
90
.
52.
Kunda
,
S.
,
Schmelzer
,
N.
,
Pedgaonkar
,
A.
,
Rees
,
J.
,
Dunham
,
S.
,
Lieou
,
C.
,
Langbaum
,
J.
, and
Bronkhorst
,
C. A.
,
2024
, “
Study of the Thermomechanical Behavior of Single-Crystal and Polycrystal Copper
,”
Metals
,
14
(
9
), p.
1086
.
53.
Becker
,
R.
,
Needleman
,
A.
,
Richmond
,
O.
, and
Tvergaard
,
V.
,
1988
, “
Void Growth and Failure in Notched Bars
,”
J. Mech. Phys. Solids
,
36
(
3
), pp.
317
351
.
54.
Clayton
,
J.
, and
Lloyd
,
J.
,
2021
, “
A Dynamic Finite-Deformation Constitutive Model for Steels Undergoing Slip, Twinning, and Phase Changes
,”
J. Dyn. Behav. Mater.
,
7
(
2
), pp.
217
247
.
55.
Lawn
,
B.
, and
Wilshaw
,
R.
,
1975
, “
Indentation Fracture: Principles and Applications
,”
J. Mater. Sci.
,
10
, pp.
1049
1081
.
56.
Norkett
,
J.
,
Semple
,
J.
,
Bechetti
,
D.
,
Zhang
,
W.
, and
Fisher
,
C.
,
2023
, “Temperature-Dependent Material Property Database for Marine Steels—Part 6: HY-100,”
US Naval Surface Warfare Center Carderock
,
West Bethesda, MD
, Report No. NSWCCD-61-TR-2023/13, Technical Report.
57.
Zeng
,
Q.
,
Wang
,
T.
,
Zhu
,
S.
,
Chen
,
H.
, and
Fang
,
D.
,
2022
, “
A Rate-Dependent Phase-Field Model for Dynamic Shear Band Formation in Strength-Like and Toughness-Like Modes
,”
J. Mech. Phys. Solids
,
164
, p.
104914
.
58.
Tvergaard
,
V.
,
1989
, “
Material Failure by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
27
, pp.
83
151
.
59.
Falk
,
M.
,
Needleman
,
A.
, and
Rice
,
J.
,
2001
, “
A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture
,”
J. Phys. IV
,
11
, pp.
5
43
.
60.
Clayton
,
J.
,
2005
, “
Modeling Dynamic Plasticity and Spall Fracture in High Density Polycrystalline Alloys
,”
Int. J. Solids Struct.
,
42
(
16–17
), pp.
4613
4640
.
61.
Gu
,
T.
, and
Wang
,
Z.
,
2022
, “
A Strain Rate-Dependent Cohesive Zone Model for Shear Failure of Hat-Shaped Specimens Under Impact
,”
Eng. Fract. Mech.
,
259
, p.
108145
.
62.
Zhang
,
Y.
,
Chen
,
N.
,
Bronkhorst
,
C.
,
Cho
,
H.
, and
Argus
,
R.
,
2023
, “
Data-Driven Statistical Reduced-Order Modeling and Quantification of Polycrystal Mechanics Leading to Porosity-Based Ductile Damage
,”
J. Mech. Phys. Solids
,
179
, p.
105386
.
63.
Sun
,
W.
,
Andrade
,
J.
,
Rudnicki
,
J.
, and
Eichhubl
,
P.
,
2011
, “
Connecting Microstructural Attributes and Permeability From 3D Tomographic Images of In Situ Shear-Enhanced Compaction Bands Using Multiscale Computations
,”
Geophys. Res. Lett.
,
38
(
10
), p.
L10302
.
64.
Karim
,
M.
,
Kadau
,
K.
,
Narasimhachary
,
S.
,
Radaelli
,
F.
,
Amann
,
C.
,
Dayal
,
K.
,
Silling
,
S.
, and
Germann
,
T.
,
2021
, “
Crack Nucleation From Non-metallic Inclusions in Aluminum Alloys Described by Peridynamics Simulations
,”
Int. J. Fatigue
,
153
, p.
106475
.
65.
Fressengeas
,
C.
, and
Molinari
,
A.
,
1987
, “
Instability and Localization of Plastic Flow in Shear at High Strain Rates
,”
J. Mech. Phys. Solids
,
35
(
2
), pp.
185
211
.
66.
Nieto-Fuentes
,
J.
,
Jacques
,
N.
,
Marvi-Mashhadi
,
M.
,
Nsouglo
,
K.
, and
Rodriguez-Martinez
,
J.
,
2022
, “
Modeling Dynamic Formability of Porous Ductile Sheets Subjected to Biaxial Stretching: Actual Porosity Versus Homogenized Porosity
,”
Int. J. Plast.
,
158
, p.
103418
.
You do not currently have access to this content.