Abstract

Irregular lattice structures offer the potential to unlock a wider spectrum of properties and innovative functional spaces. The in-plane wall thickness of the lattice, as a critical structural parameter, decisively governs the mechanical performance of irregular lattice structures, yet the current research on in-plane wall thickness optimization remains notably insufficient. Herein, we propose a robust data-driven framework to design novel irregular lattice structures with user-defined Poisson’s ratio and Young’s modulus. This framework involves the creation of a comprehensive dataset of irregular lattice structures, constructed through a randomized strategy that incorporates diverse stretching and bending dominance. On the basis of deformation characteristics of the structures, we analyze the impact of in-plane wall thickness on the mechanical properties of the unit cell. Furthermore, the inverse design process, employing genetic algorithms, effectively and precisely facilitates the generation of irregular lattice structures, thereby achieving customized targets for Young’s modulus and Poisson’s ratio. Specific inverse design cases are validated through the finite element method simulations and uniaxial tensile tests. By spatially assembling two distinct lattice structures, facial patterns were designed to form a “smiling face” and a “surprised face” under compression, demonstrating the capability of the proposed irregular structures in regulating deformation configurations. This research demonstrates its potential for practical applications in material science and engineering.

References

1.
Kochmann
,
D. M.
, and
Bertoldi
,
K.
,
2017
, “
Exploiting Microstructural Instabilities in Solids and Structures: From Metamaterials to Structural Transitions
,”
Appl. Mech. Rev.
,
69
(
5
), p.
050801
.
2.
Cui
,
T. J.
,
Smith
,
D. R.
, and
Liu
,
R.
,
2010
,
Metamaterials
,
Springer
,
New York
.
3.
Liu
,
Y.
, and
Zhang
,
X.
,
2011
, “
Metamaterials: A New Frontier of Science and Technology
,”
Chem. Soc. Rev.
,
40
(
5
), pp.
2494
2507
.
4.
Dudukovic
,
N. A.
,
Fong
,
E. J.
,
Gemeda
,
H. B.
,
DeOtte
,
J. R.
,
Cerón
,
M. R.
,
Moran
,
B. D.
,
Davis
,
J. T.
,
Baker
,
S. E.
, and
Duoss
,
E. B.
,
2021
, “
Cellular Fluidics
,”
Nature
,
595
(
7865
), pp.
58
65
.
5.
Bowick
,
M.
,
Cacciuto
,
A.
,
Thorleifsson
,
G.
, and
Travesset
,
A.
,
2001
, “
Universal Negative Poisson Ratio of Self-Avoiding Fixed-Connectivity Membranes
,”
Phys. Rev. Lett.
,
87
(
14
), p.
148103
.
6.
Chen
,
A.-L.
,
Wang
,
Y.-S.
,
Wang
,
Y.-F.
,
Zhou
,
H.-T.
, and
Yuan
,
S.-M.
,
2022
, “
Design of Acoustic/Elastic Phase Gradient Metasurfaces: Principles, Functional Elements, Tunability, and Coding
,”
Appl. Mech. Rev.
,
74
(
2
), p.
020801
.
7.
Huang
,
C.
, and
Chen
,
L.
,
2016
, “
Negative Poisson’s Ratio in Modern Functional Materials
,”
Adv. Mater.
,
28
(
37
), pp.
8079
8096
.
8.
Li
,
Y.
,
Sun
,
P.
,
Chen
,
J.
,
Zha
,
X.
,
Tang
,
X.
,
Chen
,
Z.
,
Zhang
,
Y.
,
Cong
,
S.
,
Geng
,
F.
, and
Zhao
,
Z.
,
2023
, “
Colorful Electrochromic Displays With High Visual Quality Based on Porous Metamaterials
,”
Adv. Mater.
,
35
(
23
), p.
2300116
.
9.
Jin
,
H.
,
Zhang
,
E.
, and
Espinosa
,
H. D.
,
2023
, “
Recent Advances and Applications of Machine Learning in Experimental Solid Mechanics: A Review
,”
Appl. Mech. Rev.
,
75
(
6
), p.
061001
.
10.
Skouras
,
M.
,
Thomaszewski
,
B.
,
Coros
,
S.
,
Bickel
,
B.
, and
Gross
,
M.
,
2013
, “
Computational Design of Actuated Deformable Characters
,”
ACM Trans. Graph. (TOG)
,
32
(
4
), pp.
1
10
.
11.
Crook
,
C.
,
Bauer
,
J.
,
Guell Izard
,
A.
,
Santos de Oliveira
,
C.
,
Martins de Souza e Silva
,
J.
,
Berger
,
J. B.
, and
Valdevit
,
L.
,
2020
, “
Plate-Nanolattices at the Theoretical Limit of Stiffness and Strength
,”
Nat. Commun.
,
11
(
1
), p.
1579
.
12.
Costantini
,
M.
,
Jaroszewicz
,
J.
,
Kozoń
,
Ł.
,
Szlązak
,
K.
,
Święszkowski
,
W.
,
Garstecki
,
P.
,
Stubenrauch
,
C.
,
Barbetta
,
A.
, and
Guzowski
,
J.
,
2019
, “
3D-Printing of Functionally Graded Porous Materials Using On-Demand Reconfigurable Microfluidics
,”
Angew. Chem., Int. Ed.
,
58
(
23
), pp.
7620
7625
.
13.
Lumpe
,
T. S.
, and
Stankovic
,
T.
,
2021
, “
Exploring the Property Space of Periodic Cellular Structures Based on Crystal Networks
,”
Proc. Natl. Acad. Sci. USA
,
118
(
7
), p.
e2003504118
.
14.
Nguyen
,
B. D.
,
Han
,
S. C.
,
Jung
,
Y. C.
, and
Kang
,
K.
,
2017
, “
Design of the P-Surfaced Shellular, an Ultra-Low Density Material With Micro-Architecture
,”
Comput. Mater. Sci.
,
139
, pp.
162
178
.
15.
Xiao
,
X.
,
He
,
Z.
,
Li
,
E.
,
Zhou
,
B.
, and
Li
,
X.
,
2020
, “
A Lightweight Adaptive Hybrid Laminate Metamaterial With Higher Design Freedom for Wave Attenuation
,”
Compos. Struct.
,
243
, p.
112230
.
16.
Zhu
,
C.
,
Han
,
T. Y.-J.
,
Duoss
,
E. B.
,
Golobic
,
A. M.
,
Kuntz
,
J. D.
,
Spadaccini
,
C. M.
, and
Worsley
,
M. A.
,
2015
, “
Highly Compressible 3D Periodic Graphene Aerogel Microlattices
,”
Nat. Commun.
,
6
(
1
), p.
6962
.
17.
Wang
,
Q.
,
Jackson
,
J. A.
,
Ge
,
Q.
,
Hopkins
,
J. B.
,
Spadaccini
,
C. M.
, and
Fang
,
N. X.
,
2016
, “
Lightweight Mechanical Metamaterials With Tunable Negative Thermal Expansion
,”
Phys. Rev. Lett.
,
117
(
17
), p.
175901
.
18.
Zhang
,
X. G.
,
Jiang
,
W.
,
Zhang
,
Y.
,
Han
,
D.
,
Luo
,
C.
,
Zhang
,
X. Y.
,
Hao
,
J.
,
Xie
,
Y. M.
, and
Ren
,
X.
,
2023
, “
Bending Performance of 3D Re-Entrant and Hexagonal Metamaterials
,”
Thin-Walled Struct.
,
188
, p.
110829
.
19.
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
Soft Network Materials With Isotropic Negative Poisson’s Ratios Over Large Strains
,”
Soft Matter
,
14
(
5
), pp.
693
703
.
20.
Zheng
,
X.
,
Chen
,
T.-T.
,
Guo
,
X.
,
Samitsu
,
S.
, and
Watanabe
,
I.
,
2021
, “
Controllable Inverse Design of Auxetic Metamaterials Using Deep Learning
,”
Mater. Des.
,
211
, p.
110178
.
21.
Guo
,
X.
,
Ni
,
X.
,
Li
,
J.
,
Zhang
,
H.
,
Zhang
,
F.
,
Yu
,
H.
,
Wu
,
J.
, et al.,
2021
, “
Designing Mechanical Metamaterials With Kirigami-Inspired, Hierarchical Constructions for Giant Positive and Negative Thermal Expansion
,”
Adv. Mater.
,
33
(
3
), p.
2004919
.
22.
Wang
,
K.
,
Chen
,
J.
,
Han
,
Z.
,
Wei
,
K.
,
Yang
,
X.
,
Wang
,
Z.
, and
Fang
,
D.
,
2022
, “
Synergistically Program Thermal Expansional and Mechanical Performances in 3d Metamaterials: Design-Architecture-Performance
,”
J. Mech. Phys. Solids
,
169
, p.
105064
.
23.
Maurizi
,
M.
,
Gao
,
C.
, and
Berto
,
F.
,
2022
, “
Inverse Design of Truss Lattice Materials With Superior Buckling Resistance
,”
npj Comput. Mater.
,
8
(
1
), p.
247
.
24.
Deng
,
B.
,
Zareei
,
A.
,
Ding
,
X.
,
Weaver
,
J. C.
,
Rycroft
,
C. H.
, and
Bertoldi
,
K.
,
2022
, “
Inverse Design of Mechanical Metamaterials With Target Nonlinear Response via a Neural Accelerated Evolution Strategy
,”
Adv. Mater.
,
34
(
41
), p.
2206238
.
25.
Du
,
Z.
,
Bian
,
T.
,
Ren
,
X.
,
Jia
,
Y.
,
Tang
,
S.
,
Cui
,
T.
, and
Guo
,
X.
,
2024
, “
Inverse Design of Mechanical Metamaterial Achieving a Prescribed Constitutive Curve
,”
Theor. Appl. Mech. Lett.
,
14
(
1
), p.
100486
.
26.
Sha
,
Z.
,
Teng
,
Y.
,
Poh
,
L. H.
,
Wang
,
T.
, and
Gao
,
H.
,
2022
, “
Shear Band Control for Improved Strength-Ductility Synergy in Metallic Glasses
,”
Appl. Mech. Rev.
,
74
(
5
), p.
050801
.
27.
Bo
,
R.
,
Xu
,
S.
,
Yang
,
Y.
, and
Zhang
,
Y.
,
2023
, “
Mechanically-Guided 3D Assembly for Architected Flexible Electronics
,”
Chem. Rev.
,
123
(
18
), pp.
11137
11189
.
28.
Cheng
,
X.
,
Fan
,
Z.
,
Yao
,
S.
,
Jin
,
T.
,
Lv
,
Z.
,
Lan
,
Y.
,
Bo
,
R.
, et al.,
2023
, “
Programming 3D Curved Mesosurfaces Using Microlattice Designs
,”
Science
,
379
(
6638
), pp.
1225
1232
.
29.
Song
,
H.
,
Luo
,
G.
,
Ji
,
Z.
,
Bo
,
R.
,
Xue
,
Z.
,
Yan
,
D.
,
Zhang
,
F.
, et al.,
2022
, “
Highly-Integrated, Miniaturized, Stretchable Electronic Systems Based on Stacked Multilayer Network Materials
,”
Sci. Adv.
,
8
(
11
), p.
eabm3785
.
30.
Dell’Isola
,
F.
,
Steigmann
,
D.
, and
Corte
,
A. D.
,
2015
, “
Synthesis of Fibrous Complex Structures: Designing Microstructure to Deliver Targeted Macroscale Response
,”
Appl. Mech. Rev.
,
67
(
6
), p.
060804
.
31.
Yang
,
K.
,
Hu
,
X.
,
Pan
,
F.
,
Qiao
,
C.
,
Ding
,
B.
,
Hu
,
L.
,
Hu
,
X.
,
He
,
Z.
, and
Chen
,
Y.
,
2023
, “
An On-Demand Tunable Energy Absorption System to Resolve Multi-directional Impacts
,”
Int. J. Solids Struct.
,
271
, p.
112257
.
32.
He
,
Y.
,
Bi
,
Z.
,
Wang
,
T.
,
Wang
,
L.
,
Lu
,
G.
,
Cui
,
Y.
, and
Tse
,
K. M.
,
2024
, “
Design and Mechanical Properties Analysis of Hexagonal Perforated Honeycomb Metamaterial
,”
Int. J. Mech. Sci.
,
270
, p.
109091
.
33.
Yin
,
H.
,
Zhang
,
W.
,
Zhu
,
L.
,
Meng
,
F.
,
Liu
,
J.
, and
Wen
,
G.
,
2023
, “
Review on Lattice Structures for Energy Absorption Properties
,”
Compos. Struct.
,
304
, p.
116397
.
34.
Han
,
H.
,
Sorokin
,
V.
,
Tang
,
L.
, and
Cao
,
D.
,
2023
, “
Origami-Based Tunable Mechanical Memory Metamaterial for Vibration Attenuation
,”
Mech. Syst. Signal Process.
,
188
, p.
110033
.
35.
Ashby
,
M. F.
,
2006
, “
The Properties of Foams and Lattices
,”
Philos. Transact. R. Soc. A: Math., Phys. Eng. Sci.
,
364
(
1838
), pp.
15
30
.
36.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
466
(
2121
), pp.
2495
2516
.
37.
Xu
,
Y.
,
Huang
,
Y.
,
Yan
,
H.
,
Gu
,
Z.
,
Zhao
,
T.
,
Zhang
,
R.
,
Pan
,
B.
,
Dong
,
L.
,
Liu
,
M.
, and
Jiang
,
L.
,
2023
, “
Sunflower-Pith-Inspired Anisotropic Auxetic Mechanics From Dual-Gradient Cellular Structures
,”
Matter
,
6
(
5
), pp.
1569
1584
.
38.
Wu
,
H.
,
Chen
,
J.
,
Duan
,
K.
,
Zhu
,
M.
,
Hou
,
Y.
,
Zhou
,
J.
,
Ren
,
Y.
,
Jiang
,
H.
,
Fan
,
R.
, and
Lu
,
Y.
,
2022
, “
Three Dimensional Printing of Bioinspired Crossed-Lamellar Metamaterials With Superior Toughness for Syntactic Foam Substitution
,”
ACS Appl. Mater. Interfaces
,
14
(
37
), pp.
42504
42512
.
39.
Wang
,
G.
,
Shen
,
L.
,
Zhao
,
J.
,
Liang
,
H.
,
Xie
,
D.
,
Tian
,
Z.
, and
Wang
,
C.
,
2018
, “
Design and Compressive Behavior of Controllable Irregular Porous Scaffolds: Based on Voronoi-Tessellation and for Additive Manufacturing
,”
ACS Biomater. Sci. Eng.
,
4
(
2
), pp.
719
727
.
40.
Zaiser
,
M.
, and
Zapperi
,
S.
,
2023
, “
Disordered Mechanical Metamaterials
,”
Nat. Rev. Phys.
,
5
(
11
), pp.
679
688
.
41.
Wei
,
Z.
,
Wei
,
K.
, and
Yang
,
X.
,
2024
, “
Inverse Design of Irregular Architected Materials With Programmable Stiffness Based on Deep Learning
,”
Compos. Struct.
,
340
, p.
118210
.
42.
Liu
,
K.
,
Sun
,
R.
, and
Daraio
,
C.
,
2022
, “
Growth Rules for Irregular Architected Materials With Programmable Properties
,”
Science
,
377
(
6609
), pp.
975
981
.
43.
Zheng
,
X.
,
Chen
,
T.-T.
,
Jiang
,
X.
,
Naito
,
M.
, and
Watanabe
,
I.
,
2023
, “
Deep-Learning-Based Inverse Design of Three-Dimensional Architected Cellular Materials With the Target Porosity and Stiffness Using Voxelized Voronoi Lattices
,”
Sci. Technol. Adv. Mater.
,
24
(
1
), p.
2157682
.
44.
Pham
,
M.-S.
,
Liu
,
C.
,
Todd
,
I.
, and
Lertthanasarn
,
J.
,
2019
, “
Damage-Tolerant Architected Materials Inspired by Crystal Microstructure
,”
Nature
,
565
(
7739
), pp.
305
311
.
45.
Rayneau-Kirkhope
,
D.
,
Bonfanti
,
S.
, and
Zapperi
,
S.
,
2019
, “
Density Scaling in the Mechanics of a Disordered Mechanical Meta-Material
,”
Appl. Phys. Lett.
,
114
(
11
).
46.
Magrini
,
T.
,
Fox
,
C.
,
Wihardja
,
A.
,
Kolli
,
A.
, and
Daraio
,
C.
,
2024
, “
Control of Mechanical and Fracture Properties in Two-Phase Materials Reinforced by Continuous, Irregular Networks
,”
Adv. Mater.
,
36
(
6
), p.
2305198
.
47.
Wang
,
X.
,
Li
,
X.
,
Li
,
Z.
,
Wang
,
Z.
, and
Zhai
,
W.
,
2024
, “
Superior Strength, Toughness, and Damage-Tolerance Observed in Microlattices of Aperiodic Unit Cells
,”
Small
,
20
(
23
), p.
2307369
.
48.
Suzuki
,
K.
, and
Kikuchi
,
N.
,
1991
, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
291
318
.
49.
Cheng
,
G.-D.
,
Cai
,
Y.-W.
, and
Xu
,
L.
,
2013
, “
Novel Implementation of Homogenization Method to Predict Effective Properties of Periodic Materials
,”
Acta Mech. Sin.
,
29
(
4
), pp.
550
556
.
50.
Andreassen
,
E.
, and
Andreasen
,
C. S.
,
2014
, “
How to Determine Composite Material Properties Using Numerical Homogenization
,”
Comput. Mater. Sci.
,
83
, pp.
488
495
.
51.
Lorna J. Gibson
,
M. F. A.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge
.
52.
Rayneau-Kirkhope
,
D.
,
2018
, “
Stiff Auxetics: Hierarchy as a Route to Stiff, Strong Lattice Based Auxetic Meta-materials
,”
Sci. Rep.
,
8
(
1
), p.
12437
.
53.
Mousanezhad
,
D.
,
Haghpanah
,
B.
,
Ghosh
,
R.
,
Hamouda
,
A. M.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2016
, “
Elastic Properties of Chiral, Anti-Chiral, and Hierarchical Honeycombs: A Simple Energy-Based Approach
,”
Theor. Appl. Mech. Lett.
,
6
(
2
), pp.
81
96
.
You do not currently have access to this content.