Graphical Abstract Figure

Schematic diagram of the separated VIV fluid–solid coupling structure

Graphical Abstract Figure

Schematic diagram of the separated VIV fluid–solid coupling structure

Close modal

Abstract

In this study, a data-driven approach using the embedded variational principle is used to identify the variational equations of vortex-induced vibration fluid–structure interaction systems, in particular the coupling term and the aerodynamic damping term. Under the data-driven paradigm, variational equation identification is primarily accomplished through five steps: collecting discrete data, setting variational functions, building the product function, solving linear equations, and evaluating errors. The explicit variational equations of the system are eventually determined automatically from the excitation and response. Gaussian white noise is added to the excitation to evaluate the method's noise robustness. The findings demonstrate that numerical estimation which stays away from higher-order derivatives significantly enhances the variational law identification's noise robustness by taking advantage of the variational law's lower-order time derivatives. Furthermore, the arbitrariness of the variational setting inherent in the variational law significantly improves the effectiveness of data utilization and lowers the necessary data volume. In addition, a system of linear equations is solved by identifying connected nonlinear equations, which significantly increases modeling efficiency. The basis for engineering modeling, optimization, and control of intricate fluid–structure interaction systems are provided by these benefits.

References

1.
Feng
,
C. C.
,
1968
,
The Measurement of Vortex-Induced Effects on Flow Past Stationary and Oscillating Circular D-Section Cylinders
,
University of British Columbia
,
Vancouver, Canada
.
2.
Skop
,
R.
, and
Griffin
,
O.
,
1973
, “
Model for Vortex-Excited Resonant Response of Bluff Cylinders
,”
J. Sound Vibr.
,
27
(
2
), pp.
225
233
.
3.
Tang
,
D. M.
, and
Dowell
,
E. H.
,
2018
, “
Aeroelastic Response and Energy Harvesting From a Cantilevered Piezoelectric Laminated Plate
,”
J. Fluids Struct.
,
76
, pp.
14
36
.
4.
Videras Rodríguez
,
M.
,
Melgar
,
S. G.
,
Cordero
,
A. S.
, and
Márquez
,
J. M. A.
,
2021
, “
A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis
,”
Appl. Sci.
,
11
(
21
), p.
9966
.
5.
Wang
,
J.
,
Yurchenko
,
D.
,
Hu
,
G.
,
Zhao
,
L.
,
Tang
,
L.
, and
Yang
,
Y.
,
2021
, “
Perspectives in Flow-Induced Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
119
(
10
), p.
100502
.
6.
Tian
,
H.
,
Shan
,
X.
,
Cao
,
H.
, and
Xie
,
T.
,
2022
, “
Enhanced Performance of Airfoil-Based Piezoaeroelastic Energy Harvester: Numerical Simulation and Experimental Verification
,”
Mech. Syst. Signal Process.
,
162
, p.
108065
.
7.
Huang
,
D.
,
Han
,
J.
,
Li
,
W.
,
Deng
,
H.
, and
Zhou
,
S.
,
2023
, “
Responses, Optimization and Prediction of Energy Harvesters Under Galloping and Base Excitations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
119
, p.
107086
.
8.
Wang
,
D.
,
Hao
,
Z.
,
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2021
, “
Bifurcation Analysis of Vortex-Induced Vibration of Low-Dimensional Models of Marine Risers
,”
Nonlinear Dyn.
,
106
(
1
), pp.
147
167
.
9.
Li
,
X.
,
Chen
,
D.
,
Gu
,
H.
, and
Bai
,
F.
,
2021
, “
Three-Dimensional Vortex-Induced Vibration Analysis of Catenary-Type Risers Under Flow With Different Incident Angles
,”
Ocean Eng.
,
240
, p.
109978
.
10.
Kim
,
S. W.
,
Sævik
,
S.
,
Wu
,
J.
, and
Leira
,
B. J.
,
2022
, “
Time Domain Simulation of Marine Riser Vortex-Induced Vibrations in Three-Dimensional Currents
,”
Appl. Ocean Res.
,
120
, p.
103057
.
11.
Krishnakumari
,
A.
,
Saravanan
,
M.
,
Vishal
,
S.
,
Amal Krishna
,
A.
,
Sharavana Kumar
,
A.
, and
Lindsay
,
S. R. K.
,
2023
, “
Modelling and Analysis of Vortex Induced Vibration in Marine Risers
,”
Mater. Today: Proc.
, p.
S221478532300888X
.
12.
Liu
,
G.
,
Li
,
H.
,
Qiu
,
Z.
,
Leng
,
D.
,
Li
,
Z.
, and
Li
,
W.
,
2020
, “
A Mini Review of Recent Progress on Vortex-Induced Vibrations of Marine Risers
,”
Ocean Eng.
,
195
, p.
106704
.
13.
Khalak
,
A.
, and
Williamson
,
C. H. K.
,
1996
, “
Dynamics of a Hydroelastic Cylinder With Very Low Mass and Damping
,”
J. Fluids Struct.
,
10
(
5
), pp.
455
472
.
14.
Khalak
,
A.
, and
Williamson
,
C. H. K.
,
1999
, “
Motions, Forces and Mode Transitions in Vortex-Induced Vibrations at Low Mass-Damping
,”
J. Fluids Struct.
,
13
(
7–8
), pp.
813
851
.
15.
Govardhan
,
R.
, and
Williamson
,
C. H. K.
,
2000
, “
Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder
,”
J. Fluid Mech.
,
420
, pp.
85
130
.
16.
Lucor
,
D.
,
Mukundan
,
H.
, and
Triantafyllou
,
M. S.
,
2006
, “
Riser Modal Identification in CFD and Full-Scale Experiments
,”
J. Fluids Struct.
,
22
(
6–7
), pp.
905
917
.
17.
Huang
,
K.
,
Chen
,
H.-C.
, and
Chen
,
C.-R.
,
2007
, “
Time-Domain Simulation of Riser VIV in Sheared Current
,”
Proceedings of the Volume 3: Pipeline and Riser Technology; CFD and VIV
,
ASMEDC, San Diego, CA
, pp.
911
920
.
18.
Knorps
,
M.
, and
Pozorski
,
J.
,
2021
, “
Stochastic Modeling for Subgrid-Scale Particle Dispersion in Large-Eddy Simulation of Inhomogeneous Turbulence
,”
Phys. Fluids
,
33
(
4
), p.
043323
.
19.
De Lima
,
A. A.
,
Meneghini
,
J. R.
,
Mourelle
,
M.
,
Casaprima
,
E.
, and
Flatschart
,
R. B.
,
2007
, “
Numerical Investigation of Vortex-Induced Vibration of a Marine SCR
,”
Proceedings of the Volume 3: Pipeline and Riser Technology; CFD and VIV
,
ASMEDC, San Diego, CA
, pp.
841
847
.
20.
Bishop
,
R. E. D.
, and
Hassan
,
A. Y.
,
1964
, “
The Lift and Drag Forces on a Circular Cylinder in a Flowing Fluid
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
277
, pp.
32
50
.
21.
Hartlen
,
R. T.
, and
Currie
,
I. G.
,
1970
, “
Lift-Oscillator Model of Vortex-Induced Vibration
,”
J. Eng. Mech. Divis.
,
96
(
5
), pp.
577
591
.
22.
Facchinetti
,
M. L.
,
de Langre
,
E.
, and
Biolley
,
F.
,
2004
, “
Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
2
), pp.
123
140
.
23.
Blevins
,
R.
,
1979
, “
Flow-Induced Vibration in Nuclear-Reactors—Review
,”
Prog. Nucl. Energy
,
4
(
1
), pp.
25
49
.
24.
Mukundan
,
H.
,
Modarres-Sadeghi
,
Y.
,
Dahl
,
J. M.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2009
, “
Monitoring VIV Fatigue Damage on Marine Risers
,”
J. Fluids Struct.
,
25
(
4
), pp.
617
628
.
25.
Willden
,
R. H. J.
, and
Graham
,
J. M. R.
,
2004
, “
Multi-Modal Vortex-Induced Vibrations of a Vertical Riser Pipe Subject to a Uniform Current Profile
,”
Eur. J. Mech. - B/Fluids
,
23
(
1
), pp.
209
218
.
26.
Bao
,
Y.
,
Zhu
,
H. B.
,
Huan
,
P.
,
Wang
,
R.
,
Zhou
,
D.
,
Han
,
Z. L.
,
Palacios
,
R.
,
Graham
,
M.
, and
Sherwin
,
S.
,
2019
, “
Numerical Prediction of Vortex-Induced Vibration of Flexible Riser With Thick Strip Method
,”
J. Fluids Struct.
,
89
, pp.
166
173
.
27.
Murrin
,
D.
,
Ordonez
,
M.
,
Stone
,
G.
,
Bose
,
N.
, and
Qiu
,
W.
,
2007
, “
High Mode Vortex Induced Vibration (VIV) Experiments on a Large-Scale Riser
,”
Proceedings of the OCEANS 2007
,
IEEE, Vancouver, BC
, pp.
1
7
.
28.
Srinil
,
N.
,
2010
, “
Multi-Mode Interactions in Vortex-Induced Vibrations of Flexible Curved/Straight Structures With Geometric Nonlinearities
,”
J. Fluids Struct.
,
26
(
7–8
), pp.
1098
1122
.
29.
Chen
,
W.-L.
,
Zhang
,
Q.-Q.
,
Li
,
H.
, and
Hu
,
H.
,
2015
, “
An Experimental Investigation on Vortex Induced Vibration of a Flexible Inclined Cable Under a Shear Flow
,”
J. Fluids Struct.
,
54
, pp.
297
311
.
30.
Wang
,
J.
,
Xiang
,
S.
,
Fu
,
S.
,
Cao
,
P.
,
Yang
,
J.
, and
He
,
J.
,
2016
, “
Experimental Investigation on the Dynamic Responses of a Free-Hanging Water Intake Riser Under Vessel Motion
,”
Mar. Struct.
,
50
, pp.
1
19
.
31.
Chang
,
Q.
,
Fu
,
Z.
,
Zhang
,
S.
,
Wang
,
M.
, and
Pan
,
X.
,
2022
, “
Experimental Investigation of Reynolds Number and Spring Stiffness Effects on Vortex-Induced Vibration Driven Wind Energy Harvesting Triboelectric Nanogenerator
,”
Nanomaterials
,
12
(
20
), p.
3595
.
32.
Xu
,
Z.
,
Fu
,
Y.
,
Mei
,
R.
,
Zhai
,
Y.
, and
Kang
,
Y.
,
2025
, “
Novel Classification Algorithms Inspired by Firing Rate Stochastic Resonance
,”
Nonlinear Dyn.
,
113
(
1
), pp.
497
517
.
33.
Wang
,
S.
,
Wu
,
C.
,
Sun
,
B.
,
Wang
,
H.
,
Ding
,
X.
,
Yu
,
H.
,
Ni
,
W.
,
Xiong
,
M.
, and
Zhang
,
H.
,
2024
, “
Data-Based Deep Learning for Random Vibration Fatigue Life Prediction of Car Seat Frame
,”
Nonlinear Dyn.
, pp.
1
25
.
34.
Xu
,
Z.
,
Zhai
,
Y.
, and
Kang
,
Y.
,
2023
, “
Mutual Information Measure of Visual Perception Based on Noisy Spiking Neural Networks
,”
Front. Neurosci.
,
17
, p.
1155362
.
35.
Flinois
,
T. L. B.
, and
Morgans
,
A. S.
,
2016
, “
Feedback Control of Unstable Flows: A Direct Modelling Approach Using the Eigensystem Realisation Algorithm
,”
J. Fluid Mech.
,
793
, pp.
41
78
.
36.
Pfister
,
J.-L.
,
Marquet
,
O.
, and
Carini
,
M.
,
2019
, “
Linear Stability Analysis of Strongly Coupled Fluid–Structure Problems With the Arbitrary-Lagrangian–Eulerian Method
,”
Comput. Methods Appl. Mech. Eng.
,
355
, pp.
663
689
.
37.
Xiao
,
D.
,
Yang
,
P.
,
Fang
,
F.
,
Xiang
,
J.
,
Pain
,
C. C.
, and
Navon
,
I. M.
,
2016
, “
Non-Intrusive Reduced Order Modelling of Fluid–Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
303
, pp.
35
54
.
38.
Liu
,
X.
,
Jiang
,
Y.
,
Liu
,
F.
,
Liu
,
Z.
,
Chang
,
Y.
, and
Chen
,
G.
,
2021
, “
Optimization Design of Fairings for VIV Suppression Based on Data-Driven Models and Genetic Algorithm
,”
China Ocean Eng.
,
35
(
1
), pp.
153
158
.
39.
Gao
,
C.
,
Zhang
,
W.
,
Kou
,
J.
,
Liu
,
Y.
, and
Ye
,
Z.
,
2017
, “
Active Control of Transonic Buffet Flow
,”
J. Fluid Mech.
,
824
, pp.
312
351
.
40.
Jaiman
,
R. K.
,
Pillalamarri
,
N. R.
, and
Guan
,
M. Z.
,
2016
, “
A Stable Second-Order Partitioned Iterative Scheme for Freely Vibrating Low-Mass Bluff Bodies in a Uniform Flow
,”
Comput. Methods Appl. Mech. Eng.
,
301
, pp.
187
215
.
41.
Takashi
,
N.
,
1994
, “
ALE Finite Element Computations of Fluid-Structure Interaction Problems
,”
Comput. Methods Appl. Mech. Eng.
,
112
(
1–4
), pp.
291
308
.
42.
Takashi
,
N.
, and
Hughes
,
T. J. R.
,
1992
, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Interaction of Fluid and a Rigid Body
,”
Comput. Methods Appl. Mech. Eng.
,
95
(
1
), pp.
115
138
.
43.
Ljung
,
L.
,
1998
, “System Identification,”
Signal Analysis and Prediction
,
A.
Procházka
,
J.
Uhlíř
,
P. W. J.
Rayner
, and
N. G.
Kingsbury
, eds.,
Birkhäuser Boston
,
Boston, MA
, pp.
163
173
.
44.
Yao
,
W.
, and
Jaiman
,
R. K.
,
2017
, “
Model Reduction and Mechanism for the Vortex-Induced Vibrations of Bluff Bodies
,”
J. Fluid Mech.
,
827
, pp.
357
393
.
45.
Yao
,
W.
, and
Jaiman
,
R. K.
,
2017
, “
Feedback Control of Unstable Flow and Vortex-Induced Vibration Using the Eigensystem Realization Algorithm
,”
J. Fluid Mech.
,
827
, pp.
394
414
.
46.
Yao
,
W.
, and
Jaiman
,
R. K.
,
2019
, “
Stability Analysis of the Wake-Induced Vibration of Tandem Circular and Square Cylinders
,”
Nonlinear Dyn.
,
95
(
1
), pp.
13
28
.
47.
Wang
,
Z.
,
Xiao
,
D.
,
Fang
,
F.
,
Govindan
,
R.
,
Pain
,
C. C.
, and
Guo
,
Y.
,
2018
, “
Model Identification of Reduced Order Fluid Dynamics Systems Using Deep Learning
,”
Numer. Methods Fluids
,
86
(
4
), pp.
255
268
.
48.
Nazvanova
,
A.
,
Ong
,
M. C.
, and
Yin
,
G.
,
2023
, “
A Data-Driven Reduced-Order Model Based on Long Short-Term Memory Neural Network for Vortex-Induced Vibrations of a Circular Cylinder
,”
Phys. Fluids
,
35
(
6
), p.
065103
.
49.
Honigbaum
,
J.
, and
Rochinha
,
F. A.
,
2022
, “
Data-Driven Identification of Coupling Closure Equations in Vortex-Induced Vibrations Phenomenological Models
,”
Ocean Eng.
,
266
, p.
112981
.
50.
Copeland
,
D. M.
,
Cheung
,
S. W.
,
Huynh
,
K.
, and
Choi
,
Y.
,
2022
, “
Reduced Order Models for Lagrangian Hydrodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
388
, p.
114259
.
51.
Zhao
,
S.
,
Cheng
,
C.
,
Zhang
,
G.
,
Lin
,
M.
,
Peng
,
Z.
, and
Meng
,
G.
,
2023
, “
A Nonlinearity-Sensitive Approach for Early Damage Detection Using NOFRFs and the Hybrid-LSTM Model
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
12
.
52.
Sherstinsky
,
A.
,
2020
, “
Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network
,”
Phys. D: Nonlinear Phenom.
,
404
, p.
132306
.
53.
Farshidianfar
,
A.
, and
Zanganeh
,
H.
,
2010
, “
A Modified Wake Oscillator Model for Vortex-Induced Vibration of Circular Cylinders for a Wide Range of Mass-Damping Ratio
,”
J. Fluids Struct.
,
26
(
3
), pp.
430
441
.
54.
Boninsegna
,
L.
,
Nüske
,
F.
, and
Clementi
,
C.
,
2018
, “
Sparse Learning of Stochastic Dynamical Equations
,”
J. Chem. Phys.
,
148
(
24
), p.
241723
.
55.
Heremans
,
J.
,
Geuzaine
,
M.
, and
Denoël
,
V.
,
2023
, “
A Background/Resonant Decomposition Based Method to Predict the Behavior of 2-dof Aeroelastic Oscillators
,”
J. Wind Eng. Ind. Aerodyn.
,
233
, p.
105290
.
You do not currently have access to this content.