Abstract

Cardiac arrhythmias, such as atrial fibrillation, pose significant health risks and are often treated using minimally invasive cardiac ablation. However, the limited maneuverability of mechanically driven catheters can undermine both the success and efficiency of the procedure. In contrast, magnetic soft continuum robots (MSCRs) offer a promising alternative by utilizing external magnetic fields to directly steer the catheter tip. This approach allows for precise control, simplifying navigation through intricate vascular systems, ensuring stable contact with lesions, and minimizing manual manipulation. To optimize the use of MSCRs in magnetically assisted cardiac ablation, it is crucial to model their behavior, focusing on contact with the vascular environment. This article establishes a theoretical model of MSCRs based on Cosserat beam theory and discrete differential geometry (DDG). The model is validated and subsequently used to simulate three scenarios: partially magnetized MSCRs, MSCRs with point contacts, and MSCRs with line contacts. The results reveal significant nonlinear behavior upon contact. By applying our model, we demonstrate how adjustments of the magnetic field's direction, magnitude, and MSCR length can guide navigation through bifurcated vessels and achieve precise contact with a lesion. These findings provide valuable insights into the design and control of MSCRs, enabling more efficient, simulation-driven guidance for minimally invasive procedures and advancing digital health care in endovascular applications.

References

1.
Lippi
,
G.
,
Sanchis-Gomar
,
F.
, and
Cervellin
,
G.
,
2020
, “
Global Epidemiology of Atrial Fibrillation: An Increasing Epidemic and Public Health Challenge
,”
Int. J. Stroke
,
16
(
2
), pp.
217
221
.
2.
Empana
,
J. P.
,
Lerner
,
I.
,
Valentin
,
E.
,
Folke
,
F.
,
Bottiger
,
B.
,
Gislason
,
G.
, et al
,
2022
, “
Incidence of Sudden Cardiac Death in the European Union
,”
J. Am. Coll. Cardiol.
,
79
(
18
), pp.
1818
1827
.
3.
Nery
,
P.
,
Thornhill
,
R.
,
Nair
,
G.
,
Pena
,
E.
, and
Redpath
,
C.
,
2016
, “
Scar-Based Catheter Ablation for Persistent Atrial Fibrillation
,”
Curr. Opin. Cardiol.
,
32
(
1
), pp.
1
9
.
4.
Reddy
,
V. Y.
,
Koruth
,
J.
,
Jais
,
P.
,
Petru
,
J.
,
Timko
,
F.
,
Skalsky
,
I.
, et al
,
2018
, “
Ablation of Atrial Fibrillation With Pulsed Electric Fields: An Ultra-Rapid, Tissue-Selective Modality for Cardiac Ablation
,”
Clin. Electrophysiol.
,
4
(
8
), pp.
987
995
.
5.
Stabile
,
G.
,
Solimene
,
F.
,
Calò
,
L.
,
Anselmino
,
M.
,
Castro
,
A.
,
Pratola
,
C.
, et al
,
2014
, “
Catheter-Tissue Contact Force for Pulmonary Veins Isolation: A Pilot Multicentre Study on Effect on Procedure and Fluoroscopy Time
,”
EP Europace
,
16
(
3
), pp.
335
340
.
6.
Faddis
,
M.
,
Blume
,
W.
,
Finney
,
J.
,
Hall
,
A.
,
Rauch
,
J.
,
Sell
,
J.
, et al
,
2003
, “
Novel, Magnetically Guided Catheter for Endocardial Mapping and Radiofrequency Catheter Ablation
,”
Circulation
,
106
(
23
), pp.
2980
2985
.
7.
Hu
,
X.
,
Chen
,
A.
,
Luo
,
Y.
,
Zhang
,
X.
, and
Zhang
,
E.
,
2018
, “
Steerable Catheters for Minimally Invasive Surgery: A Review and Future Directions
,”
Comput. Assisted Surg.
,
23
(
1
), pp.
21
41
.
8.
Bao
,
X.
,
Guo
,
S.
,
Xiao
,
N.
,
Li
,
Y.
,
Yang
,
C.
, and
Jiang
,
Y.
,
2018
, “
A Cooperation of Catheters and Guidewires-Based Novel Remote-Controlled Vascular Interventional Robot
,”
Biomed. Microdevices
,
20
(
1
), p.
20
.
9.
Yang
,
Z.
,
Yang
,
H.
,
Cao
,
Y.
,
Cui
,
Y.
, and
Zhang
,
L.
,
2023
, “
Magnetically Actuated Continuum Medical Robots: A Review
,”
Adv. Intell. Syst.
,
5
(
6
), p.
2200416
.
10.
Kim
,
Y.
,
Parada
,
G. A.
,
Liu
,
S.
, and
Zhao
,
X.
,
2019
, “
Ferromagnetic Soft Continuum Robots
,”
Sci. Robotics
,
4
(
33
), p.
eaax7329
.
11.
Zhao
,
R.
,
Kim
,
Y.
,
Chester
,
S. A.
,
Sharma
,
P.
, and
Zhao
,
X.
,
2019
, “
Mechanics of Hard-Magnetic Soft Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
244
263
.
12.
Wang
,
L.
,
Kim
,
Y.
,
Guo
,
C. F.
, and
Zhao
,
X.
,
2020
, “
Hard-Magnetic Elastica
,”
J. Mech. Phys. Solids
,
142
, p.
104045
.
13.
Garcia-Gonzalez
,
D.
, and
Hossain
,
M.
,
2021
, “
Microstructural Modelling of Hard-Magnetic Soft Materials: Dipole-Dipole Interactions Versus Zeeman Effect
,”
Extreme Mech. Lett.
,
48
, p.
101382
.
14.
Chen
,
W.
,
Wang
,
L.
,
Yan
,
Z.
, and
Luo
,
B.
,
2021
, “
Three-Dimensional Large-Deformation Model of Hard-Magnetic Soft Beams
,”
Compos. Struct.
,
266
, p.
113822
.
15.
Huang
,
W.
,
Liu
,
M.
, and
Hsia
,
K. J.
,
2023
, “
A Discrete Model for the Geometrically Nonlinear Mechanics of Hard-Magnetic Slender Structures
,”
Extreme Mech. Lett.
,
59
, p.
101977
.
16.
Wang
,
L.
,
Guo
,
C. F.
, and
Zhao
,
X.
,
2022
, “
Magnetic Soft Continuum Robots With Contact Forces
,”
Extreme Mech. Lett.
,
51
, p.
101604
.
17.
Li
,
J.
,
Chen
,
H.
, and
Wang
,
L.
,
2024
, “
Model-Guided Navigation of Magnetic Soft Guidewire for Safe Endovascular Surgery
,”
J. Mech. Phys. Solids
,
190
, p.
105731
.
18.
Antman
,
S. S.
,
2005
,
Nonlinear Problems of Elasticity
,
Springer
,
New York
, pp.
513
584
, Chap. 14.
19.
Love
,
A. E. H.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
,
Cambridge University Press
,
Dover, NY
.
20.
Meier
,
C.
,
Wall
,
W.
, and
Popp
,
A.
,
2017
, “
Geometrically Exact Finite Element Formulations for Curved Slender Beams: Kirchhoff-Love Theory vs. Simo-Reissner Theory
,”
Arch. Comput. Meth. Eng.
,
26
(
1
), pp.
163
243
.
21.
Shabana
,
A. A.
,
1996
, “
An Absolute Nodal Coordinate Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies
,”
Technical Report. No. MBS96-1-UIC, University of Illinois at Chicago
.
22.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.
23.
Stulpnagel
,
J.
,
1964
, “
On the Parametrization of the Three-Dimensional Rotation Group
,”
SIAM Rev.
,
6
(
4
), pp.
422
430
.
24.
Chen
,
W.
,
Wang
,
G.
,
Li
,
Y.
,
Wang
,
L.
, and
Yin
,
Z.
,
2023
, “
The Quaternion Beam Model for Hard-Magnetic Flexible Cantilevers
,”
J. Appl. Math. Mech.
,
44
(
5
), pp.
787
808
.
25.
Zupan
,
E.
,
Saje
,
M.
, and
Zupan
,
D.
,
2009
, “
The Quaternion-Based Three-Dimensional Beam Theory
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
49–52
), pp.
3944
3956
.
26.
Zhao
,
Z.
, and
Ren
,
G.
,
2012
, “
A Quaternion-Based Formulation of Euler-Bernoulli Beam Without Singularity
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1825
1835
.
27.
Linn
,
J.
, and
Dressler
,
K.
,
2017
,
Math for the Digital Factory
,
Springer
,
Cham
, pp.
289
319
.
28.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graph.
,
27
(
3
), pp.
1
12
.
29.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graph.
,
29
(
4
), pp.
1
10
.
30.
Jawed
,
M. K.
,
Novelia
,
A.
, and
O'Reilly
,
O. M.
,
2018
,
A Primer on the Kinematics of Discrete Elastic Rods
,
Springer
,
Cham
.
31.
Spillmann
,
J.
, and
Teschner
,
M.
,
2008
, “
An Adaptive Contact Model for the Robust Simulation of Knots
,”
Comput. Graphics Forum
,
27
(
2
), pp.
497
506
.
32.
Crespell
,
O.
,
Hohnadel
,
E.
,
Meivet
,
T.
, and
Bertails-Descoubes
,
F.
,
2024
, “
Contact Detection Between Curved Fibres: High Order Makes a Difference
,”
ACM Trans. Graph.
,
43
(
4
), pp.
1
23
.
33.
Megaro
,
V.
,
Zehnder
,
J.
,
Bächer
,
M.
,
Coros
,
S.
,
Gross
,
M.
, and
Thomaszewski
,
B.
,
2017
, “
A Computational Design Tool for Compliant Mechanisms
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
12
.
34.
Hao
,
Z.
,
Zalavadia
,
S.
, and
Jawed
,
M. K.
,
2024
, “
Bundling and Tumbling in Bacterial-Inspired bi-Flagellated Soft Robots for Attitude Adjustment
,”
IEEE Seventh International Conference on Soft Robotics (RoboSoft)
,
San Diego, CA
,
Apr. 14–17
, pp.
340
346
.
35.
Qu
,
Y.
,
Xie
,
X.
,
Zhang
,
S.
,
Xing
,
C.
,
Cao
,
Y.
, et al
,
2024
, “
A Rigid-Flexible Coupling Dynamic Model for Robotic Manta With Flexible Pectoral Fins
,”
J. Mar. Sci. Eng.
,
12
(
2
), p.
292
.
36.
Burton
,
D.
, and
Tucker
,
R.
,
2010
,
Mechanics of Generalized Continua
,
Springer
,
New York
, pp.
87
95
, Chap. 10.
37.
Meier
,
C.
,
Popp
,
A.
, and
Wall
,
W.
,
2016
, “
A Finite Element Approach for the Line-to-Line Contact Interaction of Thin Beams With Arbitrary Orientation
,”
Comput. Methods Appl. Mech. Eng.
,
308
, pp.
377
413
.
38.
Meier
,
C.
,
Wall
,
W. A.
, and
Popp
,
A.
,
2017
, “
A Unified Approach for Beam-to-Beam Contact
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
972
1010
.
39.
Gregoire
,
M.
, and
Schömer
,
E.
,
2007
, “
Interactive Simulation of one-Dimensional Flexible Parts
,”
Comput. Aided Des.
,
39
(
8
), pp.
694
707
.
10.1016/j.cad.2007.05.005.
.
40.
Lu
,
L.
,
Sim
,
J.
, and
Zhao
,
R. R.
,
2024
, “
Mechanics of Hard-Magnetic Soft Materials: A Review
,”
Mech. Mater.
,
189
, p.
104874
.
41.
Rahmati
,
A. H.
,
Jia
,
R.
,
Tan
,
K.
,
Zhao
,
X.
,
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2023
, “
Theory of Hard Magnetic Soft Materials to Create Magnetoelectricity
,”
J. Mech. Phys. Solids
,
171
, p.
105136
.
42.
Tan
,
K.
,
Wen
,
X.
,
Deng
,
Q.
,
Shen
,
S.
,
Liu
,
L.
, and
Sharma
,
P.
,
2021
, “
Soft Rubber as a Magnetoelectric Material-Generating Electricity From the Remote Action of a Magnetic Field
,”
Mater. Today
,
43
, pp.
8
16
.
43.
Rahmati
,
A. H.
,
Jia
,
R.
,
Tan
,
K.
,
Liu
,
L.
,
Zhao
,
X.
,
Deng
,
Q.
, and
Sharma
,
P.
,
2023
, “
Giant Magnetoelectricity in Soft Materials Using Hard Magnetic Soft Materials
,”
Mater. Today Phys.
,
31
, p.
100969
.
You do not currently have access to this content.