Graphical Abstract Figure

The framework of the physics-informed neural networks

Graphical Abstract Figure

The framework of the physics-informed neural networks

Close modal

Abstract

Although success is achieved by physics-informed neural networks (PINNs) as a deep learning solver in many fields, they face some challenges when solving solid mechanics problems. The most notable challenges include the neural network mapping of discontinuous field functions and the time-consuming of training PINNs. To tackle these challenges, this article proposes a minimum potential energy-based nonlocal physics-informed deep learning method (MPE-nPINNs), instead of relying on physical constraints expressed in strong form partial differential equations (PDEs). Additionally, we redesign the neural network structure by integrating peridynamic damage features as additional inputs, which can enhance the ability of the networks to describe the discontinuous field and reduce the size of the networks. We evaluate the training efficiency of the proposed method in problems of solid mechanics through comparative examples, and we verify the effectiveness of incorporating peridynamic damage features into optimizing the network structure. The numerical results indicate that the MPE-nPINNs method exhibits superior convergence speed and effectively characterizes discontinuous field functions with fewer number of hyperparameters of neural networks. This study has significant importance in enhancing the generalization ability of physics-informed neural networks and expediting optimization processes.

References

1.
Bar-Sinai
,
Y.
,
Hoyer
,
S.
,
Hickey
,
J.
, and
Brenner
,
M. P.
,
2019
, “
Learning Data-Driven Discretizations for Partial Differential Equations
,”
Proc. Natl. Acad. Sci. USA
,
116
(
31
), pp.
15344
15349
.
2.
Cai
,
S.
,
Mao
,
Z.
,
Wang
,
Z.
,
Yin
,
M.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review
,”
Acta Mech. Sin.
,
37
(
12
), pp.
1727
1738
.
3.
Han
,
J.
,
Jentzen
,
A.
, and
Weinan
,
E.
,
2018
, “
Solving High-Dimensional Partial Differential Equations Using Deep Learning
,”
Proc. Natl. Acad. Sci. USA
,
115
(
34
), pp.
8505
8510
.
4.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
5.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
6.
Rudy
,
S.
,
Alla
,
A.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
, “
Data-Driven Identification of Parametric Partial Differential Equations
,”
SIAM J. Appl. Dyn. Syst.
,
18
(
2
), pp.
643
660
.
7.
Zhu
,
Y.
,
Zabaras
,
N.
,
Koutsourelakis
,
P.-S.
, and
Perdikaris
,
P.
,
2019
, “
Physics-Constrained Deep Learning for High-Dimensional Surrogate Modeling and Uncertainty Quantification Without Labeled Data
,”
J. Comput. Phys.
,
394
, pp.
56
81
.
8.
Anitescu
,
C.
,
İsmail Ateş
,
B.
, and
Rabczuk
,
T.
,
2023
, “Physics-Informed Neural Networks: Theory and Applications,”
Machine Learning in Modeling and Simulation: Methods and Applications
,
Klaus-Jürgen Bathe
,
ed., Springer
,
New York
, pp.
179
218
.
9.
Lagaris
,
I. E.
,
Likas
,
A.
, and
Fotiadis
,
D. I.
,
1998
, “
Artificial Neural Networks for Solving Ordinary and Partial Differential Equations
,”
IEEE Trans. Neural Netw.
,
9
(
5
), pp.
987
1000
.
10.
Lagaris
,
I. E.
,
Likas
,
A. C.
, and
Papageorgiou
,
D. G.
,
2000
, “
Neural-Network Methods for Boundary Value Problems With Irregular Boundaries
,”
IEEE Trans. Neural Netw.
,
11
(
5
), pp.
1041
1049
.
11.
Meade Jr
,
A. J.
, and
Fernandez
,
A. A.
,
1994
, “
The Numerical Solution of Linear Ordinary Differential Equations by Feedforward Neural Networks
,”
Math. Comput. Modell.
,
19
(
12
), pp.
1
25
.
12.
Haghighat
,
E.
,
Raissi
,
M.
,
Moure
,
A.
,
Gomez
,
H.
, and
Juanes
,
R.
,
2021
, “
A Physics-Informed Deep Learning Framework for Inversion and Surrogate Modeling in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
379
(
7553
), p.
113741
.
13.
Jin
,
X.
,
Cai
,
S.
,
Li
,
H.
, and
Karniadakis
,
G. E.
,
2021
, “
NSFnets (Navier-Stokes Flow Nets): Physics-Informed Neural Networks for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
426
, p.
109951
.
14.
Moeineddin
,
A.
,
Seguí
,
C.
,
Dueber
,
S.
, and
Fuentes
,
R.
,
2023
, “
Physics-Informed Neural Networks Applied to Catastrophic Creeping Landslides
,”
Landslides
,
20
(
9
), pp.
1853
1863
.
15.
Zhang
,
P.
,
Yin
,
Z.-Y.
,
Jin
,
Y.-F.
,
Yang
,
J.
, and
Sheil
,
B.
,
2022
, “
Physics-Informed Multifidelity Residual Neural Networks for Hydromechanical Modeling of Granular Soils and Foundation Considering Internal Erosion
,”
J. Eng. Mech.
,
148
(
4
), p.
04022015
.
16.
Xu
,
J.
, and
Duraisamy
,
K.
,
2020
, “
Multi-level Convolutional Autoencoder Networks for Parametric Prediction of Spatio-temporal Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113379
.
17.
Bhatnagar
,
S.
,
Afshar
,
Y.
,
Pan
,
S.
,
Duraisamy
,
K.
, and
Kaushik
,
S.
,
2019
, “
Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks
,”
Comput. Mech.
,
64
(
2
), pp.
525
545
.
18.
Haghighat
,
E.
,
Bekar
,
A. C.
,
Madenci
,
E.
, and
Juanes
,
R.
,
2021
, “
A Nonlocal Physics-Informed Deep Learning Framework Using the Peridynamic Differential Operator
,”
Comput. Methods Appl. Mech. Eng.
,
385
, p.
114012
.
19.
Wang
,
S.
,
Yu
,
X.
, and
Perdikaris
,
P.
,
2022
, “
When and Why PINNs Fail to Train: A Neural Tangent Kernel Perspective
,”
J. Comput. Phys.
,
449
, p.
110768
.
20.
Xu
,
C.
,
Cao
,
B. T.
,
Yuan
,
Y.
, and
Meschke
,
G.
,
2023
, “
Transfer Learning Based Physics-Informed Neural Networks for Solving Inverse Problems in Engineering Structures Under Different Loading Scenarios
,”
Comput. Methods Appl. Mech. Eng.
,
405
, p.
115852
.
21.
Yu
,
J.
,
Lu
,
L.
,
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2022
, “
Gradient-Enhanced Physics-Informed Neural Networks for Forward and Inverse PDE Problems
,”
Comput. Methods Appl. Mech. Eng.
,
393
, p.
114823
.
22.
Gao
,
H.
,
Zahr
,
M. J.
, and
Wang
,
J.-X.
,
2022
, “
Physics-Informed Graph Neural Galerkin Networks: A Unified Framework for Solving PDE-Governed Forward and Inverse Problems
,”
Comput. Methods Appl. Mech. Eng.
,
390
, p.
114502
.
23.
Zang
,
Y.
,
Bao
,
G.
,
Ye
,
X.
, and
Zhou
,
H.
,
2020
, “
Weak Adversarial Networks for High-Dimensional Partial Differential Equations
,”
J. Comput. Phys.
,
411
, p.
109409
.
24.
Kharazmi
,
E.
,
Zhang
,
Z.
, and
Karniadakis
,
G. E.
,
2019
, “Variational Physics-Informed Neural Networks for Solving Partial Differential Equations,” preprint arXiv:1912.00873.
25.
Kharazmi
,
E.
,
Zhang
,
Z.
, and
Karniadakis
,
G. E. M.
,
2021
, “
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
,”
Comput. Methods Appl. Mech. Eng.
,
374
, p.
113547
.
26.
Khodayi-Mehr
,
R.
, and
Zavlanos
,
M.
, “
VarNet: Variational Neural Networks for the Solution of Partial Differential Equations
,”
Proc. Learning for Dynamics and Control, PMLR
, pp.
298
307
.
27.
Goswami
,
S.
,
Anitescu
,
C.
,
Chakraborty
,
S.
, and
Rabczuk
,
T.
,
2020
, “
Transfer Learning Enhanced Physics Informed Neural Network for Phase-Field Modeling of Fracture
,”
Theor. Appl. Fract. Mech.
,
106
, p.
102447
.
28.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Courier Corporation
,
New York
.
29.
Duarte
,
C. A.
, and
Oden
,
J. T.
,
1996
, “
H-p Clouds—An h-p Meshless Method
,”
Numer. Methods Partial Diff. Eq.: Int. J.
,
12
(
6
), pp.
673
705
.
30.
Samaniego
,
E.
,
Anitescu
,
C.
,
Goswami
,
S.
,
Nguyen-Thanh
,
V. M.
,
Guo
,
H.
,
Hamdia
,
K.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2020
, “
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics Via Machine Learning: Concepts, Implementation and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112790
.
31.
Yu
,
B.
,
2018
, “
The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems
,”
Commun. Math. Stat.
,
6
(
1
), pp.
1
12
.
32.
Nguyen-Thanh
,
V. M.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2020
, “
A Deep Energy Method for Finite Deformation Hyperelasticity
,”
Eur. J. Mech. - A/Solids
,
80
, p.
103874
.
33.
Nguyen-Thanh
,
V. M.
,
Anitescu
,
C.
,
Alajlan
,
N.
,
Rabczuk
,
T.
, and
Zhuang
,
X.
,
2021
, “
Parametric Deep Energy Approach for Elasticity Accounting for Strain Gradient Effects
,”
Comput. Methods Appl. Mech. Eng.
,
386
, p.
114096
.
34.
He
,
J.
,
Abueidda
,
D.
,
Al-Rub
,
R. A.
,
Koric
,
S.
, and
Jasiuk
,
I.
,
2023
, “
A Deep Learning Energy-Based Method for Classical Elastoplasticity
,”
Int. J. Plast.
,
162
, p.
103531
.
35.
Warren
,
T. L.
,
Silling
,
S. A.
,
Askari
,
A.
,
Weckner
,
O.
,
Epton
,
M. A.
, and
Xu
,
J.
,
2009
, “
A Non-ordinary State-Based Peridynamic Method to Model Solid Material Deformation and Fracture
,”
Int. J. Solids Struct.
,
46
(
5
), pp.
1186
1195
.
36.
Ren
,
H.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2020
, “
A Nonlocal Operator Method for Solving Partial Differential Equations
,”
Comput. Methods Appl. Mech. Eng.
,
358
, p.
112621
.
37.
Ren
,
H.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2020
, “
Nonlocal Operator Method With Numerical Integration for Gradient Solid
,”
Comput. Struct.
,
233
, p.
106235
.
38.
Breitenfeld
,
M. S.
,
Geubelle
,
P. H.
,
Weckner
,
O.
, and
Silling
,
S.
,
2014
, “
Non-ordinary State-Based Peridynamic Analysis of Stationary Crack Problems
,”
Comput. Methods Appl. Mech. Eng.
,
272
, pp.
233
250
.
39.
Gu
,
X.
,
Madenci
,
E.
, and
Zhang
,
Q.
,
2018
, “
Revisit of Non-ordinary State-Based Peridynamics
,”
Eng. Fract. Mech.
,
190
, pp.
31
52
.
40.
Silling
,
S. A.
, and
Askari
,
E.
,
2005
, “
A Meshfree Method Based on the Peridynamic Model of Solid Mechanics
,”
Comput. Struct.
,
83
(
17–18
), pp.
1526
1535
.
41.
Silling
,
S. A.
,
Epton
,
M.
,
Weckner
,
O.
,
Xu
,
J.
, and
Askari
,
E.
,
2007
, “
Peridynamic States and Constitutive Modeling
,”
J. Elast.
,
88
(
2
), pp.
151
184
.
42.
Silling
,
S. A.
, and
Lehoucq
,
R. B.
,
2010
, “
Peridynamic Theory of Solid Mechanics
,”
Adv. Appl. Mech.
,
44
, pp.
73
168
.
43.
Madenci
,
E.
, and
Oterkus
,
E.
,
2013
, “Peridynamic Theory,”
Peridynamic Theory and Its Applications
,
Springer
,
New York
, pp.
19
43
.
44.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “Adam: A Method for Stochastic Optimization,” preprint arXiv:1412.6980.
45.
Gulli
,
A.
, and
Pal
,
S.
,
2017
,
Deep Learning With Keras
,
Packt Publishing Ltd
,
Birmingham
.
46.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
,
Lin
,
Z.
,
Gimelshein
,
N.
, and
Antiga
,
L.
,
2019
, “
Pytorch: An Imperative Style, High-Performance Deep Learning Library
,”
Adv. Neural Inf. Process. Syst.
,
32
, pp.
8026
8037
. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
47.
Agarap
,
A. F.
,
2018
, “Deep Learning Using Rectified Linear Units (ReLU),” preprint arXiv:1803.08375.
48.
Taylor
,
M. E.
, and
Stone
,
P.
,
2009
, “
Transfer Learning for Reinforcement Learning Domains: A Survey
,”
J. Mach. Learn. Res.
,
10
(
7
), pp.
1633
1685
. https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0
49.
Weiss
,
K.
,
Khoshgoftaar
,
T. M.
, and
Wang
,
D.
,
2016
, “
A Survey of Transfer Learning
,”
J. Big Data
,
3
(
1
), pp.
1
40
.
50.
Pan
,
S. J.
, and
Yang
,
Q.
,
2009
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
51.
Sutula
,
D.
,
Kerfriden
,
P.
,
van Dam
,
T.
, and
Bordas
,
S. P.
,
2018
, “
Minimum Energy Multiple Crack Propagation. Part I: Theory and State of the Art Review
,”
Eng. Fract. Mech.
,
191
, pp.
205
224
.
52.
Zhou
,
X.
, and
Feng
,
B.
,
2023
, “
A Smeared-Crack-Based Field-Enriched Finite Element Method for Simulating Cracking in Quasi-Brittle Materials
,”
Theor. Appl. Fract. Mec.
,
124
, p.
103817
.
53.
Kakouris
,
E. G.
, and
Triantafyllou
,
S. P.
,
2017
, “
Phase-Field Material Point Method for Brittle Fracture
,”
Int. J. Numer. Methods Eng.
,
112
(
12
), pp.
1750
1776
.
You do not currently have access to this content.