Abstract

Grain boundary (GB) plays a crucial role in the mechanical properties and irradiation resistance of nuclear materials. It is thus essential to understand and predict the defect behaviors near GBs. Here, we present a framework for predicting defect absorption rates (fα) near GBs in four face-centered cubic metallic systems (pure Cu, Cu70Co30, pure Ni, and NiCoCr) by machine learning (ML). An extensive dataset was compiled by varying the primary knock-on atom energies, GB types, and material compositions, resulting in 141 distinct molecular dynamic simulations. The key GB characteristics such as tilt angle, GB energy, and coincident site lattice were selected to construct the descriptors, supplemented by four variables related to defect formation energy to capture the thermodynamics of atomic-scale interactions. The optimal descriptors, combining both chemical and structural descriptors, were determined through the Pearson correlation analysis. Six machine learning algorithms were applied to identify the best model, with the random forest model achieving the highest cross-validated determination coefficients (R2) of 0.88 for interstitials and 0.80 for vacancies. Additionally, Shapley additive exPlanations analysis was employed to elucidate and interpret the predicted defect absorption rates from the ML models, identifying GB energy (γGB) and interaction width (dGBα) as dominant regulators. The present work establishes the relationship between the defect absorption rates and the GB structure via ML and shows great prospect in the application of ML methods on modeling GB-relevant defect properties.

References

1.
Zinkle
,
S. J.
, and
Was
,
G.
,
2013
, “
Materials Challenges in Nuclear Energy
,”
Acta Mater.
,
61
(
3
), pp.
735
758
.
2.
Nordlund
,
K.
,
Zinkle
,
S. J.
,
Sand
,
A. E.
,
Granberg
,
F.
,
Averback
,
R. S.
,
Stoller
,
R. E.
,
Suzudo
,
T.
, et al
,
2018
, “
Primary Radiation Damage: A Review of Current Understanding and Models
,”
J. Nucl. Mater.
,
512
, pp.
450
479
.
3.
Nordlund
,
K.
,
Zinkle
,
S. J.
,
Sand
,
A. E.
,
Granberg
,
F.
,
Averback
,
R. S.
,
Stoller
,
R.
,
Suzudo
,
T.
, et al
,
2018
, “
Improving Atomic Displacement and Replacement Calculations With Physically Realistic Damage Models
,”
Nat. Commun.
,
9
(
1
), p.
1084
.
4.
Zinkle
,
S. J.
, and
Matsukawa
,
Y.
,
2004
, “
Observation and Analysis of Defect Cluster Production and Interactions With Dislocations
,”
J. Nucl. Mater.
,
329
, pp.
88
96
.
5.
Xu
,
W.
,
Zhang
,
Y.
,
Cheng
,
G.
,
Jian
,
W.
,
Millett
,
P. C.
,
Koch
,
C. C.
,
Mathaudhu
,
S. N.
, and
Zhu
,
Y.
,
2013
, “
In-Situ Atomic-Scale Observation of Irradiation-Induced Void Formation
,”
Nat. Commun.
,
4
(
1
), p.
2288
.
6.
Arakawa
,
K.
,
Ono
,
K.
,
Isshiki
,
M.
,
Mimura
,
K.
,
Uchikoshi
,
M.
, and
Mori
,
H.
,
2007
, “
Observation of the One-Dimensional Diffusion of Nanometer-Sized Dislocation Loops
,”
Science
,
318
(
5852
), pp.
956
959
.
7.
Dai
,
C.
,
Saidi
,
P.
,
Yao
,
Z.
, and
Daymond
,
M. R.
,
2017
, “
Atomistic Simulations of Ni Segregation to Irradiation Induced Dislocation Loops in Zr-Ni Alloys
,”
Acta Mater.
,
140
, pp.
56
66
.
8.
Yu
,
K.
,
Liu
,
Y.
,
Sun
,
C.
,
Wang
,
H.
,
Shao
,
L.
,
Fu
,
E.
, and
Zhang
,
X.
,
2012
, “
Radiation Damage in Helium Ion Irradiated Nanocrystalline Fe
,”
J. Nucl. Mater.
,
425
(
1–3
), pp.
140
146
.
9.
Kiener
,
D.
,
Hosemann
,
P.
,
Maloy
,
S. A.
, and
Minor
,
A. M.
,
2011
, “
In Situ Nanocompression Testing of Irradiated Copper
,”
Nat. Mater.
,
10
(
8
), pp.
608
613
.
10.
Barnes
,
R.
,
1965
, “
Embrittlement of Stainless Steels and Nickel-Based Alloys at High Temperature Induced by Neutron Radiation
,”
Nature
,
206
(
4991
), pp.
1307
1310
.
11.
Beyerlein
,
I.
,
Caro
,
A.
,
Demkowicz
,
M.
,
Mara
,
N.
,
Misra
,
A.
, and
Uberuaga
,
B.
,
2013
, “
Radiation Damage Tolerant Nanomaterials
,”
Mater. Today
,
16
(
11
), pp.
443
449
.
12.
Bai
,
X.-M.
,
Voter
,
A. F.
,
Hoagland
,
R. G.
,
Nastasi
,
M.
, and
Uberuaga
,
B. P.
,
2010
, “
Efficient Annealing of Radiation Damage Near Grain Boundaries Via Interstitial Emission
,”
Science
,
327
(
5973
), pp.
1631
1634
.
13.
Bai
,
X.-M.
,
Vernon
,
L. J.
,
Hoagland
,
R. G.
,
Voter
,
A. F.
,
Nastasi
,
M.
, and
Uberuaga
,
B. P.
,
2012
, “
Role of Atomic Structure on Grain Boundary-Defect Interactions in Cu
,”
Phys. Rev. B
,
85
(
21
), p.
214103
.
14.
Beyerlein
,
I.
,
Demkowicz
,
M.
,
Misra
,
A.
, and
Uberuaga
,
B.
,
2015
, “
Defect-Interface Interactions
,”
Prog. Mater. Sci.
,
74
, pp.
125
210
.
15.
Li
,
X.
,
Liu
,
W.
,
Xu
,
Y.
,
Liu
,
C.
,
Fang
,
Q.
,
Pan
,
B.
,
Chen
,
J.-L.
,
Luo
,
G.-N.
, and
Wang
,
Z.
,
2013
, “
An Energetic and Kinetic Perspective of the Grain-Boundary Role in Healing Radiation Damage in Tungsten
,”
Nucl. Fusion
,
53
(
12
), p.
123014
.
16.
Tschopp
,
M. A.
,
Solanki
,
K.
,
Gao
,
F.
,
Sun
,
X.
,
Khaleel
,
M. A.
, and
Horstemeyer
,
M.
,
2012
, “
Probing Grain Boundary Sink Strength at the Nanoscale: Energetics and Length Scales of Vacancy and Interstitial Absorption by Grain Boundaries in α-Fe
,”
Phys. Rev. B
,
85
(
6
), p.
064108
.
17.
Esfandiarpour
,
A.
,
Feghhi
,
S.
, and
Shokri
,
A.
,
2015
, “
Effects of Atomic Grain Boundary Structures on Primary Radiation Damage in α-Fe
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
,
362
, pp.
1
8
.
18.
Arjhangmehr
,
A.
,
Feghhi
,
S. A. H.
,
Esfandiyarpour
,
A.
, and
Hatami
,
F.
,
2016
, “
An Energetic and Kinetic Investigation of the Role of Different Atomic Grain Boundaries in Healing Radiation Damage in Nickel
,”
J. Mater. Sci.
,
51
(
2
), pp.
1017
1031
.
19.
Kedharnath
,
A.
,
Kapoor
,
R.
, and
Sarkar
,
A.
,
2019
, “
Atomistic Simulation of Interaction of Collision Cascade With Different Types of Grain Boundaries in α-Fe
,”
J. Nucl. Mater.
,
523
, pp.
444
457
.
20.
Field
,
K. G.
,
Barnard
,
L. M.
,
Parish
,
C. M.
,
Busby
,
J. T.
,
Morgan
,
D.
, and
Allen
,
T. R.
,
2013
, “
Dependence on Grain Boundary Structure of Radiation Induced Segregation in a 9 wt% Cr Model Ferritic/Martensitic Steel
,”
J. Nucl. Mater.
,
435
(
1–3
), pp.
172
180
.
21.
Samaras
,
M.
,
Derlet
,
P.
,
Van Swygenhoven
,
H.
, and
Victoria
,
M.
,
2006
, “
Atomic Scale Modelling of the Primary Damage State of Irradiated fcc and bcc Nanocrystalline Metals
,”
J. Nucl. Mater.
,
351
(
1–3
), pp.
47
55
.
22.
Samaras
,
M.
,
Derlet
,
P.
,
Van Swygenhoven
,
H.
, and
Victoria
,
M.
,
2003
, “
Movement of Interstitial Clusters in Stress Gradients of Grain Boundaries
,”
Phys. Rev. B
,
68
(
22
), p.
224111
.
23.
Yassar
,
R. S.
,
AbuOmar
,
O.
,
Hansen
,
E.
, and
Horstemeyer
,
M. F.
,
2010
, “
On Dislocation-Based Artificial Neural Network Modeling of Flow Stress
,”
Mater. Des.
,
31
(
8
), pp.
3683
3689
.
24.
Hiemer
,
S.
,
Fan
,
H.
, and
Zaiser
,
M.
,
2023
, “
Relating Plasticity to Dislocation Properties by Data Analysis: Scaling vs. Machine Learning Approaches
,”
Mater. Theory
,
7
(
1
), p.
1
.
25.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
26.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
27.
Ziegler
,
J. F.
, and
Biersack
,
J. P.
,
1985
,
The Stopping and Range of Ions in Matter, Treatise on Heavy-Ion Science: Volume 6: Astrophysics, Chemistry, and Condensed Matter
,
Springer
,
New York
, pp.
93
129
.
28.
Wang
,
X.
,
Gao
,
N.
,
Setyawan
,
W.
,
Xu
,
B.
,
Liu
,
W.
, and
Wang
,
Z.
,
2017
, “
Effect of Irradiation on Mechanical Properties of Symmetrical Grain Boundaries Investigated by Atomic Simulations
,”
J. Nucl. Mater.
,
491
, pp.
154
161
.
29.
Béland
,
L. K.
,
Lu
,
C.
,
Osetskiy
,
Y. N.
,
Samolyuk
,
G. D.
,
Caro
,
A.
,
Wang
,
L.
, and
Stoller
,
R. E.
,
2016
, “
Features of Primary Damage by High Energy Displacement Cascades in Concentrated Ni-Based Alloys
,”
J. Appl. Phys.
,
119
(
8
), p.
085901
.
30.
Deluigi
,
O. R.
,
Pasianot
,
R. C.
,
Valencia
,
F. J.
,
Caro
,
A.
,
Farkas
,
D.
, and
Bringa
,
E. M.
,
2021
, “
Simulations of Primary Damage in a High Entropy Alloy: Probing Enhanced Radiation Resistance
,”
Acta Mater.
,
213
, p.
116951
.
31.
Evans
,
D. J.
, and
Morriss
,
G. P.
,
1983
, “
Isothermal-Isobaric Molecular Dynamics
,”
Chem. Phys.
,
77
(
1
), pp.
63
66
.
32.
Tan
,
F.
,
Li
,
J.
,
Liu
,
B.
,
Liaw
,
P. K.
, and
Fang
,
Q.
,
2024
, “
Uncovering Origin of Grain Boundary Resistance to Irradiation Damage in NiCoCr Multi-principal Element Alloys
,”
Int. J. Plast.
,
175
, p.
103925
.
You do not currently have access to this content.