Abstract

We propose using viscoelastic damping with combined hardening and free-play structural nonlinearities to enhance energy harvesting performance and control vibration in a pitch and plunge airfoil with piezoelectric transduction. Numerical simulations are performed by directly integrating the equation of motion in the time domain under unsteady aerodynamic load. In addition, a fractional derivative model efficiently accounts for the behavior of the viscoelastic material. This study analyzes the effect of each structural nonlinearity and identifies a good condition for harvesting in terms of cut-in speed and operational speed range. For this condition, the viscoelastic damper in pitch can further reduce the cut-in speed by 13%, slightly increase the harvested power, and help reduce the dynamical complexity of the system response. In turn, the viscoelastic damper in the plunge degree-of-freedom can control the vibration amplitude at postcritical flow speeds, increasing the operational speed range up to 28% and the power up to two orders of magnitude in some cases. Viscoelastic damping maintains a favorable harvesting condition for temperature variations from 10C to 35C.

References

1.
Zhou
,
W.
,
Du
,
D.
,
Cui
,
Q.
,
Lu
,
C.
,
Wang
,
Y.
, and
He
,
Q.
,
2022
, “
Recent Research Progress in PiezoElectric Vibration Energy Harvesting Technology
,”
Energies
,
15
(
3
), p.
947
.
2.
Li
,
Z.
,
Zhou
,
S.
, and
Yang
,
Z.
,
2022
, “
Recent Progress on Flutter-Based Wind Energy Harvesting
,”
Int. J. Mech. Syst. Dyn.
,
2
(
1
), pp.
82
98
.
3.
Abdelkefi
,
A.
,
2016
, “
Aeroelastic Energy Harvesting: A Review
,”
Int. J. Eng. Sci.
,
100
, pp.
112
135
.
4.
Bonnin
,
M.
,
Traversa
,
F. L.
, and
Bonani
,
F.
,
2021
, “
Leveraging Circuit Theory and Nonlinear Dynamics for the Efficiency Improvement of Energy Harvesting
,”
Nonlinear Dyn.
,
104
(
1
), pp.
367
382
.
5.
Liu
,
S.
,
Li
,
P.
, and
Yang
,
Y.
,
2018
, “
On the Design of an Electromagnetic Aeroelastic Energy Harvester From Nonlinear Flutter
,”
Meccanica
,
53
(
11–12
), pp.
2807
2831
.
6.
Li
,
Z.
,
Zhou
,
S.
, and
Li
,
X.
,
2022
, “
A Piezoelectric-Electromagnetic Hybrid Flutter-Based Wind Energy Harvester: Modeling and Nonlinear Analysis
,”
Int. J. Non-Linear Mech.
,
144
.
7.
Wright
,
J. R.
, and
Cooper
,
J. E.
,
2015
,
Introduction to Aircraft Aeroelasticity and Loads
, 2nd ed.,
Wiley
,
Chichester, West Sussex, UK
.
8.
Erturk
,
A.
,
Vieira
,
W. G. R.
,
De Marqui
,
C.
, and
Inman
,
D. J.
,
2010
, “
On the Energy Harvesting Potential of Piezoaeroelastic Systems
,”
Appl. Phys. Lett.
,
96
(
18
), p.
184103
.
9.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
Wiley
,
Chichester, West Sussex, United Kingdom
.
10.
Lee
,
B.
,
Price
,
S.
, and
Wong
,
Y.
,
1999
, “
Nonlinear Aeroelastic Analysis of Airfoils: Bifurcation and Chaos
,”
Prog. Aerosp. Sci.
,
35
(
3
), pp.
205
334
.
11.
Basta
,
E.
,
Ghommem
,
M.
, and
Emam
,
S.
,
2021
, “
Flutter Control and Mitigation of Limit Cycle Oscillations in Aircraft Wings Using Distributed Vibration Absorbers
,”
Nonlinear Dyn.
,
106
(
3
), pp.
1975
2003
.
12.
Bryant
,
M.
, and
Garcia
,
E.
,
2009
,
Development of an Aeroelastic Vibration Power Harvester
, p.
728812
.
13.
Bryant
,
M.
, and
Garcia
,
E.
,
2009
, “
Energy Harvesting: A Key to Wireless Sensor Nodes
,”
Proceedings of the Second International Conference on Smart Materials and Nanotechnology in Engineering
,
7493
, p.
74931W
.
14.
Bryant
,
M.
, and
Garcia
,
E.
,
2011
, “
Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011010
.
15.
Sousa
,
V. C.
,
de M Anicézio
,
M.
,
De Marqui
,
C., Jr.
, and
Erturk
,
A.
,
2011
, “
Enhanced Aeroelastic Energy Harvesting by Exploiting Combined Nonlinearities: Theory and Experiment
,”
Smart Mater. Struct.
,
20
(
9
), p.
094007
.
16.
Abdelkefi
,
A.
,
Nayfeh
,
A. H.
, and
Hajj
,
M. R.
,
2012
, “
Modeling and Analysis of Piezoaeroelastic Energy Harvesters
,”
Nonlinear Dyn.
,
67
(
2
), pp.
925
939
.
17.
Wan
,
C.
,
Tian
,
H.
,
Shan
,
X.
, and
Xie
,
T.
,
2023
, “
Enhanced Performance of Airfoil-based Piezoelectric Energy Harvester Under Coupled Flutter and Vortex-Induced Vibration
,”
Int. J. Mech. Sci.
,
241
.
18.
Bouma
,
A.
,
Le
,
E.
,
Vasconcellos
,
R.
, and
Abdelkefi
,
A.
,
2022
, “
Effective Design and Characterization of Flutter-Based Piezoelectric Energy Harvesters With Discontinuous Nonlinearities
,”
Energy
,
238
.
19.
Bouma
,
A.
,
Vasconcellos
,
R.
, and
Abdelkefi
,
A.
,
2023
, “
Nonlinear Modeling, Characterization, and Effectiveness of Three-Degree-of-Freedom Piezoaeroelastic Energy Harvesters
,”
Mech. Syst. Signal Process.
,
189
.
20.
Tian
,
W.
,
Li
,
Y.
,
Yang
,
Z.
,
Li
,
P.
, and
Zhao
,
T.
,
2020
, “
Suppression of Nonlinear Aeroelastic Responses for a Cantilevered Trapezoidal Plate in Hypersonic Airflow Using an Energy Harvester Enhanced Nonlinear Energy Sink
,”
Int. J. Mech. Sci.
,
172
.
21.
Cunha-Filho
,
A.
,
de Lima
,
A.
,
Donadon
,
M.
, and
Leão
,
L.
,
2016
, “
Flutter Suppression of Plates Using Passive Constrained Viscoelastic Layers
,”
Mech. Syst. Signal Process.
,
79
, pp.
99
111
.
22.
Cunha-Filho
,
A.
,
de Lima
,
A.
,
Donadon
,
M.
, and
Leão
,
L.
,
2016
, “
Flutter Suppression of Plates Subjected to Supersonic Flow Using Passive Constrained Viscoelastic Layers and Golla–Hughes–McTavish Method
,”
Aerosp. Sci. Technol.
,
52
, pp.
70
80
.
23.
Martins
,
P. C.
,
Guimarães
,
T. A.
,
Pereira
,
D. d. A.
,
Marques
,
F. D.
, and
Rade
,
D. A.
,
2017
, “
Numerical and Experimental Investigation of Aeroviscoelastic Systems
,”
Mech. Syst. Signal Process.
,
85
, pp.
680
697
.
24.
Martins
,
P. C.
,
De Paula
,
A. S.
,
Carneiro
,
S. H.
, and
Rade
,
D. A.
,
2022
, “
Hybrid Control Technique Applied to an Aero-Servo-Viscoelastic Simplified Wing Model
,”
Aerosp. Sci. Technol.
,
122
.
25.
Liu
,
Q.
,
Xu
,
Y.
, and
Kurths
,
J.
,
2018
, “
Active Vibration Suppression of a Novel Airfoil Model With Fractional Order Viscoelastic Constitutive Relationship
,”
J. Sound Vib.
,
432
, pp.
50
64
.
26.
Lacarbonara
,
W.
, and
Cetraro
,
M.
,
2011
, “
Flutter Control of a Lifting Surface Via Visco-Hysteretic Vibration Absorbers
,”
Int. J. Aeronaut. Space Sci.
,
12
(
4
), pp.
331
345
.
27.
Liu
,
Q.
,
Xu
,
Y.
, and
Kurths
,
J.
,
2020
, “
Bistability and Stochastic Jumps in an Airfoil System With Viscoelastic Material Property and Random Fluctuations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
84
.
28.
Sales
,
T.
,
Marques
,
F. D.
,
Pereira
,
D. A.
, and
Rade
,
D. A.
,
2018
, “
Dynamic Assessment of Nonlinear Typical Section Aeroviscoelastic Systems Using Fractional Derivative-Based Viscoelastic Model
,”
J. Sound Vib.
,
423
, pp.
230
245
.
29.
Sales
,
T. d. P.
,
Pereira
,
D. A.
,
Marques
,
F. D.
, and
Rade
,
D. A.
,
2019
, “
Modeling and Dynamic Characterization of Nonlinear Non-Smooth Aeroviscoelastic Systems
,”
Mech. Syst. Signal Process.
,
116
, pp.
900
915
.
30.
Tian
,
H.
,
Shan
,
X.
,
Cao
,
H.
,
Song
,
R.
, and
Xie
,
T.
,
2021
, “
A Method for Investigating Aerodynamic Load Models of Piezoaeroelastic Energy Harvester
,”
J. Sound Vib.
,
502
.
31.
Tian
,
H.
,
Shan
,
X.
,
Cao
,
H.
, and
Xie
,
T.
,
2022
, “
Enhanced Performance of Airfoil-Based Piezoaeroelastic Energy Harvester: Numerical Simulation and Experimental Verification
,”
Mech. Syst. Signal Process.
,
162
.
32.
Cunha-Filho
,
A.
,
Briend
,
Y.
,
de Lima
,
A.
, and
Donadon
,
M.
,
2021
, “
A New and Efficient Constitutive Model Based on Fractional Time Derivatives for Transient Analyses of Viscoelastic Systems
,”
Mech. Syst. Signal Process.
,
146
.
33.
Theodorsen
,
T.
,
1935
, “General Theory of Aerodynamic Instability and the Mechanism of Flutter NTRS Document,” NACA-TR-496, NACA, https://ntrs.nasa.gov/citations/19930090935.
34.
Bisplinghoff
,
R. L.
, and
Ashley
,
H.
,
1975
,
Principles of Aeroelasticity
,
Dover Publications, Inc.
,
New York
.
35.
Vasconcellos
,
R.
,
Abdelkefi
,
A.
,
Marques
,
F.
, and
Hajj
,
M.
,
2012
, “
Representation and Analysis of Control Surface Freeplay Nonlinearity
,”
J. Fluids Struct.
,
31
, pp.
79
91
.
36.
Khatua
,
T. P.
, and
Cheung
,
Y. K.
,
1973
, “
Bending and Vibration of Multilayer Sandwich Beams and Plates
,”
Int. J. Numer. Methods Eng.
,
6
(
1
), pp.
11
24
.
37.
Rao
,
S. S.
,
2010
,
Mechanical Vibrations
, 5th ed.,
Pearson
,
Upper Saddle River, NJ
.
38.
Cunha Filho
,
A.
,
2019
, “
Abordagem Transiente Sobre Os Efeitos Do Amortecimento Viscoelástico Na Estabilidade Aeroelástica De Estruturas Aeronáuticas
,” Ph.D. thesis,
Universidade Federal De Uberlândia
, https://repositorio.ufu.br/handle/123456789/28227.
39.
Tian
,
W.
,
Yang
,
Z.
, and
Gu
,
Y.
,
2017
, “
Dynamic Analysis of an Aeroelastic Airfoil With Freeplay Nonlinearity by Precise Integration Method Based on Padé Approximation
,”
Nonlinear Dyn.
,
89
(
3
), pp.
2173
2194
.
You do not currently have access to this content.