Abstract

Soft dielectric elastomers that can exhibit extremely large deformations under the action of an electric field enable applications such as soft robotics, biomedical devices, and energy harvesting among others. A key impediment in the use of dielectric elastomers is failure through instability mechanisms or dielectric breakdown. In this work, by using a group theory-based approach, we provide a closed-form solution to the bifurcation problem of a paradigmatical elastomer actuator and discover an interesting result: at a critical electric field, the elastomer becomes impervious to Treloar–Kearsley instability. This limit is reached prior to the typical dielectric breakdown threshold. Our results thus establish a regime of electrical and mechanical loads where the dielectric elastomer is invulnerable to all common failure modes.

References

1.
Carpi
,
F.
,
Frediani
,
G.
,
Turco
,
S.
, and
Rossi
,
D. D.
,
2011
, “
Bioinspired Tunable Lens With Muscle-Like Electroactive Elastomers
,”
Adv. Funct. Mater.
,
21
(
21
), pp.
4152
4158
.
2.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
3.
Kofod
,
G.
,
Wirges
,
W.
,
Paajanen
,
M.
, and
Bauer
,
S.
,
2007
, “
Energy Minimization for Self-Organized Structure Formation and Actuation
,”
Appl. Phys. Lett.
,
90
(
8
), p.
081916
.
4.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
5.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Joseph
,
J.
,
Heydt
,
R.
,
Pei
,
Q.
, and
Chiba
,
S.
,
2000
, “
High-Field Deformation of Elastomeric Dielectrics for Actuators
,”
Mater. Sci. Eng.: C
,
11
(
2
), pp.
89
100
.
6.
Bauer
,
S.
,
Bauer-Gogonea
,
S.
,
Graz
,
I.
,
Kaltenbrunner
,
M.
,
Keplinger
,
C.
, and
Schwödiauer
,
R.
,
2014
, “
25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters
,”
Adv. Mater.
,
26
(
1
), pp.
149
162
.
7.
Yang
,
S.
,
Zhao
,
X.
, and
Sharma
,
P.
,
2017
, “
Avoiding the Pull-In Instability of a Dielectric Elastomer Film and the Potential for Increased Actuation and Energy Harvesting
,”
Soft. Matter.
,
13
(
26
), pp.
4552
4558
.
8.
Koh
,
S. J. A.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Maximal Energy That Can Be Converted by a Dielectric Elastomer Generator
,”
Appl. Phys. Lett.
,
94
(
26
), p.
262902
.
9.
Bar-Cohen
,
Y.
,
2004
, “EAP as Artificial Muscles: Progress and Challenges,”
Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD)
,
Y.
Bar-Cohen
, ed.,
SPIE
,
Bellingham, WA
.
10.
Bartlett
,
M. D.
,
Fassler
,
A.
,
Kazem
,
N.
,
Markvicka
,
E. J.
,
Mandal
,
P.
, and
Majidi
,
C.
,
2016
, “
Stretchable, High-k Dielectric Elastomers Through Liquid-Metal Inclusions
,”
Adv. Mater.
,
28
(
19
), pp.
3726
3731
.
11.
Grasinger
,
M.
,
Mozaffari
,
K.
, and
Sharma
,
P.
,
2021
, “
Flexoelectricity in Soft Elastomers and the Molecular Mechanisms Underpinning the Design and Emergence of Giant Flexoelectricity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
21
), p.
e2102477118
.
12.
Grasinger
,
M.
, and
Dayal
,
K.
,
2021
, “
Architected Elastomer Networks for Optimal Electromechanical Response
,”
J. Mech. Phys. Solids.
,
146
(
0022-5096
), p.
104171
.
13.
Zhang
,
Y.
,
Huang
,
Y.
,
Sun
,
W.
,
Jin
,
H.
,
Zhang
,
J.
,
Xu
,
L.
,
Dong
,
S.
,
Xu
,
Z.
,
Zhu
,
B.
,
Li
,
J.
, and
Wu
,
D.
,
2024
, “
A Multi-Electrode Electroelastomer Cylindrical Actuator for Multimodal Locomotion and Its Modeling
,”
Int. J. Mech. Sci.
,
266
, p.
108964
.
14.
Li
,
G.
,
Wong
,
T.-W.
,
Shih
,
B.
,
Guo
,
C.
,
Wang
,
L.
,
Liu
,
J.
, and
Wang
,
T.
, et al.,
2023
, “
Bioinspired Soft Robots for Deep-Sea Exploration
,”
Nat. Commun.
,
14
(
1
), p.
7097
.
15.
Chen
,
Y.
,
Zhao
,
H.
,
Mao
,
J.
,
Chirarattananon
,
P.
,
Helbling
,
E. F.
,
Hyun
,
N.-s.P.
,
Clarke
,
D. R.
, and
Wood
,
R. J.
,
2019
, “
Controlled Flight of a Microrobot Powered by Soft Artificial Muscles
,”
Nature
,
575
(
7782
), pp.
324
329
.
16.
Maziz
,
A.
,
Concas
,
A.
,
Khaldi
,
A.
,
Stålhand
,
J.
,
Persson
,
N.-K.
, and
Jager
,
E. W. H.
,
2017
, “
Knitting and Weaving Artificial Muscles
,”
Sci. Adv.
,
3
(
1
), p.
e1600327
.
17.
Acome
,
E.
,
Mitchell
,
S. K.
,
Morrissey
,
T. G.
,
Emmett
,
M. B.
,
Benjamin
,
C.
,
King
,
M.
,
Radakovitz
,
M.
, and
Keplinger
,
C.
,
2018
, “
Hydraulically Amplified Self-healing Electrostatic Actuators With Muscle-Like Performance
,”
Science
,
359
(
6371
), pp.
61
65
.
18.
Pelrine
,
R.
,
Kornbluh
,
R.
, and
Kofod
,
G.
,
2000
, “
High-Strain Actuator Materials Based on Dielectric Elastomers
,”
Adv. Mater.
,
12
(
16
), pp.
1223
1225
.
19.
Wissler
,
M.
, and
Mazza
,
E.
,
2007
, “
Mechanical Behavior of an Acrylic Elastomer Used in Dielectric Elastomer Actuators
,”
Sens. Actuators., A.
,
134
(
2
), pp.
494
504
.
20.
Kollosche
,
M.
,
Zhu
,
J.
,
Suo
,
Z.
, and
Kofod
,
G.
,
2012
, “
Complex Interplay of Nonlinear Processes in Dielectric Elastomers
,”
Phys. Rev. E
,
85
(
5
), p.
051801
.
21.
Zhao
,
X.
, and
Wang
,
Q.
,
2014
, “
Harnessing Large Deformation and Instabilities of Soft Dielectrics: Theory, Experiment, and Application
,”
Appl. Phys. Rev.
,
1
(
2
), p.
021304
.
22.
Bense
,
H.
,
Trejo
,
M.
,
Reyssat
,
E.
,
Bico
,
J.
, and
Roman
,
B.
,
2017
, “
Buckling of Elastomer Sheets Under Non-uniform Electro-actuation
,”
Soft. Matter.
,
13
(
15
), pp.
2876
2885
.
23.
Lu
,
T.
,
Ma
,
C.
, and
Wang
,
T.
,
2020
, “
Mechanics of Dielectric Elastomer Structures: A Review
,”
Extreme Mech. Lett.
,
38
, p.
100752
.
24.
Li
,
B.
,
Chen
,
H.
,
Qiang
,
J.
,
Hu
,
S.
,
Zhu
,
Z.
, and
Wang
,
Y.
,
2011
, “
Effect of Mechanical Pre-stretch on the Stabilization of Dielectric Elastomer Actuation
,”
J. Phys. D: Appl. Phys.
,
44
(
15
), p.
155301
.
25.
Kofod
,
G.
,
2008
, “
The Static Actuation of Dielectric Elastomer Actuators: How Does Pre-stretch Improve Actuation?
,”
J. Phys. D: Appl. Phys.
,
41
(
21
), p.
215405
.
26.
Huang
,
J.
,
Li
,
T.
,
Foo
,
C. C.
,
Zhu
,
J.
,
Clarke
,
D. R.
, and
Suo
,
Z.
,
2012
, “
Giant, Voltage-Actuated Deformation of a Dielectric Elastomer Under Dead Load
,”
Appl. Phys. Lett.
,
100
(
4
), p.
041911
.
27.
Zhang
,
L.
,
Wang
,
Q.
, and
Zhao
,
X.
,
2011
, “
Mechanical Constraints Enhance Electrical Energy Densities of Soft Dielectrics
,”
Appl. Phys. Lett.
,
99
(
17
), p.
171906
.
28.
Keplinger
,
C.
,
Kaltenbrunner
,
M.
,
Arnold
,
N.
, and
Bauer
,
S.
,
2010
, “
Röntgen’s Electrode-free Elastomer Actuators Without Electromechanical Pull-In Instability
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
10
), pp.
4505
4510
.
29.
Shi
,
Y.
,
Askounis
,
E.
,
Plamthottam
,
R.
,
Libby
,
T.
,
Peng
,
Z.
,
Youssef
,
K.
,
Pu
,
J.
,
Pelrine
,
R.
, and
Pei
,
Q.
,
2022
, “
A Processable, High-Performance Dielectric Elastomer and Multilayering Process
,”
Science
,
377
(
6602
), pp.
228
232
.
30.
Katusele
,
D.
,
Majidi
,
C.
,
Sharma
,
P.
, and
Dayal
,
K.
,
2025
, “
Exploiting Instabilities to Enable Large Shape Transformations in Dielectric Elastomers
,”
Phys. Rev. Appl.
,
23
(
1
), p.
014007
.
31.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2019
, “
Instabilities of Soft Dielectrics
,”
Phil. Trans. R. Soc. A
,
377
(
2144
), p.
20180077
.
32.
Chen
,
L.
,
Yang
,
X.
,
Wang
,
B.
,
Yang
,
S.
,
Dayal
,
K.
, and
Sharma
,
P.
,
2021
, “
The in Terplay Between Symmetry-Breaking and Symmetry-Preserving Bifurcations in Soft Dielectric Films and the Emergence of Giant Electro-actuation
,”
Extreme Mech. Lett.
,
43
, p.
101151
.
33.
Yang
,
S.
, and
Sharma
,
P.
,
2023
, “
A Tutorial on the Stability and Bifurcation Analysis of the Electromechanical Behaviour of Soft Materials
,”
Appl. Mech. Rev.
,
75
(
4
), p.
044801
.
34.
Chi
,
Y.
,
Li
,
Y.
,
Zhao
,
Y.
,
Hong
,
Y.
,
Tang
,
Y.
, and
Yin
,
J.
,
2022
, “
Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities
,”
Adv. Mater.
,
34
(
19
), p.
2110384
.
35.
Shao
,
H.
,
Wei
,
S.
,
Jiang
,
X.
,
Holmes
,
D. P.
, and
Ghosh
,
T. K.
,
2018
, “
Bioinspired Electrically Activated Soft Bistable Actuators
,”
Adv. Funct. Mater.
,
28
(
35
), p.
1802999
.
36.
Batra
,
R. C.
,
Mueller
,
I.
, and
Strehlow
,
P.
,
2005
, “
Treloar’s Biaxial Tests and Kearsley’s Bifurcation in Rubber Sheets
,”
Math. Mech. Solids
,
10
(
6
), pp.
705
713
.
37.
Steigmann
,
D. J.
,
2007
, “
A Simple Model of the Treloar-Kearsley Instability
,”
Math. Mech. Solids
,
12
(
6
), pp.
611
622
.
38.
Treloar
,
L. R. G.
,
1948
, “
Stresses and Birefringence in Rubber Subjected to General Homogeneous Strain
,”
Proc. Phys. Soc. (1926–1948)
,
60
(
2
), p.
135
.
39.
Kearsley
,
E. A.
,
1986
, “
Asymmetric Stretching of a Symmetrically Loaded Elastic Sheet
,”
Int. J. Solids. Struct.
,
22
(
2
), pp.
111
119
.
40.
Wang
,
M.
,
Jin
,
L.
, and
Fu
,
Y.
,
2022
, “
Axisymmetric Necking Versus Treloar-Kearsley Instability in a Hyperelastic Sheet Under Equibiaxial Stretching
,”
Math. Mech. Solids
,
27
(
8
), pp.
1610
1631
.
41.
Li
,
Q.
,
Dillard
,
D. A.
, and
Batra
,
R. C.
,
2020
, “
Kearsley-Type Instabilities in Finite Deformations of Transversely Isotropic and Incompressible Hyperelastic Materials
,”
Int. J. Solids. Struct.
,
196
(
0020-7683
), pp.
171
178
.
42.
Wineman
,
A.
,
Bustamante
,
R.
, and
Rajagopal
,
K. R.
,
2024
, “
The Treloar-Kearsley Bifurcation Problem Using a New Class of Constitutive Equations
,”
Z. Angew. Math. Phys.
,
75
(
6
), p.
206
.
43.
Fu
,
Y.
, and
Yu
,
X.
,
2023
, “
Axisymmetric Necking of a Circular Electrodes-Coated Dielectric Membrane
,”
Mech. Mater.
,
181
, p.
104645
.
44.
Yu
,
X.
, and
Fu
,
Y.
,
2025
, “
Analysis of Axisymmetric Necking of a Circular Dielectric Membrane Based on a One-Dimensional Model
,”
J. Mech. Phys. Solids.
,
198
, p.
106071
.
45.
Liu
,
L.
,
2013
, “
On Energy Formulations of Electrostatics for Continuum Media
,”
J. Mech. Phys. Solids.
,
61
(
4
), pp.
968
990
.
46.
Yang
,
L.
, and
Dayal
,
K.
,
2011
, “
A Completely Iterative Method for the Infinite Domain Electrostatic Problem With Nonlinear Dielectric Media
,”
J. Comput. Phys.
,
230
(
21
), pp.
7821
7829
.
47.
Jha
,
P. K.
,
Breitzman
,
T.
, and
Dayal
,
K.
,
2023
, “
Discrete-to-Continuum Limits of Long-Range Electrical Interactions in Nanostructures
,”
Arch. Ration. Mech. Anal.
,
247
(
2
), p.
29
.
48.
Marshall
,
J.
, and
Dayal
,
K.
,
2014
, “
Atomistic-to-Continuum Multiscale Modeling With Long-Range Electrostatic Interactions in Ionic Solids
,”
J. Mech. Phys. Solids.
,
62
, pp.
137
162
.
49.
Jha
,
P. K.
,
Marshall
,
J.
,
Knap
,
J.
, and
Dayal
,
K.
,
2023
, “
Atomic-to-Continuum Multiscale Modeling of Defects in Crystals With Nonlocal Electrostatic Interactions
,”
ASME J. Appl. Mech.
,
90
(
2
), p.
021003
.
50.
Darbaniyan
,
F.
,
Dayal
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
,
2019
, “
Designing Soft Pyroelectric and Electrocaloric Materials Using Electrets
,”
Soft. Matter.
,
15
(
2
), pp.
262
277
.
51.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials IV. Further Developments of the General Theory
,”
Phil. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci.
,
241
(
835
), pp.
379
397
.
52.
Khandagale
,
P.
,
Breitzman
,
T.
,
Majidi
,
C.
, and
Dayal
,
K.
,
2023
, “
Statistical Field Theory for Nonlinear Elasticity of Polymer Networks With Excluded Volume Interactions
,”
Phys. Rev. E
,
107
(
6
), p.
064501
.
53.
Grasinger
,
M.
,
2023
, “
Polymer Networks Which Locally Rotate to Accommodate Stresses, Torques, and Deformation
,”
J. Mech. Phys. Solids.
,
175
, p.
105289
.
54.
Grasinger
,
M.
,
Majidi
,
C.
, and
Dayal
,
K.
,
2021
, “
Nonlinear Statistical Mechanics Drives Intrinsic Electrostriction and Volumetric Torque in Polymer Networks
,”
Phys. Rev. E
,
103
(
4
), p.
042504
.
55.
Liu
,
L.
,
2014
, “
An Energy Formulation of Continuum Magneto-Electro-Elasticity With Applications
,”
J. Mech. Phys. Solids.
,
63
, pp.
451
480
.
56.
Grasinger
,
M.
, and
Dayal
,
K.
,
2020
, “
Statistical Mechanical Analysis of the Electromechanical Coupling in an Electrically-Responsive Polymer Chain
,”
Soft. Matter.
,
16
(
27
), pp.
6265
6284
.
57.
Grasinger
,
M.
,
Dayal
,
K.
,
deBotton
,
G.
, and
Purohit
,
P. K.
,
2022
, “
Statistical Mechanics of a Dielectric Polymer Chain in the Force Ensemble
,”
J. Mech. Phys. Solids.
,
158
, p.
104658
.
58.
Khandagale
,
P.
,
Garcia-Cervera
,
C.
,
Debotton
,
G.
,
Breitzman
,
T.
,
Majidi
,
C.
, and
Dayal
,
K.
,
2024
, “
Statistical Field Theory of Polarizable Polymer Chains With Nonlocal Dipolar Interactions
,”
Phys. Rev. E
,
109
(
4
), p.
044501
.
59.
Chen
,
Y. C.
,
2001
, “Singularity Theory and Nonlinear Bifurcation Analysis,”
Nonlinear Elasticity: Theory and Applications
,
Y. B.
Fu
, and
R. W.
Ogden
, eds.,
Cambridge University Press
,
Cambridge
, pp.
305
344
.
60.
Golubitsky
,
M.
, and
Schaeffer
,
D. G.
,
1985
,
Singularities and Groups in Bifurcation Theory
, Vol.
Vol. I
,
Springer Science & Business Media
,
New York, NY
.
61.
Golubitsky
,
M.
,
Stewart
,
I.
, and
Schaeffer
,
D. G.
,
1988
,
Singularities and Groups in Bifurcation Theory
, Vol.
II
,
Springer Science & Business Media
,
New York, NY
.
62.
Antman
,
S. S.
,
1995
,
Nonlinear Problems of Elasticity
,
Springer-Verlag
,
New York, NY
.
63.
Mather
,
J. N.
,
1969
, “
Stability of C Mappings: II. Infinitesimal Stability Implies Stability
,”
Ann. Math.
,
89
(
2
), pp.
254
291
.
64.
Mather
,
J. N.
,
1970
, “
Stability of C Mappings. III. Finitely Determined Mapgerms
,”
Matematika
,
14
(
1
), pp.
145
175
.
65.
Arnold
,
V. I.
,
1976
, “
Local Normal Forms of Functions
,”
Inventiones Math.
,
35
(
1
), pp.
87
109
.
66.
Arnold
,
V. I.
,
1981
,
Singularity Theory
, Vol.
53
,
Cambridge University Press
,
Cambridge
.
67.
Chen
,
Y.-C.
,
1991
, “
Bifurcation and Stability of Homogeneous Deformations of an Elastic Body Under Dead Load Tractions With z2 Symmetry
,”
J. Elast.
,
25
(
2
), pp.
117
136
.
68.
Sithigh
,
G. P. M. A. C.
, and
Chen
,
Y.-C.
,
1992
, “
Bifurcation and Stability of an Incompressible Elastic Body Under Homogeneous Dead Loads With Symmetry: Part Ii: Mooney-Rivlin Materials
,”
Q. J. Mech. Appl. Math.
,
45
(
2
), pp.
293
313
.
69.
Whitney
,
H.
,
1943
, “
Differentiable Even Functions
,”
Duke Math. J.
,
10
(
1
), pp.
159
160
.
70.
Stark
,
K. H.
, and
Garton
,
C. G.
,
1955
, “
Electric Strength of Irradiated Polythene
,”
Nature
,
176
(
4495
), pp.
1225
1226
.
71.
Li
,
Q.
,
He
,
Y.
,
Tan
,
S.
,
Zhu
,
B.
,
Zhang
,
X.
, and
Zhang
,
Z.
,
2022
, “
Dielectric Elastomer With Excellent Electromechanical Performance by Dipole Manipulation of Poly(vinyl chloride) for Artificial Muscles Under Low Driving Voltage Application
,”
Chem. Eng. J.
,
441
, pp.
136000
.
You do not currently have access to this content.