Abstract

Moiré patterns, typically formed by overlaying two layers of two-dimensional materials, exhibit an effective long-range periodicity that depends on the short-range periodicity of each layer and their spatial misalignment. Here, we study moiré patterns in objective structures with symmetries different from those in conventional patterns such as twisted bilayer graphene. Specifically, the mathematical descriptions for ring patterns, 2D Bravais lattice patterns, and helical patterns are derived analytically as representative examples of objective moiré patterns, using an augmented Fourier approach. Our findings reveal that the objective moiré patterns retain the symmetries of their original structures but with different parameters. In addition, we present a non-objective case, conformal moiré patterns, to demonstrate the versatility of this approach. We hope this geometric framework will provide insights for solving more complex moiré patterns and facilitate the application of moiré patterns in X-ray diffractions, wave manipulations, molecular dynamics, and other fields.

References

1.
Oster
,
G.
, and
Nishijima
,
Y.
,
1963
, “
Moiré Patterns
,”
Sci. Am.
,
208
(
5
), pp.
54
63
.
2.
Cao
,
Y.
,
Fatemi
,
V.
,
Fang
,
S.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Kaxiras
,
E.
, and
Jarillo-Herrero
,
P.
,
2018
, “
Unconventional Superconductivity in Magic-Angle Graphene Superlattices
,”
Nature
,
556
(
7699
), pp.
43
50
.
3.
Dai
,
Z.
,
Lu
,
N.
,
Liechti
,
K. M.
, and
Huang
,
R.
,
2020
, “
Mechanics at the Interfaces of 2D Materials: Challenges and Opportunities
,”
Curr. Opin. Solid State Mater. Sci.
,
24
(
4
), p.
100837
.
4.
Zhang
,
K.
, and
Tadmor
,
E. B.
,
2018
, “
Structural and Electron Diffraction Scaling of Twisted Graphene Bilayers
,”
J. Mech. Phys. Solids
,
112
, pp.
225
238
.
5.
Lebanon
,
G.
, and
Bruckstein
,
A. M.
,
2001
, “Designing Moiré Patterns,”
Energy Minimization Methods in Computer Vision and Pattern Recognition
,
M.
Figueiredo
,
J.
Zerubia
,
A. K.
Jain
, eds.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
185
200
.
6.
Yankowitz
,
M.
,
Chen
,
S.
,
Polshyn
,
H.
,
Zhang
,
Y.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Graf
,
D.
,
Young
,
A. F.
, and
Dean
,
C. R.
,
2019
, “
Tuning Superconductivity in Twisted Bilayer Graphene
,”
Science
,
363
(
6431
), pp.
1059
1064
.
7.
Penrose
,
R.
,
2014
, Sir Roger Penrose's Talk Entitled “Incredible Moiré Patterns!”.
8.
Oster
,
G.
,
Wasserman
,
M.
, and
Zwerling
,
C.
,
1964
, “
Theoretical Interpretation of Moiré Patterns
,”
Josa
,
54
(
2
), pp.
169
175
.
9.
Rogers
,
G.
,
1977
, “
A Geometrical Approach to Moiré Pattern Calculations
,”
Optica Acta: Int. J. Opt.
,
24
(
1
), pp.
1
13
.
10.
James
,
R. D.
,
2006
, “
Objective Structures
,”
J. Mech. Phys. Solids
,
54
(
11
), pp.
2354
2390
.
11.
Dumitrică
,
T.
, and
James
,
R. D.
,
2007
, “
Objective Molecular Dynamics
,”
J. Mech. Phys. Solids
,
55
(
10
), pp.
2206
2236
.
12.
Nikiforov
,
I.
,
Dontsova
,
E.
,
James
,
R.
, and
Dumitrică
,
T.
,
2014
, “
Tight-Binding Theory of Graphene Bending
,”
Phys. Rev. B
,
89
(
15
), p.
155437
.
13.
Nikiforov
,
I.
,
Zhang
,
D.-B.
,
James
,
R. D.
, and
Dumitrică
,
T.
,
2010
, “
Wavelike Rippling in Multiwalled Carbon Nanotubes Under Pure Bending
,”
Appl. Phys. Lett.
,
96
(
12
), p.
123107
.
14.
Pahlani
,
G.
,
Torres
,
E.
,
Schwartzentruber
,
T.
, and
James
,
R. D.
,
2023
, “
Objective Molecular Dynamics Investigation of Dissociation and Recombination Kinetics in High-Temperature Nitrogen
,”
Phys. Fluids
,
35
(
6
), p.
067111
.
15.
Zhang
,
D.-B.
,
James
,
R.
, and
Dumitrică
,
T.
,
2009
, “
Dislocation Onset and Nearly Axial Glide in Carbon Nanotubes Under Torsion
,”
J. Chem. Phys.
,
130
(
7
), p.
071101
.
16.
Dayal
,
K.
, and
James
,
R. D.
,
2012
, “
Design of Viscometers Corresponding to a Universal Molecular Simulation Method
,”
J. Fluid Mech.
,
691
, pp.
461
486
.
17.
Pahlani
,
G.
,
Schwartzentruber
,
T.
, and
James
,
R. D.
,
2023
, “
A Constitutive Relation Generalizing the Navier-Stokes Theory to High-Rate Regimes
,”
J. Fluid Mech.
,
974
, p.
A30
.
18.
Pahlani
,
G.
,
Schwartzentruber
,
T. E.
, and
James
,
R. D.
,
2023
, “
Objective Molecular Dynamics for Atomistic Simulation of Macroscopic Fluid Motion
,”
J. Comput. Phys.
,
478
, p.
111938
.
19.
Banerjee
,
A. S.
,
2021
, “
Ab Initio Framework for Systems With Helical Symmetry: Theory, Numerical Implementation and Applications to Torsional Deformations in Nanostructures
,”
J. Mech. Phys. Solids
,
154
, p.
104515
.
20.
Banerjee
,
A. S.
,
Elliott
,
R. S.
, and
James
,
R. D.
,
2015
, “
A Spectral Scheme for Kohn–Sham Density Functional Theory of Clusters
,”
J. Comput. Phys.
,
287
, pp.
226
253
.
21.
Banerjee
,
A. S.
, and
Suryanarayana
,
P.
,
2016
, “
Cyclic Density Functional Theory: A Route to the First Principles Simulation of Bending in Nanostructures
,”
J. Mech. Phys. Solids
,
96
, pp.
605
631
.
22.
Hakobyan
,
Y.
,
Tadmor
,
E. B.
, and
James
,
R. D.
,
2012
, “
Objective Quasicontinuum Approach for Rod Problems
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
,
86
(
24
), p.
245435
.
23.
James
,
R. D.
,
Qi
,
K.
, and
Wang
,
L.
,
2024
, “
On the Kinetic Description of the Objective Molecular Dynamics
,”
Multiscale Model. Simul.
,
22
(
4
), pp.
1646
1682
.
24.
Friesecke
,
G.
,
James
,
R. D.
, and
Jüstel
,
D.
,
2016
, “
Twisted X-rays: Incoming Waveforms Yielding Discrete Diffraction Patterns for Helical Structures
,”
SIAM J. Appl. Math.
,
76
(
3
), pp.
1191
1218
.
25.
Jüstel
,
D.
,
Friesecke
,
G.
, and
James
,
R. D.
,
2016
, “
Bragg-Von Laue Diffraction Generalized to Twisted X-rays
,”
Acta Crystallogr. Sect. A: Found. Adv.
,
72
(
2
), pp.
190
196
.
26.
James
,
R. D.
,
Nota
,
A.
, and
Velázquez
,
J. J.
,
2019
, “
Long-Time Asymptotics for Homoenergetic Solutions of the Boltzmann Equation: Collision-Dominated Case
,”
J. Nonlinear Sci.
,
29
(
5
), pp.
1943
1973
.
27.
James
,
R. D.
,
Nota
,
A.
, and
Velázquez
,
J. J.
,
2019
, “
Self-Similar Profiles for Homoenergetic Solutions of the Boltzmann Equation: Particle Velocity Distribution and Entropy
,”
Arch. Ration. Mech. Anal.
,
231
(
2
), pp.
787
843
.
28.
James
,
R. D.
,
Nota
,
A.
, and
Velázquez
,
J. J.
,
2020
, “
Long Time Asymptotics for Homoenergetic Solutions of the Boltzmann Equation. Hyperbolic-Dominated Case
,”
Nonlinearity
,
33
(
8
), pp.
3781
3815
.
29.
Feng
,
F.
,
Plucinsky
,
P.
, and
James
,
R. D.
,
2019
, “
Phase Transformations and Compatibility in Helical Structures
,”
J. Mech. Phys. Solids
,
131
, pp.
74
95
.
30.
Ganor
,
Y.
,
Dumitrică
,
T.
,
Feng
,
F.
, and
James
,
R. D.
,
2016
, “
Zig-Zag Twins and Helical Phase Transformations
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
374
(
2066
), p.
20150208
.
31.
Feng
,
F.
,
Plucinsky
,
P.
, and
James
,
R. D.
,
2020
, “
Helical Miura Origami
,”
Phys. Rev. E
,
101
(
3
), p.
033002
.
32.
Liu
,
H.
, and
James
,
R. D.
,
2024
, “
Design of Origami Structures With Curved Tiles Between the Creases
,”
J. Mech. Phys. Solids
,
185
, p.
105559
.
33.
Velvaluri
,
P.
,
Soor
,
A.
,
Plucinsky
,
P.
,
de Miranda
,
R. L.
,
James
,
R. D.
, and
Quandt
,
E.
,
2021
, “
Origami-Inspired Thin-Film Shape Memory Alloy Devices
,”
Sci. Rep.
,
11
(
1
), p.
10988
.
34.
Rieger
,
M. O.
,
2022
, “
Locally Translation-Isometric and Multi-isometric Sets as Generalizations of Objective Structures
,”
J. Mech. Phys. Solids
,
167
, p.
104974
.
35.
Koshino
,
M.
,
Moon
,
P.
, and
Son
,
Y.-W.
,
2015
, “
Incommensurate Double-Walled Carbon Nanotubes as One-Dimensional Moiré Crystals
,”
Phys. Rev. B
,
91
(
3
), p.
035405
.
36.
Zhao
,
S.
,
Kitaura
,
R.
,
Moon
,
P.
,
Koshino
,
M.
, and
Wang
,
F.
,
2022
, “
Interlayer Interactions in 1D van der Waals Moiré Superlattices
,”
Adv. Sci.
,
9
(
2
), p.
2103460
.
37.
Dayal
,
K.
,
Elliott
,
R.
, and
James
,
R.
, “Objective Formulas,” preprint.
You do not currently have access to this content.