Abstract

An accurate and comprehensive examination of the small intestine is crucial for diagnosing gastrointestinal diseases. However, due to the intestine’s complex and narrow structure, which relies on passive peristaltic movement, traditional endoscopic methods are often insufficient, leading to missed or incomplete diagnoses. Despite advancements in capsule endoscopy, existing models lack controllable motion, limiting their effectiveness in navigating complex folds and intestinal tissues of varing stiffness. To address this gap, this study investigates the motion of a self-propelled capsule robot designed to overcome the limitations of current endoscopic technology by actively navigating the small intestine, particularly accounting for the influence of multiple circular folds. In this research, we employed the dynamic model developed by Yan et al. (Eur. J. Mech. A-Solid, 105:105233, 2024). The model was validated using two-dimensional finite element model and an experimental setup with a synthetic intestine, showing high consistency with theoretical predictions. Our analysis focuses on key parameters, such as fold height, fold thickness, and tissue stiffness, finding that higher and thinner folds on harder tissues present greater resistance. This increased resistance necessitates the application of greater force by the capsule for effective navigation. These findings suggest that while self-propelled capsule robot can achieve consistent motion under various conditions, its movement may become irregular in complex physiological environments. This underscores the need for optimizing advanced control strategies to enhance their performance. By improving navigation through the small intestine, this work has the potential to enhance the accuracy and reliability of gastrointestinal diagnoses, leading to better clinical outcomes and advancements in noninvasive diagnostic techniques.

References

1.
Lim
,
S. G.
,
2023
, “
Advances and Challenges in Gastrointestinal Endoscopy: A Comprehensive Review
,”
J. Innov. Med. Technol.
,
1
(
1
), pp.
10
14
.
2.
Shaker
,
A.
, and
Rubin
,
D. C.
,
2022
, “Small Intestine: Anatomy and Structural Anomalies,”
Yamada's Textbook of Gastroenterology
,
T. C.
Wang
,
M.
Camilleri
,
B.
Lebwohl
,
A. S.
Lok
,
W. J.
Sandborn
,
K. K.
Wang
, and
G. D.
Wu
, eds.,
John Wiley & Sons Ltd
,
Chichester, West Sussex, UK
, pp.
72
92
.
3.
Swei
,
E.
,
Heller
,
J. C.
,
Scott
,
F.
, and
Attwell
,
A.
,
2022
, “
Adverse Event Fatalities Related to GI Endoscopy
,”
Dig. Dis. Sci.
,
67
, pp.
1753
1760
.
4.
Ravindran
,
S.
,
Matharoo
,
M.
,
Rutter
,
M. D.
,
Ashrafian
,
H.
,
Darzi
,
A.
,
Healey
,
C.
, and
Thomas-Gibson
,
S.
,
2024
, “
Patient Safety Incidents in Endoscopy: A Human Factors Analysis of Nonprocedural Significant Harm Incidents From the National Reporting and Learning System (NRLS)
,”
Endoscopy
,
56
(
2
), pp.
89
99
.
5.
Ho
,
A. H.
, and
Lui
,
R. N.
,
2024
, “
The Current and Future Clinical Applications of Capsule Endoscopy
,”
J. Gastroenterol. Hepatol.
,
39
, pp.
28
33
.
6.
Chetcuti Zammit
,
S.
, and
Sidhu
,
R.
,
2021
, “
Capsule Endoscopy—Recent Developments and Future Directions
,”
Expert Rev. Gastroenterol. Hepatol.
,
15
(
2
), pp.
127
137
.
7.
Levartovsky
,
A.
, and
Eliakim
,
R.
,
2023
, “
Video Capsule Endoscopy Plays an Important Role in the Management of Crohn’s Disease
,”
Diagnostics
,
13
(
8
), p.
1507
.
8.
Hennlich
,
B.
,
Madl
,
C.
, and
Pachofszky
,
T.
,
2023
, “
P345 Capsule Endoscopy in the Diagnostic Process of Suspected Crohn’s Disease
,”
J. Crohn’s Colitis
,
17
(Supplement
1
), p.
i483
.
9.
Monteiro
,
S.
,
de Castro
,
F. D.
,
Carvalho
,
P. B.
,
Moreira
,
M. J.
,
Rosa
,
B.
, and
Cotter
,
J.
,
2016
, “
Pillcam® Sb3 Capsule: Does the Increased Frame Rate Eliminate the Risk of Missing Lesions?
World J. Gastroenterol.
,
22
(
10
), p.
3066
.
10.
Enns
,
C.
,
Galorport
,
C.
,
Ou
,
G.
, and
Enns
,
R.
,
2021
, “
Assessment of Capsule Endoscopy Utilizing Capsocam Plus in Patients With Suspected Small Bowel Disease Including Pilot Study With Remote Access Patients During Pandemic
,”
J. Can. Assoc. Gastroenterol.
,
4
(
6
), pp.
269
273
.
11.
Blanco-Velasco
,
G.
,
Zamarripa-Mottú
,
R. A.
,
Solórzano-Pineda
,
O. M.
,
Mascarenhas-Saraiva
,
M.
,
Blancas-Valencia
,
J. M.
, and
Hernández-Mondragón
,
O. V.
,
2021
, “
Comparison in the Diagnostic Yield Between “pillcam Sb3” Capsule Endoscopy and “omom Smart Capsule 2” in Small Bowel Bleeding: A Randomized Head-to-head Study
,”
Dig. Dis.
,
39
(
3
), pp.
211
216
.
12.
Blanco-Velasco
,
G.
,
Hernández-Mondragón
,
O.
,
Solórzano-Pineda
,
O.
,
García-Contreras
,
L.
,
Martínez-Camacho
,
C.
, and
Murcio-Pérez
,
E.
,
2022
, “
Which Model of Small Bowel Capsule Endoscopy Has a Better Diagnostic Yield? A Systematic Review and Meta-Analysis
,”
Acta Gastro-Enterol. Belg.
,
85
(Fasc.3 - Reviews), pp.
509
517
.
13.
Cave
,
D. R.
,
Hakimian
,
S.
, and
Patel
,
K.
,
2019
, “
Current Controversies Concerning Capsule Endoscopy
,”
Dig. Dis. Sci.
,
64
(
11
), pp.
3040
3047
.
14.
Kim
,
S. H.
, and
Chun
,
H. J.
,
2021
, “
Capsule Endoscopy: Pitfalls and Approaches to Overcome
,”
Diagnostics
,
11
(
10
), p.
1765
.
15.
Volk
,
N.
, and
Lacy
,
B.
,
2017
, “
Anatomy and Physiology of the Small Bowel
,”
Gastrointest. Endosc. Clin. N. Am.
,
27
(
1
), pp.
1
13
.
16.
Barducci
,
L.
,
Norton
,
J. C.
,
Sarker
,
S.
,
Mohammed
,
S.
,
Jones
,
R.
,
Valdastri
,
P.
, and
Terry
,
B. S.
,
2020
, “
Fundamentals of the Gut for Capsule Engineers
,”
Prog. Biomed. Eng.
,
2
(
4
), p.
042002
.
17.
Mahadevan
,
V.
,
2020
, “
Anatomy of the Small Intestine
,”
Surgery (Oxford)
,
38
(
6
), pp.
283
288
.
18.
Hall
,
J. E.
, and
Hall
,
M. E.
,
2020
,
Guyton and Hall Textbook of Medical Physiology
,
Elsevier
,
Philadelphia, PA
.
19.
Marieb
,
E. N.
, and
Keller
,
S.
,
2018
,
Essentials of Human Anatomy and Physiology
, 12th ed.,
Pearson Education Limited
,
England
.
20.
Marze
,
S.
,
2017
, “
Bioavailability of Nutrients and Micronutrients: Advances in Modeling and In Vitro Approaches
,”
Ann. Rev. Food Sci. Technol.
,
8
(
1
), pp.
35
55
.
21.
Greaves
,
P.
,
2012
, “Digestive System,”
Histopathology of Preclinical Toxicity Studies
,
P.
Greaves
, ed.,
Elsevier
,
London, UK
, pp.
325
431
.
22.
Cronin
,
C. G.
,
Delappe
,
E.
,
Lohan
,
D. G.
,
Roche
,
C.
, and
Murphy
,
J. M.
,
2010
, “
Normal Small Bowel Wall Characteristics on MR Enterography
,”
Eur. J. Radiol.
,
75
(
2
), pp.
207
211
.
23.
Gibbons
,
E.
,
Kelly
,
O.
, and
Hall
,
B.
,
2023
, “
Advances in Colon Capsule Endoscopy: A Review of Current Applications and Challenges
,”
Front. Gastroenterol.
,
2
, p.
1316334
.
24.
Hanscom
,
M.
, and
Cave
,
D. R.
,
2022
, “
Endoscopic Capsule Robot-Based Diagnosis, Navigation and Localization in the Gastrointestinal Tract
,”
Front. Robot. AI
,
9
, p.
896028
.
25.
Zhang
,
J.
,
Tian
,
J.
,
Zhu
,
D.
,
Liu
,
Y.
, and
Prasad
,
S.
,
2022
, “
Design and Experimental Investigation of a Vibro-Impact Self-Propelled Capsule Robot With Orientation Control
,”
2022 International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
, IEEE, pp.
11381
11387
.
26.
Ma
,
T.
,
Pan
,
X.
,
Li
,
P.
,
Jiang
,
X.
,
Song
,
S.
,
Wang
,
H.
, and
Meng
,
M. Q.-H.
,
2018
, “
Design, Simulation and Fabrication of the Leg of Capsule Endoscopy
,”
2018 IEEE International Conference on Information and Automation (ICIA)
,
Wuyishan, China
,
Aug. 11–13
, IEEE, pp.
1031
1036
.
27.
Xin
,
Y.
,
Sun
,
Z.-J.
,
Gu
,
W.
, and
Yu
,
L.
,
2022
, “
Experimental Research on a Capsule Robot With Spring-Connected Legs
,”
Micromachines
,
13
(
12
), p.
2042
.
28.
Zhang
,
Y.
,
Li
,
Z.
,
Ke
,
W.
, and
Hu
,
C.
,
2023
, “
Development of a Compact Autonomous Propeller-Driven Capsule Robot for Noninvasive Gastric Endoscopic Examination
,”
2022 IEEE International Conference on Cyborg and Bionic Systems (CBS)
,
Wuhan, China
,
Mar. 24–26
, IEEE, pp.
1
6
.
29.
Zhao
,
L.
, and
Kim
,
E. S.
,
2021
, “
Subminiature Underwater Propeller With Electrical Controllability of Steering
,”
2021 IEEE International Ultrasonics Symposium (IUS)
,
Xi'an, China
,
Sept. 11–16
, IEEE, pp.
1
4
.
30.
Sun
,
H.
,
Liu
,
J.
,
Wang
,
L.
,
Niu
,
C.
, and
Wang
,
Q.
,
2021
, “
A Novel Control Method of Magnetic Navigation Capsule Endoscope for Gastrointestinal Examination
,”
IEEE Trans. Magn.
,
58
(
1
), pp.
1
9
.
31.
Xiao
,
Y.-F.
,
Wu
,
Z.-X.
,
He
,
S.
,
Zhou
,
Y.-Y.
,
Zhao
,
Y.-B.
,
He
,
J.-L.
, and
Peng
,
X.
,
2021
, “
Fully Automated Magnetically Controlled Capsule Endoscopy for Examination of the Stomach and Small Bowel: a Prospective, Feasibility, Two-Centre Study
,”
Lancet Gastroenterol. Hepatol.
,
6
(
11
), pp.
914
921
.
32.
Kim
,
S.
,
Bae
,
S.
,
Lee
,
W.
, and
Jang
,
G.
,
2023
, “
Magnetic Navigation System Composed of Dual Permanent Magnets for Accurate Position and Posture Control of a Capsule Endoscope
,”
IEEE Trans. Ind. Electron.
,
71
(
1
), pp.
739
748
.
33.
Sawalani
,
K. S.
,
Gupta
,
H.
,
Cai
,
X. C.
, and
Ren
,
H.
,
2023
, “Untethered Motion Generation and Characterization of Multi-Leg Insect-Size Soft Foldable Robots Under Magnetic Actuation,”
Deployable Multimodal Machine Intelligence
,
H.
Ren
, ed.,
Springer
,
Singapore
, pp.
195
221
.
34.
Cao
,
Q.
,
Deng
,
R.
,
Pan
,
Y.
,
Liu
,
R.
,
Chen
,
Y.
,
Gong
,
G.
,
Zou
,
J.
,
Yang
,
H.
, and
Han
,
D.
,
2024
, “
Robotic Wireless Capsule Endoscopy: Recent Advances and Upcoming Technologies
,”
Nat. Commun.
,
15
(
1
), p.
4597
.
35.
Rosa
,
B.
, and
Cotter
,
J.
,
2024
, “
Capsule Endoscopy and Panendoscopy: A Journey to the Future of Gastrointestinal Endoscopy
,”
World J. Gastroenterol.
,
30
(
10
), p.
1270
.
36.
Chen
,
W.
,
Sui
,
J.
, and
Wang
,
C.
,
2022
, “
Magnetically Actuated Capsule Robots: A Review
,”
IEEE Access
,
10
, pp.
88398
88420
.
37.
Erin
,
O.
,
Alici
,
C.
, and
Sitti
,
M.
,
2021
, “
Design, Actuation, and Control of an MRI-Powered Untethered Robot for Wireless Capsule Endoscopy
,”
IEEE Robot. Autom. Lett.
,
6
(
3
), pp.
6000
6007
.
38.
Chen
,
X.-Y.
,
Da
,
W.
,
Liang
,
R.
,
Fan
,
H.-N.
,
Yi
,
Y.-C.
,
Chen
,
M.
,
Qin
,
H.-W.
,
Zhang
,
J.
, and
Zhu
,
J.-S.
,
2021
, “
The Detective Value of Magnetically Controlled Robotic Capsule Endoscopy in Patients With Suspected Small Intestinal Disease
,”
Front. Med.
,
8
, p.
610563
.
39.
Liu
,
Y.
,
Pavlovskaia
,
E.
,
Hendry
,
D.
, and
Wiercigroch
,
M.
,
2013
, “
Vibro-Impact Responses of Capsule System With Various Friction Models
,”
Int. J. Mech. Sci.
,
72
, pp.
39
54
.
40.
Liu
,
Y.
,
Páez Chávez
,
J.
,
Zhang
,
J.
,
Tian
,
J.
,
Guo
,
B.
, and
Prasad
,
S.
,
2020
, “
The Vibro-Impact Capsule System in Millimetre Scale: Numerical Optimisation and Experimental Verification
,”
Meccanica
,
55
(
10
), pp.
1885
1902
.
41.
Wang
,
Y.-C.
,
Pan
,
J.
,
Liu
,
Y.-W.
,
Sun
,
F.-Y.
,
Qian
,
Y.-Y.
,
Jiang
,
X.
, and
Zou
,
W.-B.
,
2020
, “
Adverse Events of Video Capsule Endoscopy Over the Past Two Decades: A Systematic Review and Proportion Meta-Analysis
,”
BMC Gastroenterol.
,
20
, p.
364
.
42.
Akpunonu
,
B.
,
Hummell
,
J.
,
Akpunonu
,
J. D.
, and
Din
,
S. U.
,
2022
, “
Capsule Endoscopy in Gastrointestinal Disease: Evaluation, Diagnosis, and Treatment
,”
Cleve. Clin. J. Med.
,
89
(
4
), pp.
200
211
.
43.
Cortegoso Valdivia
,
P.
,
Skonieczna-Żydecka
,
K.
,
Elosua
,
A.
,
Sciberras
,
M.
,
Piccirelli
,
S.
,
Rullan
,
M.
,
Tabone
,
T.
, et al.,
2022
, “
Indications, Detection, Completion and Retention Rates of Capsule Endoscopy in Two Decades of Use: A Systematic Review and Meta-Analysis
,”
Diagnostics
,
12
(
5
), p.
1105
.
44.
Pasha
,
S. F.
,
Pennazio
,
M.
,
Rondonotti
,
E.
,
Wolf
,
D.
,
Buras
,
M. R.
,
Albert
,
J. G.
,
Cohen
,
S. A.
, et al.,
2020
, “
Capsule Retention in Crohn’s Disease: A Meta-Analysis
,”
Inflamm. Bowel Dis.
,
26
(
1
), pp.
33
42
.
45.
Ionescu
,
A. G.
,
Glodeanu
,
A. D.
,
Ionescu
,
M.
,
Zaharie
,
S. I.
,
Ciurea
,
A. M.
,
Golli
,
A. L.
,
Mavritsakis
,
N.
,
Popa
,
D. L.
, and
Vere
,
C. C.
,
2022
, “
Clinical Impact of Wireless Capsule Endoscopy for Small Bowel Investigation
,”
Exp. Ther. Med.
,
23
(
4
), p.
262
.
46.
Liang
,
H.
,
Guan
,
Y.
,
Xiao
,
Z.
,
Hu
,
C.
, and
Liu
,
Z.
,
2011
, “
A Screw Propelling Capsule Robot
,”
2011 IEEE International Conference on Information and Automation
,
Shenzhen, China
,
June 6–8
, pp.
786
791
.
47.
Sliker
,
L. J.
,
Ciuti
,
G.
,
Rentschler
,
M. E.
, and
Menciassi
,
A.
,
2016
, “
Frictional Resistance Model for Tissue-Capsule Endoscope Sliding Contact in the Gastrointestinal Tract
,”
Tribol. Int.
,
102
, pp.
472
484
.
48.
Yan
,
Y.
,
Guo
,
B.
,
Tian
,
J.
,
Zhang
,
J.
,
Zhang
,
B.
,
Ley
,
E.
,
Liu
,
Y.
, and
Prasad
,
S.
,
2022
, “
Evaluating the Resistant Force of an Endoscopic Capsule Self-Propelling in the Small Intestine
,”
Arch. Appl. Mech.
,
92
(
12
), pp.
3861
3875
.
49.
Guo
,
B.
,
Liu
,
Y.
, and
Prasad
,
S.
,
2019
, “
Modelling of Capsule–Intestine Contact for a Self-Propelled Capsule Robot via Experimental and Numerical Investigation
,”
Nonlinear Dyn.
,
98
(
4
), pp.
3155
3167
.
50.
Tian
,
J.
,
Liu
,
Y.
,
Chen
,
J.
,
Guo
,
B.
, and
Prasad
,
S.
,
2021
, “
Finite Element Analysis of a Self-Propelled Capsule Robot Moving in the Small Intestine
,”
Int. J. Mech. Sci.
,
206
, p.
106621
.
51.
Yan
,
Y.
,
Guo
,
R.
,
Tian
,
J.
, and
Liu
,
Y.
,
2024
, “
A New Capsule-Intestine Model for the Capsule Robot Self-Propelling in the Lower Gastrointestinal Tract
,”
Eur. J. Mech. - A/Solids
,
105
, p.
105233
.
52.
Guo
,
B.
,
Ley
,
E.
,
Tian
,
J.
,
Zhang
,
J.
,
Liu
,
Y.
, and
Prasad
,
S.
,
2020
, “
Experimental and Numerical Studies of Intestinal Frictions for Propulsive Force Optimisation of a Vibro-Impact Capsule System
,”
Nonlinear Dyn.
,
101
(
1
), pp.
65
83
.
53.
Tian
,
J.
,
Afebu
,
K. O.
,
Bickerdike
,
A.
,
Liu
,
Y.
,
Prasad
,
S.
, and
Nelson
,
B. J.
,
2023
, “
Fundamentals of Bowel Cancer for Biomedical Engineers
,”
Ann. Biomed. Eng.
,
51
(
4
), pp.
679
701
.
54.
Tian
,
J.
,
Liu
,
Y.
, and
Prasad
,
S.
,
2022
, “
Exploring the Dynamics of a Vibro-Impact Capsule Moving on the Small Intestine Using Finite Element Analysis
,”
Advances in Nonlinear Dynamics
,
W.
Lacarbonara
,
B.
Balachandran
,
M. J.
Leamy
,
J.
Ma
, and
J. A.
Tenreiro Machado
,
G.
Stepan
, eds.,
Springer International Publishing
,
Cham
, pp.
127
136
.
55.
Yan
,
Y.
,
Zhang
,
B.
,
Liu
,
Y.
, and
Prasad
,
S.
,
2023
, “
Dynamics of a Vibro-Impact Self-Propelled Capsule Encountering a Circular Fold in the Small Intestine
,”
Meccanica
,
58
(
2
), pp.
451
472
.
56.
Hosseinpour
,
M.
, and
Behdad
,
A.
,
2008
, “
Evaluation of Small Bowel Measurement in Alive Patients
,”
Surg. Radiol. Anat.
,
30
(
8
), pp.
653
655
.
You do not currently have access to this content.