Abstract

Continuous fiber-reinforced materials have low strength under loads perpendicular to the fibers, and transverse cracks easily occur parallel to the fibers. Since transverse cracks cause a reduction in stiffness and strength of continuous fiber-reinforced laminates, understanding the mechanical behavior of cracked laminates is of great importance, and many studies have been conducted. Among these studies, there is the continuum damage mechanics (CDM) model, which directly reflects the effect of damage modes in the constitutive law with the idea of damage variables, and the stress-based variational model, which uses the principle of minimum complementary energy to obtain a three-dimensional stress field in a cracked laminate to predict stiffness. Although the variational model can accurately predict the stiffness degradation of a cracked laminate, it is much more complicated than the continuum damage mechanics model in terms of the expression of the theoretical solution and the computational process. In this study, we derived explicit closed-form expressions for damage variables within the CDM framework, based on the variational model's calculations, estimating both the in-plane and out-of-plane laminate thermoelastic properties. This combines the simplicity of CDM with the accuracy of the variational approach. The damage variables are expressed explicitly using normalized values, incorporating cracked ply material and geometrical properties, crack geometry, and adjacent ply properties, making them applicable to a wide range of laminate materials and crack configurations. The validity of the regression equations was verified by comparing them with the previous CDM model's results, finite element analysis results, and experimental data.

References

1.
Lundmark
,
P.
, and
Varna
,
J.
,
2011
, “
Stiffness Reduction in Laminates at High Interlaminar Crack Density: Effect of Crack Interaction
,”
Int. J. Damage Mech.
,
20
(
2
), pp.
279
297
.
2.
Nairn
,
J. A.
,
2000
, “Matrix Microcracking in Composites,”
Polymer Matrix Composites. Comprehensive Composite Materials
, Vol.
2
,
A.
Kelly
,
C.
Zweben
, and
R.
Talreja
, eds.,
Elsevier
,
Amsterdam, Netherlands
, pp.
403
432
.
3.
Berthelot
,
J. M.
,
2003
, “
Transverse Cracking and Delamination in Cross-Ply Glass-Fiber and Carbon-Fiber Reinforced Plastic Laminates: Static and Fatigue Loading
,”
ASME Appl. Mech. Rev.
,
56
(
1
), pp.
111
147
.
4.
Kashtalyan
,
M.
, and
Soutis
,
C.
,
2005
, “
Analysis of Composite Laminates with Intra- and Interlaminar Damage
,”
Prog. Aerosp. Sci.
,
41
(
2
), pp.
152
173
.
5.
Kaddour
,
A. S.
,
Hinton
,
M. J.
, and
Soden
,
P. D.
,
2003
, “
Behaviour of ±45° Glass/Epoxy Filament Wound Composite Tubes Under Quasi-Static Equal Biaxial Tension–Compression Loading: Experimental Results
,”
Composites, Part B
,
34
(
8
), pp.
689
704
.
6.
Highsmith
,
A. L.
, and
Reifsnider
,
K. L.
,
1982
, “Stiffness-Reduction Mechanisms in Composite Laminates,”
Damage in Composite Materials, ASTM STP 775
,
K. L.
Reifsnider
, ed.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
103
117
.
7.
Aboudi
,
J.
,
Lee
,
S. W.
, and
Herakovich
,
C. T.
,
1988
, “
Three-Dimensional Analysis of Laminates with Cross Cracks
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
389
397
.
8.
Hashin
,
Z.
,
1985
, “
Analysis of Cracked Laminates: A Variational Approach
,”
Mech. Mater.
,
4
(
2
), pp.
121
136
.
9.
Nairn
,
J. A.
,
1989
, “
The Strain Energy Release Rate of Composite Microcracking: A Variational Approach
,”
J. Compos. Mater.
,
23
(
11
), pp.
1106
1129
.
10.
Dvorak
,
G. J.
,
Laws
,
N.
, and
Hejazi
,
M.
,
1985
, “
Analysis of Progressive Matrix Cracking in Composite Laminates I. Thermoelastic Properties of a Ply with Cracks
,”
J. Compos. Mater.
,
19
(
3
), pp.
216
234
.
11.
McCartney
,
L.
,
1992
, “Stress transfer mechanics for ply cracks in general symmetric laminates,” NPL Report CMMT (A) 50.
12.
Allen
,
D.
,
Harris
,
C.
, and
Groves
,
S.
,
1987
, “
A Thermomechanical Constitutive Theory for Elastic Composites With Distributed Damage—I. Theoretical Development
,”
Int. J. Solids Struct.
,
23
(
9
), pp.
1301
1318
.
13.
Ladeveze
,
P.
, and
LeDantec
,
E.
,
1992
, “
Damage Modelling of the Elementary Ply for Laminated Composites
,”
Compos. Sci. Technol.
,
43
(
3
), pp.
257
267
.
14.
Talreja
,
R.
,
1985
, “
Transverse Cracking and Stiffness Reduction in Composite Laminates
,”
J. Compos. Mater.
,
19
(
4
), pp.
355
375
.
15.
Hajikazemi
,
M.
,
Sadr
,
M. H.
,
Hosseini-Toudeshky
,
H.
, and
Mohammadi
,
B.
,
2014
, “
Thermo-Elastic Constants of Cracked Symmetric Laminates: A Refined Variational Approach
,”
J. Mech. Sci.
,
89
, pp.
47
57
.
16.
Talreja
,
R.
,
1996
, “A Synergistic Damage Mechanics Approach to Durability of Composite Material Systems,”
Progress in Durability Analysis of Composite Systems
,
A.
Cardon
,
H.
Fukuda
, and
K.
Reifsnider
, eds.,
A.A. Balkema
,
Rotterdam
, pp.
117
129
.
17.
Okabe
,
T.
,
Onodera
,
S.
,
Kumagai
,
Y.
, and
Nagumo
,
Y.
,
2018
, “
Continuum Damage Mechanics Modeling of Composite Laminates Including Transverse Cracks
,”
Int. J. Damage Mech.
,
27
(
6
), pp.
877
895
.
18.
Aoki
,
R.
,
Higuchi
,
R.
,
Yokozeki
,
T.
,
Aoki
,
K.
,
Uchiyama
,
S.
, and
Ogasawara
,
T.
,
2021
, “
Damage-Mechanics Mesoscale Modeling of Composite Laminates Considering Diffuse and Discrete Ply Damages: Effects of ply Thickness
,”
Compos. Struct.
,
277
, p.
114609
.
19.
Highsmith
,
A. L.
, and
Reifsnider
,
K. L.
,
1982
,
Stiffness Reduction Mechanisms in Composite Laminates
, Vol.
775
,
ASTM STP
,
Philadelphia, PA
, pp.
103
117
.
20.
Katerelos
,
D. T. G.
, and
Varna
,
J.
,
2013
, “
Secondary Damage Effect on Stress Distribution in Laminated Composites
,”
Int. J. Damage Mech.
,
22
(
5
), pp.
752
769
.
21.
Giannadakis
,
K.
, and
Varna
,
J.
,
2014
, “
Potential of a Simple Variational Analysis in Predicting Shear Modulus of Laminates With Cracks in 90-Layers
,”
J. Compos. Mater.
,
48
(
15
), pp.
1843
1856
.
22.
Katerelos
,
D. T. G.
,
Krasnikovs
,
A.
, and
Varna
,
J.
,
2015
, “
Variational Models for Shear Modulus of Symmetric and Balanced Laminates With Cracks in 90-Layer
,”
Int. J. Solids Struct.
,
71
, pp.
169
179
.
23.
Talreja
,
R.
,
2008
, “
Damage and Fatigue in Composites—A Personal Account
,”
Compos. Sci. Technol.
,
68
(
13
), pp.
2585
2591
.
24.
Li
,
S.
, and
Hafeez
,
F.
,
2009
, “
Variation-Based Cracked Laminate Analysis Revisited and Fundamentally Extended
,”
Int. J. Solids Struct.
,
46
(
20
), pp.
3505
3515
.
25.
Vinogradov
,
V.
, and
Hashin
,
Z.
,
2010
, “
Variational Analysis of Cracked Angle-Ply Laminates
,”
Compos. Sci. Technol.
,
70
(
4
), pp.
638
646
.
26.
Hajikazemi
,
M.
, and
Sadr
,
M. H.
,
2014
, “
A Variational Model for Stress Analysis in Cracked Laminates with Arbitrary Symmetric Lay-Up Under General In-Plane Loading
,”
Int. J. Solids Struct.
,
51
(
2
), pp.
516
529
.
27.
Hajikazemi
,
M.
, and
Sadr
,
M. H.
,
2014
, “
Stiffness Reduction of Cracked General Symmetric Laminates Using a Variational Approach
,”
Int. J. Solids Struct.
,
51
(
7–8
), pp.
1483
1493
.
28.
Hajikazemi
,
M.
,
Homayoun Sadr
,
M.
, and
Varna
,
J.
,
2017
, “
Analysis of Cracked General Cross-Ply Laminates Under General Bending Loads: A Variational Approach
,”
J. Compos. Mater.
,
51
(
22
), pp.
3089
3109
.
29.
Varna
,
J.
,
2015
, “
Strategies for Stiffness Analysis of Laminates With Microdamage: Combining Average Stress and Crack Face Displacement Based Methods
,”
Z. Angew. Math. Mech.
,
95
(
10
), pp.
1081
1097
.
30.
Ahmadi
,
H.
,
Hajikazemi
,
M.
, and
Van Paepegem
,
W.
,
2022
, “
A Computational Study About the Effects of Ply Cracking and Delamination on the Stiffness Reduction of Damaged Lamina and Laminate
,”
Int. J. Damage Mech.
,
31
(
3
), pp.
325
347
.
31.
Onodera
,
S.
, and
Okabe
,
T.
,
2020
, “
Analytical Model for Determining Effective Stiffness and Mechanical Behavior of Polymer Matrix Composite Laminates Using Continuum Damage Mechanics
,”
Int. J. Damage Mech.
,
29
(
10
), pp.
1512
1542
.
32.
Hajikazemi
,
M.
,
McCartney
,
L. N.
, and
Van Paepegem
,
W.
,
2020
, “
Matrix Cracking Initiation, Propagation and Laminate Failure in Multiple Plies of General Symmetric Composite Laminates
,”
Composites Part A
,
136
, p.
105963
.
33.
Hajikazemi
,
M.
, and
McCartney
,
L. N.
,
2018
, “
Comparison of Variational and Generalized Plane Strain Approaches for Matrix Cracking in General Symmetric Laminates
,”
Int. J. Damage Mech.
,
27
(
4
), pp.
507
540
.
34.
Joff
,
R.
,
Krasnikovs
,
A.
, and
Varna
,
J.
,
2001
, “
COD-Based Simulation of Transverse Cracking and Stiffness Reduction in [S/90n]s Laminates
,”
Compos. Sci. Technol.
,
61
(
5
), pp.
637
656
.
35.
Okabe
,
T.
,
Takeda
,
N.
,
Kamoshida
,
Y.
,
Shimizu
,
M.
, and
Curtin
,
W. A.
,
2001
, “
A 3D Shear-Lag Model Considering Micro-Damage and Statistical Strength Prediction of Unidirectional Fiber-Reinforced Composites
,”
Compos. Sci. Technol.
,
61
(
12
), pp.
1773
1787
.
36.
Hajikazemi
,
M.
,
Ahmadi
,
H.
,
McCartney
,
L. N.
, and
Van Paepegem
,
W.
,
2022
, “
A Variational Approach for Accurate Prediction of Stress and Displacement Fields and Thermo-Elastic Constants in General Symmetric Laminates Containing ply Cracking and Delamination Under General Triaxial Loading
,”
Int. J. Solids Struct.
,
254–255
, p.
111917
.
37.
Lopes
,
C. S.
,
Camanho
,
P. P.
,
Gürdal
,
Z.
,
Maimí
,
P.
, and
González
,
E. V.
,
2009
, “
Low-Velocity Impact Damage on Dispersed Stacking Sequence Laminates. Part II: Numerical Simulations
,”
Compos Sci Technol
,
69
(
7–8
), pp.
937
947
.
38.
Chou
,
C.
, and
Lu
,
T.
,
1989
, “
On Evolution Laws of Anisotropic Damage
,”
Eng. Fract. Mech.
,
34
(
3
), pp.
679
701
.
39.
Onodera
,
S.
, and
Okabe
,
T.
,
2019
, “
Three-Dimensional Analytical Model for Effective Elastic Constants of Transversely Isotropic Plates with Multiple Cracks: Application to Stiffness Reduction and Steady-State Cracking of Composite Laminates
,”
Eng. Fract. Mech.
,
219
, p.
106595
.
40.
Fikry
,
M. J. M.
,
Ogihara
,
S.
, and
Vinogradov
,
V.
,
2018
, “
The Effect of Matrix Cracking on Mechanical Properties in FRP Laminates
,”
Mech. Adv. Mater. Mod. Processes
,
4
(
1
), p.
3
.
41.
Gudmundson
,
P.
, and
Zang
,
W.
,
1993
, “
An Analytic Model for Thermoelastic Properties of Composite Laminates Containing Transverse Matrix Cracks
,”
Int. J. Solids Struct.
,
30
(
23
), pp.
3211
3231
.
42.
Montesano
,
J.
,
McCleave
,
B.
, and
Singh
,
C. V.
,
2018
, “
Prediction of ply Crack Evolution and Stiffness Degradation in Multidirectional Symmetric Laminates Under Multiaxial Stress States
,”
Composites Part B
,
133
, pp.
53
67
.
You do not currently have access to this content.