Abstract

A novel approach is presented for computing general rigid body motion based on a few known linear accelerations. This method utilizes linear acceleration data obtained from three distinct points on the body, all within a body-fixed reference frame. The only requirement is that the three chosen points must not be collinear. A system of differential-algebraic equations is derived, combining principles of rigid body kinematics with theory of the rotation group SO(3). These equations provide a framework for numerically computing various motion parameters, including angular velocity, angular acceleration, body orientation, velocity field, acceleration field, and displacement field. By numerically solving this system of equations, we can fully characterize rigid body motion in three-dimensional space. A numerical example is provided to demonstrate the practical implementation and efficacy of the proposed technique, illustrating its potential for accurate motion computation in various applications.

References

1.
Corey
,
V. B.
,
1962
, “
Measuring Angular Acceleration With Linear Accelerometers
,”
Control Eng.
,
9
(
3
), pp.
79
80
.
2.
Padgaonkar
,
A. J.
,
Krieger
,
K. W.
, and
King
,
A. I.
,
1975
, “
Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
ASME J. Appl. Mech.
,
42
(
3
), pp.
552
556
.
3.
Mital
,
N. K.
, and
King
,
A. I.
,
1979
, “
Computation of Rigid-Body Rotation in Three-Dimensional Space From Body-Fixed Linear Acceleration Measurements
,”
ASME J. Appl. Mech.
,
46
(
4
), pp.
925
930
.
4.
Chen
,
J.
,
Lee
,
S.
, and
DeBra
,
D.
,
1994
, “
Gyroscope Free Strapdown Inertial Measurement Unit by Six Linear Accelerometers
,”
J. Guid., Control, Dyn.
,
17
(
2
), pp.
286
290
.
5.
van den Bogert
,
A.
,
Read
,
L.
, and
Nigg
,
B.
,
1996
, “
A Method for Inverse Dynamic Analysis Using Accelerometry
,”
J. Biomech.
,
29
(
7
), pp.
949
954
.
6.
Genin
,
J.
,
Hong
,
J.
, and
Xu
,
W.
,
1997
, “
Accelerometer Placement for Angular Velocity Determination
,”
ASME J. Dyn. Syst., Meas., Control
,
119
(
3
), pp.
474
477
.
7.
Zappa
,
B.
,
Legnani
,
G.
,
van den Bogert
,
A. J.
, and
Adamini
,
R.
,
2001
, “
On the Number and Placement of Accelerometers for Angular Velocity and Acceleration Determination
,”
ASME J. Dyn. Syst., Meas., Control
,
123
(
3
), pp.
552
554
.
8.
Costello
,
M.
, and
Jitpraphai
,
T.
,
2002
, “
Determining Angular Velocity and Angular Acceleration of Projectiles Using Triaxial Acceleration Measurements
,”
J. Spacecr. Rockets
,
39
(
1
), pp.
73
80
.
9.
Clark
,
G. A.
,
2003
, “Angular and Linear Velocity Estimation for a Re-Entry Vehicle Using Six Distributed Accelerometers: Theory, Simulation and Feasibility,” Technical Report UCRL-ID-153253, Lawrence Livermore National Laboratory, Livermore, CA.
10.
Tan
,
C.
, and
Park
,
S.
,
2005
, “
Design of Accelerometer-Based Inertial Navigation Systems
,”
IEEE Trans. Instrum. Meas.
,
54
(
6
), pp.
2520
2530
.
11.
Cardou
,
P.
, and
Angeles
,
J.
,
2009
, “
Linear Estimation of the Rigid-Body Acceleration Field From Point-Acceleration Measurements
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
4
), p.
041013
.
12.
Williams
,
T. R.
,
Raboud
,
D. W.
, and
Fyfe
,
K. R.
,
2013
, “
Minimal Spatial Accelerometer Configurations
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
2
), p.
021016
.
13.
Sebastian
,
O. H.
,
Madgwick
,
A. J. L.
,
Harrison
,
P. M.
,
Sharkey
,
R. V.
, and
William
,
S. H.
,
2013
, “
Measuring Motion with Kinematically Redundant Accelerometer Arrays: Theory, Simulation and Implementation
,”
Mechatronics
,
23
(
5
), pp.
518
529
.
14.
Tagliapietra
,
L.
,
Modenese
,
L.
,
Ceseracciu
,
E.
,
Mazzà
,
C.
, and
Reggiani
,
M.
,
2018
, “
Validation of a Model-Based Inverse Kinematics Approach Based on Wearable Inertial Sensors
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
16
), pp.
834
844
.
15.
Veiga
,
J.
,
Lima
,
S.
,
Silva
,
L.
,
Carneiro
,
V.
,
Pinhão
,
M.
,
Gonçalves
,
A.
,
Malheiro
,
M.
, et al
,
2022
, “
A Novel Route to Optimize Placement Equipment Kinematics by Coupling Capacitive Accelerometers
,”
Sensors
,
22
(
9
), p.
3423
.
16.
Neurauter
,
R.
, and
Gerstmayr
,
J.
,
2023
, “
A Novel Motion-Reconstruction Method for Inertial Sensors With Constraints
,”
Multibody Syst. Dyn.
,
57
(
2
), pp.
181
209
.
17.
Sanjuan
,
J.
,
Sinyukov
,
A.
,
Warrayat
,
M. F.
, and
Guzman
,
F.
,
2023
, “
Gyro-Free Inertial Navigation Systems Based on Linear Opto-Mechanical Accelerometers
,”
Sensors
,
23
(
8
), p.
4093
.
18.
Chern
,
S. S.
,
Chen
,
W. H.
, and
Lam
,
K. S.
,
2000
,
Lectures on Differential Geometry
,
World Scientific
,
Singapore
.
19.
Huston
,
R. L.
,
1990
,
Multibody Dynamics
,
Butterworth-Heinemann
,
Boston, MA
.
20.
Liu
,
X.
,
2008
, “
A Lie Group Formulation of Kane's Equations for Multibody Systems
,”
Multibody Syst. Dyn.
,
20
(
1
), pp.
29
49
.
21.
Holm
,
D.
,
2011
,
Geometric Mechanics, Part II: Rotating, Translating and Rolling
,
Imperial College Press
,
London
.
22.
Heard
,
W. B.
,
2006
,
Rigid Body Mechanics
,
Wiley-VCH
,
New York
.
You do not currently have access to this content.