Graphical Abstract Figure

Calculation of the energy release rate from an arbitrary domain containing the crack tip

Graphical Abstract Figure

Calculation of the energy release rate from an arbitrary domain containing the crack tip

Close modal

Abstract

This study investigates the use of the J-integral to compute the statistics of the energy release rate of a random elastic medium. The spatial variability of the elastic modulus is modeled as a homogeneous lognormal random field. Within the framework of Monte Carlo simulation, a modified contour integral is applied to evaluate the first and second statistical moments of the energy release rate. These results are compared with the energy release rate calculated from the potential energy function. The comparison shows that, if the random field of elastic modulus is homogenous in space, the path independence of the classical J-integral remains valid for calculating the mean energy release rate. However, this path independence does not extend to the higher order statistical moments. The simulation further reveals the effect of the correlation length of the spatially varying elastic modulus on the energy release rate of the specimen.

References

1.
Griffith
,
A. A.
,
1921
, “
The Phenomenon of Rupture in Solids
,”
Phil. Trans. R. Soc. A
,
221A
(
582–593
), pp.
163
198
.
2.
Rice
,
J. R.
,
1968
, “
Path Independent Integral and Approximate Analysis of Strain Concentrations by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
3.
Noether
,
E.
,
1918
, “
Invariante Variationsprobleme
,”
Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse
,
1918
, pp.
235
257
.
4.
Eshelby
,
J. D.
,
1951
, “
The Force on Elastic Singularity
,”
Phil. Trans. R. Soc. A
,
244
(
877
), pp.
87
112
.
5.
Eshelby
,
J. D.
,
1975
, “
The Elastic Energy-Momentum Tensor
,”
J. Elasticity
,
5
(
3–4
), pp.
321
335
.
6.
Honein
,
T.
, and
Herrmann
,
G.
,
1997
, “
Conservation Laws in Nonhomogenous Plane Elastostatics
,”
J. Mech. Phys. Solids
,
45
(
5
), pp.
789
805
.
7.
Ballarini
,
R.
, and
Royer-Carfagni
,
G.
,
2016
, “
Closed-Path J−Integral Analysis of Bridged and Phase-Field Cracks
,”
ASME J. Appl. Mech.
,
83
(
6
), p.
061008
.
8.
Gurtin
,
M.
,
2008
,
Configurational Forces as Basic Concepts of Continuum Physics
,
Springer Science & Business Media
,
New York
.
9.
Anderson
,
T. L.
,
2017
,
Fracture Mechanics: Fundamentals and Applications
, 4th ed.,
CRC Press
,
Boca Raton, FL
.
10.
Bažant
,
Z. P.
,
Le
,
J.-L.
, and
Salviato
,
M.
,
2021
,
Quasibrittle Fracture Mechanics: A First Course
,
Oxford University Press
,
Oxford, UK
.
11.
Eischen
,
J. W.
,
1987
, “
Fracture of Nonhomogenous Materials
,”
Int. J. Frac.
,
34
, pp.
3
22
.
12.
Kim
,
J.-H.
, and
Paulino
,
G. H.
,
2003
, “
Mixed-Mode $J$-Integral Formulation and Implementation Using Graded Elements for Fracture Analysis of Nonhomogeneous Orthotropic Materials
,”
Mech. Mater.
,
35
(
1–2
), pp.
107
128
.
13.
Rice
,
J. R.
,
1968
, “Mathematical Analysis in the Mechanics of Fracture,”
Fracture—An Advanced Treatise
, Vol.
2
,
H.
Liebowitz
, ed.,
Academic Press
,
New York
, pp.
191
311
.
14.
Vanmarcke
,
E.
,
2010
,
Random Fields Analysis and Synthesis
,
World Scientific Publishers
,
Singapore
.
15.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
, 3rd ed. ed.,
ASME Press
,
New York
.
16.
Li
,
H.-S.
,
,
Z.-Z.
, and
Yuan
,
X.
,
2008
, “
Nataf Transformation Based Point Estimate Method
,”
Chinese Sci. Bull.
,
53
(
17
), pp.
2586
2592
.
17.
Karhunen
,
K.
,
1947
, “
Uber Lineare Methoden in Der Wahrscheinlichkeitsrechnung
,”
Ann. Acad. Sci. Fennicae. Ser. A I. Math.-Phys.
,
37
, pp.
1
79
.
18.
Spanos
,
P. D.
, and
Ghanem
,
R. G.
,
1989
, “
Stochastic Finite Element Expansion for Random Media
,”
J. Eng. Mech., ASCE
,
115
(
5
), pp.
1035
1053
.
19.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
,
Dover
,
Mineola, NY
.
20.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comp. Meth. Appl. Mech. Eng.
,
198
(
2009
), pp.
1031
1051
.
21.
McKay
,
M.
,
Beckman
,
R.
, and
Conover
,
W.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
22.
Li
,
C.
, and
Der Kiureghian
,
A.
,
1993
, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech., ASCE
,
119
(
6
), pp.
1136
1154
.
You do not currently have access to this content.